首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Viability of isolated islets is one of the main obstacles limiting islet transplantation success. It has been reported that overexpression of Bcl-2/Bcl-XL proteins enhances islet viability. To avoid potential complications associated with long-term expression of anti-apoptotic proteins, we investigated the possibility of delivering Bcl-XL or its anti-apoptotic domain BH4 to islets by protein transduction. Bcl-XL and BH4 molecules were fused to TAT/PTD, the 11-aa cell penetrating peptide from HIV-1 transactivating protein, generating TAT-Bcl-XL and TAT-BH4, respectively. Transduction efficiency was assessed by laser scanning confocal microscopy of live islets. Biological activity was tested as the ability to protect NIT-1 insulinoma cell line from death induced by staurosporine or serum deprivation. Spontaneous caspase activation in human islets and cytotoxicity caused by IL-1beta were significantly reduced in the presence of TAT-Bcl-XL and TAT-BH4. We conclude that both TAT proteins are biologically active after transduction and could be an asset in the improvement of islet viability.  相似文献   

2.
Anti-apoptotic peptides protect against radiation-induced cell death   总被引:1,自引:0,他引:1  
The risk of terrorist attacks utilizing either nuclear or radiological weapons has raised concerns about the current lack of effective radioprotectants. Here it is demonstrated that the BH4 peptide domain of the anti-apoptotic protein Bcl-xL can be delivered to cells by covalent attachment to the TAT peptide transduction domain (TAT-BH4) and provide protection in vitro and in vivo from radiation-induced apoptotic cell death. Isolated human lymphocytes treated with TAT-BH4 were protected against apoptosis following exposure to 15Gy radiation. In mice exposed to 5Gy radiation, TAT-BH4 treatment protected splenocytes and thymocytes from radiation-induced apoptotic cell death. Most importantly, in vivo radiation protection was observed in mice whether TAT-BH4 treatment was given prior to or after irradiation. Thus, by targeting steps within the apoptosis signaling pathway it is possible to develop post-exposure treatments to protect radio-sensitive tissues.  相似文献   

3.
The B-cell CLL/lymphoma-2 (Bcl-2) family of proteins are important regulators of the intrinsic pathway of apoptosis, and their interactions, driven by Bcl-2 homology (BH) domains, are of great interest in cancer research. Particularly, the BH3 domain is of clinical relevance, as it promotes apoptosis through activation of Bcl-2-associated x protein (Bax) and Bcl-2 antagonist killer (Bak), as well as by antagonising the anti-apoptotic Bcl-2 family members. Although investigated extensively in vitro, the study of the BH3 domain alone inside cells is more problematic because of diminished secondary structure of the unconstrained peptide and a lack of stability. In this study, we report the successful use of a novel peptide aptamer scaffold – Stefin A quadruple mutant – to anchor and present the BH3 domains from Bcl-2-interacting mediator of cell death (Bim), p53 upregulated modulator of apoptosis (Puma), Bcl-2-associated death promoter (Bad) and Noxa, and demonstrate its usefulness in the study of the BH3 domains in vivo. When expressed intracellularly, anchored BH3 peptides exhibit much the same binding specificities previously established in vitro, however, we find that, at endogenous expression levels, Bcl-2 does not bind to any of the anchored BH3 domains tested. Nonetheless, when expressed inside cells the anchored PUMA and Bim BH3 α-helices powerfully induce cell death in the absence of efficient targeting to the mitochondrial membrane, whereas the Noxa helix requires a membrane insertion domain in order to kill Mcl-1-dependent myeloma cells. Finally, the binding of the Bim BH3 peptide to Bax was the only interaction with a pro-apoptotic effector protein observed in this study.  相似文献   

4.
The betanodavirus non-structural protein B2 is a newly discovered necrotic death factor with a still unknown role in regulation of mitochondrial function. In the present study, we examined protein B2-mediated inhibition of mitochondrial complex II activity, which results in ATP depletion and thereby in a bioenergetic crisis in vitro and in vivo. Expression of protein B2 was detected early at 24 h postinfection with red-spotted grouper nervous necrosis virus in the cytoplasm. Later B2 was found in mitochondria using enhanced yellow fluorescent protein (EYFP) and immuno-EM analysis. Furthermore, the B2 mitochondrial targeting signal peptide was analyzed by serial deletion and specific point mutation. The sequence of the B2 targeting signal peptide (41RTFVISAHAA50) was identified and its presence correlated with loss of mitochondrial membrane potential in fish cells. Protein B2 also was found to dramatically inhibit complex II (succinate dehydrogenase) activity, which impairs ATP synthesis in fish GF-1 cells as well as human embryonic kidney 293T cells. Furthermore, when B2 was injected into zebrafish embryos at the one-cell stage to determine its cytotoxicity and ability to inhibit ATP synthesis, we found that B2 caused massive embryonic cell death and depleted ATP resulting in further embryonic death at 10 and 24 h post-fertilization. Taken together, our results indicate that betanodavirus protein B2-induced cell death is due to direct targeting of the mitochondrial matrix by a specific signal peptide that targets mitochondria and inhibits mitochondrial complex II activity thereby reducing ATP synthesis.  相似文献   

5.
We identified a sequence homologous to the Bcl-2 homology 3 (BH3) domain of Bcl-2 proteins in SOUL. Tissues expressed the protein to different extents. It was predominantly located in the cytoplasm, although a fraction of SOUL was associated with the mitochondria that increased upon oxidative stress. Recombinant SOUL protein facilitated mitochondrial permeability transition and collapse of mitochondrial membrane potential (MMP) and facilitated the release of proapoptotic mitochondrial intermembrane proteins (PMIP) at low calcium and phosphate concentrations in a cyclosporine A-dependent manner in vitro in isolated mitochondria. Suppression of endogenous SOUL by diced small interfering RNA in HeLa cells increased their viability in oxidative stress. Overexpression of SOUL in NIH3T3 cells promoted hydrogen peroxide-induced cell death and stimulated the release of PMIP but did not enhance caspase-3 activation. Despite the release of PMIP, SOUL facilitated predominantly necrotic cell death, as revealed by annexin V and propidium iodide staining. This necrotic death could be the result of SOUL-facilitated collapse of MMP demonstrated by JC-1 fluorescence. Deletion of the putative BH3 domain sequence prevented all of these effects of SOUL. Suppression of cyclophilin D prevented these effects too, indicating that SOUL facilitated mitochondrial permeability transition in vivo. Overexpression of Bcl-2 and Bcl-xL, which can counteract the mitochondria-permeabilizing effect of BH3 domain proteins, also prevented SOUL-facilitated collapse of MMP and cell death. These data indicate that SOUL can be a novel member of the BH3 domain-only proteins that cannot induce cell death alone but can facilitate both outer and inner mitochondrial membrane permeabilization and predominantly necrotic cell death in oxidative stress.  相似文献   

6.
An intrinsic pathway of apoptosis is regulated by the B-cell lymphoma-2 (Bcl-2) family proteins. We previously reported that a fine rheostatic balance between the anti- and pro-apoptotic multidomain Bcl-2 family proteins controls hepatocyte apoptosis in the healthy liver. The Bcl-2 homology domain 3 (BH3)-only proteins set this rheostatic balance toward apoptosis upon activation in the diseased liver. However, their involvement in healthy Bcl-2 rheostasis remains unknown. In the present study, we focused on two BH3-only proteins, Bim and Bid, and we clarified the Bcl-2 network that governs hepatocyte life and death in the healthy liver. We generated hepatocyte-specific Bcl-xL- or Mcl-1-knock-out mice, with or without disrupting Bim and/or Bid, and we examined hepatocyte apoptosis under physiological conditions. We also examined the effect of both Bid and Bim disruption on the hepatocyte apoptosis caused by the inhibition of Bcl-xL and Mcl-1. Spontaneous hepatocyte apoptosis in Bcl-xL- or Mcl-1-knock-out mice was significantly ameliorated by Bim deletion. The disruption of both Bim and Bid completely prevented hepatocyte apoptosis in Bcl-xL-knock-out mice and weakened massive hepatocyte apoptosis via the additional in vivo knockdown of mcl-1 in these mice. Finally, the hepatocyte apoptosis caused by ABT-737, which is a Bcl-xL/Bcl-2/Bcl-w inhibitor, was completely prevented in Bim/Bid double knock-out mice. The BH3-only proteins Bim and Bid are functionally active but are restrained by the anti-apoptotic Bcl-2 family proteins under physiological conditions. Hepatocyte integrity is maintained by the dynamic and well orchestrated Bcl-2 network in the healthy liver.  相似文献   

7.
One of the objectives in the development of effective cancer therapy is induction of tumor-selective cell death. Toward this end, we have identified a small peptide that, when introduced into cells via a TAT cell-delivery system, shows a remarkably potent cytoxicity in a variety of cancer cell lines and inhibits tumor growth in vivo, whereas sparing normal cells and tissues. This fusion peptide was named killerFLIP as its sequence was derived from the C-terminal domain of c-FLIP, an anti-apoptotic protein. Using structure activity analysis, we determined the minimal bioactive core of killerFLIP, namely killerFLIP-E. Structural analysis of cells using electron microscopy demonstrated that killerFLIP-E triggers cell death accompanied by rapid (within minutes) plasma membrane permeabilization. Studies of the structure of the active core of killerFLIP (-E) indicated that it possesses amphiphilic properties and self-assembles into micellar structures in aqueous solution. The biochemical properties of killerFLIP are comparable to those of cationic lytic peptides, which participate in defense against pathogens and have also demonstrated anticancer properties. We show that the pro-cell death effects of killerFLIP are independent of its sequence similarity with c-FLIPL as killerFLIP-induced cell death was largely apoptosis and necroptosis independent. A killerFLIP-E variant containing a scrambled c-FLIPL motif indeed induced similar cell death, suggesting the importance of the c-FLIPL residues but not of their sequence. Thus, we report the discovery of a promising synthetic peptide with novel anticancer activity in vitro and in vivo.  相似文献   

8.
9.
Interactions among Bcl-2 family proteins play critical roles in cellular life and death decisions. Previous studies have established the BH3-only proteins Bim, tBid, and Noxa as “direct activators” that are able to directly initiate the oligomerization and activation of Bak and/or Bax. Earlier studies of Puma have yielded equivocal results, with some concluding that it also acts as a direct activator and other studies suggesting that it acts solely as a sensitizer BH3-only protein. In the present study we examined the interaction of Puma BH3 domain or full-length protein with Bak by surface plasmon resonance, assessed Bak oligomerization status by cross-linking followed by immunoblotting, evaluated the ability of the Puma BH3 domain to induce Bak-mediated permeabilization of liposomes and mitochondria, and determined the effect of wild type and mutant Puma on cell viability in a variety of cellular contexts. Results of this analysis demonstrate high affinity (KD = 26 ± 5 nm) binding of the Puma BH3 domain to purified Bak ex vivo, leading to Bak homo-oligomerization and membrane permeabilization. Mutations in Puma that inhibit (L141E/M144E/L148E) or enhance (M144I/A145G) Puma BH3 binding to Bak also produce corresponding alterations in Bak oligomerization, Bak-mediated membrane permeabilization and, in a cellular context, Bak-mediated killing. Collectively, these results provide strong evidence that Puma, like Bim, Noxa, and tBid, is able to act as a direct Bak activator.  相似文献   

10.
Parkinson disease (PD) is a multifactorial disease resulting in preferential death of the dopaminergic neurons in the substantia nigra. Studies of PD-linked genes and toxin-induced models of PD have implicated mitochondrial dysfunction, oxidative stress, and the misfolding and aggregation of α-synuclein (α-syn) as key factors in disease initiation and progression. Many of these features of PD may be modeled in cells or animal models using the neurotoxin 1-methyl-4-phenylpyridinium (MPP+). Reducing oxidative stress and nitric oxide synthase (NOS) activity has been shown to be protective in cell or animal models of MPP+ toxicity. We have previously demonstrated that siRNA-mediated knockdown of α-syn lowers the activity of both dopamine transporter and NOS activity and protects dopaminergic neuron-like cells from MPP+ toxicity. Here, we demonstrate that α-syn knockdown and modulators of oxidative stress/NOS activation protect cells from MPP+-induced toxicity via postmitochondrial mechanisms rather than by a rescue of the decrease in mitochondrial oxidative phosphorylation caused by MPP+ exposure. We demonstrate that MPP+ significantly decreases the synthesis of the antioxidant and obligate cofactor of NOS and TH tetrahydrobiopterin (BH4) through decreased cellular GTP/ATP levels. Furthermore, we demonstrate that RNAi knockdown of α-syn results in a nearly twofold increase in GTP cyclohydrolase I activity and a concomitant increase in basal BH4 levels. Together, these results demonstrate that both mitochondrial activity and α-syn play roles in modulating cellular BH4 levels.  相似文献   

11.
Intracellular peptides are constantly produced by the ubiquitin-proteasome system, and many are probably functional. Here, the peptide WELVVLGKL (pep5) from G1/S-specific cyclin D2 showed a 2-fold increase during the S phase of HeLa cell cycle. pep5 (25–100 μm) induced cell death in several tumor cells only when it was fused to a cell-penetrating peptide (pep5-cpp), suggesting its intracellular function. In vivo, pep5-cpp reduced the volume of the rat C6 glioblastoma by almost 50%. The tryptophan at the N terminus of pep5 is essential for its cell death activity, and N terminus acetylation reduced the potency of pep5-cpp. WELVVL is the minimal active sequence of pep5, whereas Leu-Ala substitutions totally abolished pep5 cell death activity. Findings from the initial characterization of the cell death/signaling mechanism of pep5 include caspase 3/7 and 9 activation, inhibition of Akt2 phosphorylation, activation of p38α and -γ, and inhibition of proteasome activity. Further pharmacological analyses suggest that pep5 can trigger cell death by distinctive pathways, which can be blocked by IM-54 or a combination of necrostatin-1 and q-VD-OPh. These data further support the biological and pharmacological potential of intracellular peptides.  相似文献   

12.
We have successfully delivered a reactive alkylating agent, chlorambucil (Cbl), to the mitochondria of mammalian cells. Here, we characterize the mechanism of cell death for mitochondria-targeted chlorambucil (mt-Cbl) in vitro and assess its efficacy in a xenograft mouse model of leukemia. Using a ρ° cell model, we show that mt-Cbl toxicity is not dependent on mitochondrial DNA damage. We also illustrate that re-targeting Cbl to mitochondria results in a shift in the cell death mechanism from apoptosis to necrosis, and that this behavior is a general feature of mitochondria-targeted Cbl. Despite the change in cell death mechanisms, we show that mt-Cbl is still effective in vivo and has an improved pharmacokinetic profile compared to the parent drug. These findings illustrate that mitochondrial rerouting changes the site of action of Cbl and also alters the cell death mechanism drastically without compromising in vivo efficacy. Thus, mitochondrial delivery allows the exploitation of Cbl as a promiscuous mitochondrial protein inhibitor with promising therapeutic potential.  相似文献   

13.
The injured intestine is responsible for significant morbidity and mortality after severe trauma and burn; however, targeting the intestine with therapeutics aimed at decreasing injury has proven difficult. We hypothesized that we could use intravenous phage display technology to identify peptide sequences that target the injured intestinal mucosa in a murine model, and then confirm the cross-reactivity of this peptide sequence with ex vivo human gut. Four hours following 30% TBSA burn we performed an in vivo, intravenous systemic administration of phage library containing 1012 phage in balb/c mice to biopan for gut-targeting peptides. In vivo assessment of the candidate peptide sequences identified after 4 rounds of internalization was performed by injecting 1 × 1012 copies of each selected phage clone into sham or burned animals. Internalization into the gut was assessed using quantitative polymerase chain reaction. We then incubated this gut-targeting peptide sequence with human intestine and visualized fluorescence using confocal microscopy. We identified 3 gut-targeting peptide sequences which caused collapse of the phage library (4–1: SGHQLLLNKMP, 4–5: ILANDLTAPGPR, 4–11: SFKPSGLPAQSL). Sequence 4–5 was internalized into the intestinal mucosa of burned animals 9.3-fold higher than sham animals injected with the same sequence (2.9 × 105vs. 3.1 × 104 particles per mg tissue). Sequences 4–1 and 4–11 were both internalized into the gut, but did not demonstrate specificity for the injured mucosa. Phage sequence 4–11 demonstrated cross-reactivity with human intestine. In the future, this gut-targeting peptide sequence could serve as a platform for the delivery of biotherapeutics.  相似文献   

14.
Although oligomeric β-amyloid (Aβ) has been suggested to have an important role in Alzheimer disease (AD), the mechanism(s) of how Aβ induces neuronal cell death has not been fully identified. The balance of pro- and anti-apoptotic Bcl-2 family proteins (e.g., Bcl-2 and Bcl-w versus Bad, Bim and Bax) has been known to have a role in neuronal cell death and, importantly, expression levels of these proteins are reportedly altered in the vulnerable neurons in AD. However, the roles of apoptotic proteins in oligomeric Aβ-induced cell death remain unclear in vivo or in more physiologically relevant models. In addition, no study to date has examined whether Bax is required for the toxicity of oligomeric Aβ. Here, we found that treatment with oligomeric Aβ increased Bim levels but decreased Bcl-2 levels, leading to the activation of Bax and neuronal cell death in hippocampal slice culture and in vivo. Furthermore, the inhibition of Bax activity either by Bax-inhibiting peptide or bax gene knockout significantly prevented oligomeric Aβ-induced neuronal cell death. These findings are first to demonstrate that Bax has an essential role in oligomeric Aβ-induced neuronal cell death, and that the targeting of Bax may be a therapeutic approach for AD.  相似文献   

15.
Parkinson's disease is a neurodegenerative disorder associated with selective loss of dopaminergic neurons in the substantia nigra. While the underlying cause of this cell death is poorly understood, oxidative stress is thought to play a role. We have previously shown that tetrahydrobiopterin (BH4), an obligatory co-factor for tyrosine hydroxylase (TH), exerts selective toxicity on dopamine-producing cells and that this is prevented by antioxidants. This study shows that BH4-induced dopaminergic cell death is primarily mediated by dopamine, evidenced by findings that (i) BH4 toxicity is increased in proportion to cellular dopamine content; (ii) non-dopaminergic cells become susceptible to BH4 upon exposure to dopamine; and (iii) depletion of dopamine attenuates BH4 toxicity in dopamine-producing cells. BH4 causes lipid peroxidation, suggesting involvement of oxidative stress but the toxicity does not require enzymatic oxidation of dopamine. Instead, it seems to involve formation of quinone product(s) because (i) the cell death is attenuated by exposure to or induction of quinone reductase and (ii) BH4-treated cells show increased formation of protein-bound quinones, which is inhibited by thiol antioxidants. These data taken together suggest that the presence of both BH4 and dopamine is important in rendering dopaminergic cells vulnerable and that this involves formation of reactive dopamine quinone products.  相似文献   

16.
Tissue inhibitor of metalloproteinases-2 (TIMP-2) inhibits angiogenesis by several mechanisms involving either MMP inhibition or direct endothelial cell binding. The primary aim of this study was to identify the TIMP-2 region involved in binding to the previously identified receptor integrin α3β1, and to determine whether synthetic peptides derived from this region retained angio-inhibitory and tumor suppressor activity. We demonstrated that the N-terminal domain of TIMP-2 (N-TIMP-2) binds to α3β1 and inhibits vascular endothelial growth factor-stimulated endothelial cell growth in vitro, suggesting that both the α3β1-binding domain and the growth suppressor activity of TIMP-2 localize to the N-terminal domain. Using a peptide array approach we identify a 24 amino acid region of TIMP-2 primary sequence, consisting of residues Ile43-Ala66, which shows α3β1-binding activity. Subsequently we demonstrate that synthetic peptides from this region compete for TIMP-2 binding to α3β1 and suppress endothelial growth in vitro. We define a minimal peptide sequence (peptide 8-9) that possesses both angio-inhibitory and, using a murine xenograft model of Kaposi's sarcoma, anti-tumorigenic activity in vivo. Thus, both the α3β1-binding and the angio-inhibitory activities co-localize to a solvent exposed, flexible region in the TIMP-2 primary sequence that is unique in amino acid sequence compared with other members of the TIMP family. Furthermore, comparison of the TIMP-2 and TIMP-1 protein 3-D structures in this region also identified unique structural differences. Our findings demonstrate that the integrin binding, tumor growth suppressor and in vivo angio-inhibitory activities of TIMP-2 are intimately associated within a unique sequence/structural loop (B-C loop).  相似文献   

17.
Many researches have shown that anionic clays can be used as delivery carriers for drug or gene molecules due to their efficient cellular uptake in vitro, and enhanced permeability and retention effect in vivo. It is, therefore, highly required to establish a guideline on their potential toxicity for practical applications. The toxicity of anionic clay, layered metal hydroxide nanoparticle, was evaluated in two human lung epithelial cells, carcinoma A549 cells and normal L-132 cells, and compared with that in other human cancer cell lines such as cervical adenocarcinoma cells (HeLa) and osteosarcoma cells (HOS). The present nanoparticles showed little cytotoxic effects on the proliferation and viability of four cell lines tested at the concentrations used (<250 μg/ml) within 48 h. However, exposing cancer cells to high concentrations (250-500 μg/ml) for 72 h resulted in an inflammatory response with oxidative stress and membrane damage, which varied with the cell type (A549 > HOS > HeLa). On the other hand, the toxicity mechanism seems to be different from that of other inorganic nanoparticles frequently studied for biological and medicinal applications such as iron oxide, silica, and single walled carbon nanotubes. Iron oxide caused cell death associated with membrane damage, while single walled carbon nanotube induced oxidative stress followed by apoptosis. Silica triggered an inflammation response without causing considerable cell death for both cancer cells and normal cells, whereas layered metal hydroxide nanoparticle did not show any cytotoxic effects on normal L-132 cells in terms of inflammation response, oxidative stress, and membrane damage at the concentration of less than 250 μg/ml. It is , therefore, highly expected that the present nanoparticle can be used as a efficient vehicle for drug delivery and cancer cell targeting as well.  相似文献   

18.
Interactions among Bcl-2 family proteins are important for regulating apoptosis. Prosurvival members of the family interact with proapoptotic BH3 (Bcl-2-homology-3)-only members, inhibiting execution of cell death through the mitochondrial pathway. Structurally, this interaction is mediated by binding of the α-helical BH3 region of the proapoptotic proteins to a conserved hydrophobic groove on the prosurvival proteins. Native BH3-only proteins exhibit selectivity in binding prosurvival members, as do small molecules that block these interactions. Understanding the sequence and structural basis of interaction specificity in this family is important, as it may allow the prediction of new Bcl-2 family associations and/or the design of new classes of selective inhibitors to serve as reagents or therapeutics. In this work, we used two complementary techniques—yeast surface display screening from combinatorial peptide libraries and SPOT peptide array analysis—to elucidate specificity determinants for binding to Bcl-xLversus Mcl-1, two prominent prosurvival proteins. We screened a randomized library and identified BH3 peptides that bound to either Mcl-1 or Bcl-xL selectively or to both with high affinity. The peptides competed with native ligands for binding into the conserved hydrophobic groove, as illustrated in detail by a crystal structure of a specific peptide bound to Mcl-1. Mcl-1-selective peptides from the screen were highly specific for binding Mcl-1 in preference to Bcl-xL, Bcl-2, Bcl-w, and Bfl-1, whereas Bcl-xL-selective peptides showed some cross-interaction with related proteins Bcl-2 and Bcl-w. Mutational analyses using SPOT arrays revealed the effects of 170 point mutations made in the background of a peptide derived from the BH3 region of Bim, and a simple predictive model constructed using these data explained much of the specificity observed in our Mcl-1 versus Bcl-xL binders.  相似文献   

19.
Depletion of the central metabolite NAD in cells results in broad metabolic defects leading to cell death and is a proposed novel therapeutic strategy in oncology. There is, however, a limited understanding of the underlying mechanisms that connect disruption of this central metabolite with cell death. Here we utilize GNE-617, a small molecule inhibitor of NAMPT, a rate-limiting enzyme required for NAD generation, to probe the pathways leading to cell death following NAD depletion. In all cell lines examined, NAD was rapidly depleted (average t½ of 8.1 h) following NAMPT inhibition. Concurrent with NAD depletion, there was a decrease in both cell proliferation and motility, which we attribute to reduced activity of NAD-dependent deacetylases because cells fail to deacetylate α-tubulin-K40 and histone H3-K9. Following depletion of NAD by >95%, cells lose the ability to regenerate ATP. Cell lines with a slower rate of ATP depletion (average t½ of 45 h) activate caspase-3 and show evidence of apoptosis and autophagy, whereas cell lines with rapid depletion ATP (average t½ of 32 h) do not activate caspase-3 or show signs of apoptosis or autophagy. However, the predominant form of cell death in all lines is oncosis, which is driven by the loss of plasma membrane homeostasis once ATP levels are depleted by >20-fold. Thus, our work illustrates the sequence of events that occurs in cells following depletion of a key metabolite and reveals that cell death caused by a loss of NAD is primarily driven by the inability of cells to regenerate ATP.  相似文献   

20.
Recent investigations have demonstrated a complex interrelationship between autophagy and cell death. A common mechanism of cell death in liver injury is tumor necrosis factor (TNF) cytotoxicity. To better delineate the in vivo function of autophagy in cell death, we examined the role of autophagy in TNF-induced hepatic injury. Atg7Δhep mice with a hepatocyte-specific knockout of the autophagy gene atg7 were generated and cotreated with D-galactosamine (GalN) and lipopolysaccharide (LPS). GalN/LPS-treated Atg7Δhep mice had increased serum alanine aminotransferase levels, histological injury, numbers of TUNEL (terminal deoxynucleotide transferase-mediated deoxyuridine triphosphate nick end-labeling)-positive cells and mortality as compared with littermate controls. Loss of hepatocyte autophagy similarly sensitized to GalN/TNF liver injury. GalN/LPS injury in knockout animals did not result from altered production of TNF or other cytokines. Atg7Δhep mice had accelerated activation of the mitochondrial death pathway and caspase-3 and -7 cleavage. Increased cell death did not occur from direct mitochondrial toxicity or a lack of mitophagy, but rather from increased activation of initiator caspase-8 causing Bid cleavage. GalN blocked LPS induction of hepatic autophagy, and increased autophagy from beclin 1 overexpression prevented GalN/LPS injury. Autophagy, therefore, mediates cellular resistance to TNF toxicity in vivo by blocking activation of caspase-8 and the mitochondrial death pathway, suggesting that autophagy is a therapeutic target in TNF-dependent tissue injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号