首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have previously derived 2 V79 clones resistant to menadione (Md1 cells) and cadmium (Cd1 cells), respectively. They both were shown to be cross-resistant to hydrogen peroxide. There was a modification in the antioxidant repertoire in these cells as compared to the parental cells. Md1 presented an increase in catalase and glutathione peroxidase activities whereas Cd1 cells exhibited an increase in metallothionein and glutathione contents. The susceptibility of the DNA of these cells to the damaging effect of H2O2 was tested using the DNA precipitation assay. Both Md1 and Cd1 DNAs were more resistant to the peroxide action. In the case of Md1 cells it seems clear that the extra resistance is provided by the increase in the two H2O2 scavenger enzymes, catalase and glutathione peroxidase. In the case of Cd1 cells the activities of these enzymes as well as of superoxide dismutases (Cu/Zn and Mn) are unaltered as compared to the parental cells. The facts that parental cells exposed to 100 μM Zn2+ in the medium exhibit an increase in metallothionein but not in glutathione and that these cells become more resistant to the DNA-damaging effect of H2O2 suggest that this protein might play a protective role in vivo against the OH radical attack on DNA.  相似文献   

2.
In this study, we compare some antioxidative responses of leaves and roots associated to growth reduction in cowpea plants (Vigna unguiculata) during short-term salt stress and recovery. The salt treatment was imposed (200 mM NaCl) for six consecutive days and the salt withdrawal after 3 d. The salt treatment caused an almost complete cessation in the relative growth rate of both leaves and roots. Although NaCl withdrawal has induced an intense reduction in the Na(+) content from the leaves and roots, the growth recovery was slight, after 3 d. The leaf lipid peroxidation was increased in salt-stressed plants and slightly reduced in recovered plants after 3 d. Surprisingly, in the salt-stressed roots it decreased markedly after 3 d treatment and in the pre-stressed/recovered roots it was restored to levels near to the control. In leaves, catalase (CAT) activity showed a rapid and prominent decrease after 1 d of NaCl treatment and salt withdrawal had no effect on its recovery. In contrast, the root CAT activity was not changed by effects of both NaCl and salt withdrawal, over time interval. Leaf superoxide dismutase (SOD) activity did not change in all treatments, whereas in roots it significantly decreased after 3 d of salt treatment and recovered after NaCl withdrawal. Contrasting to the other enzymes, the guaiacol-peroxidase activity increased in leaves and roots, reaching almost 200% of control values and it significantly decreased in both organs from the pre-stressed/recovered plants. In conclusion, cowpea roots and leaves present distinct mechanisms of response to lipid peroxidation and CAT and SOD activities during salt stress and recovery. However, these responses and/or the oxidative damages caused by reactive oxygen species were not related with the growth reduction.  相似文献   

3.
All definitions of the terms ‘oxidative stress’ and ‘antioxidants’ implicate that oxidants are just damaging. However, there is increasing evidence that reactive oxygen species (ROS) are not only toxic but that we need them for healthy life. This change in paradigm has been discussed at the third international symposium on ‘Nutrition, oxygen biology and medicine—micronutrients, exercise, energy and aging disorders’, of the Society for Free Radical Research France and the Oxygen Club of California on April 8–10, 2009 in Paris. The beneficial effect of a low to moderate concentration of oxidants produced during exercise was taken as most discussed example. In this case, ROS are required for normal force production in skeletal muscle, for the development of training-induced adaptation in endurance performance, as well as for the induction of endogenous defense systems. Taking antioxidants during training prevents adaptation. Although substantial progress on the understanding of the physiological functions of ROS was communicated at the meeting, it remained obvious that a lot of work is needed to fully understand the conditions and individual situations under which ROS are beneficial or detrimental.  相似文献   

4.
Two species of galagos (G. senegalensis moholi andG. garnettii) were subjected to dehydration and starvation stress in order to determine whether, as is common in other animals, these hypometabolic prosimians would lower their metabolic rate even further. Dehydration was confirmed by losses in body mass, a decrease in fecal water content and a rise in urine osmolality. At the height of dehydration, 20 to 25% reduction in body mass, 30 to 40% reduction in fecal water content and urine osmolality ranging from 1.8 to 3.5 Osmol kg−1 H2O, were recorded in some of the animals. Basal metabolic rate of 0.536 ml O2 (g·h)−1 inG. s. moholi and 0.302 ml O2 (g·h)−1 inG. garnettii were recorded, representing 50 to 42% reduction in metabolic rate, respectively, compared with mass specific values. In none of the tested animals did we observe significant reduction in basal metabolism during dehydration/starvation stress compared with the rates observed during the control period. Basal metabolism in the bushbabies seems to have reached the lowest level and no further adjustment is apparently possible as a strategy for energy saving during starvation and/or dehydration stress.  相似文献   

5.
COVID-19 disease, which spreads worldwide, is a disease characterized by widespread inflammation and affects many organs, especially the lungs. The resulting inflammation can lead to reactive oxygen radicals, leading to oxidative DNA damage. The pneumonia severity of 95 hospitalized patients with positive RT-PCR test was determined and divided into three groups: mild, moderate, and severe/critical. Inflammation markers (neutrophil–lymphocyte ratio, serum reactive protein, procalcitonin, etc.) were determined, and IL-10 and IFN-γ measurements were analyzed using the enzyme-linked immunosorbent assay method. In evaluating oxidative damage, total thiol, native thiol, disulfide, and ischemia-modified albumin (IMA) levels were determined by measuring spectrophotometrically. The comet assay method’s percentage of tail DNA obtained was used to determine oxidative DNA damage. As a result, when the mild and severe/critical groups were compared, we found that total thiol, native thiol, and disulfide levels decreased significantly in the severe/critical group due to the increase in inflammation markers and cytokine levels (p < 0.05). We could not detect any significance in IMA levels between the groups (p > 0.05). At the same time, we determined an increase in the tail DNA percent level, that is, DNA damage, due to the increased oxidative effect. As a result, we determined that inflammation and oxidative stress increased in patients with severe pneumonia, and there was DNA damage in these patients.  相似文献   

6.
This study tested the accuracy of a novel, limited-availability web application (H2Q™) for predicting sweat rates in a variety of sports using estimates of energy expenditure and air temperature only. The application of predictions for group water planning was investigated for soccer match play. Fourteen open literature studies were identified where group sweat rates were reported (n = 20 group means comprising 230 individual observations from 179 athletes) with fidelity. Sports represented included: walking, cycling, swimming, and soccer match play. The accuracy of H2Q™ sweat rates was tested by comparing to measured group sweat rates using the concordance correlation coefficient (CCC) with 95% confidence interval [CI]. The relative absolute error (RAE) with 95% [CI] was also assessed, whereby the mean absolute error was expressed relative to an acceptance limit of 0.250 L/h. The CCC was 0.98 [0.95, 0.99] and the RAE was 0.449 [0.279, 0.620], indicating that the prediction error was on average 0.112 L/h. The RAE was < 1.0 for 19/20 observations (95%). Drink volumes modeled as a proxy for sweat losses during soccer match play prevented dehydration (< 1% loss of body mass). The H2Q™ web application demonstrated high group sweat prediction accuracy for the variety of sports activities tested. Water planning for soccer match play suggests the feasibility of easily and accurately predicting sweat rates to plan group water needs and promote optimal hydration in training and/or competition.  相似文献   

7.
8.
To better clarify the relationship between physical activity and oxidative stress, we determined the effects of a maximal test in 18 young subjects with different training levels (six professional Athletes and 12 non-agonists (NA)). Redox homeostasis (total antioxidant activity (TAS), vitamin C and glutathione (GSH)), oxidative damage (diene conjugation and hemolysis), lymphocyte cell death and repair systems (apoptosis, micronuclei and Hsp70 expression) were evaluated. We found that agonistic training led to a chronic oxidative insult (high baseline values of oxidized glutathione (GSSG), micronuclei and hemolysis). On the contrary, NA with the lowest level of training frequency showed a well balanced profile at rest, but they were more susceptible to exercise-induced variations (GSSG/GSH and diene increased values), respect to the NA with an higher level of training. As almost all the parameters employed in this study showed inter-individual variations, the GSSG/GSH ratio remains the most sensitive and reliable marker of oxidative stress, accordingly with other data just reported in the literature.  相似文献   

9.
Oxidative stress is considered as an important pathogenic factor in many human diseases including Fanconi anemia (FA), an inherited bone marrow failure syndrome with extremely high risk of leukemic transformation. Members of the FA protein family are involved in DNA damage and other cellular stress responses. Loss of FA proteins renders cells hypersensitive to oxidative stress and cancer transformation. However, how FA cells respond to oxidative DNA damage remains unclear. By using an in vivo stress-response mouse strain expressing the Gadd45β-luciferase transgene, we show here that haematopoietic stem and progenitor cells (HSPCs) from mice deficient for the FA gene Fanca or Fancc persistently responded to oxidative stress. Mechanistically, we demonstrated that accumulation of unrepaired DNA damage, particularly in oxidative damage-sensitive genes, was responsible for the long-lasting response in FA HSPCs. Furthermore, genetic correction of Fanca deficiency almost completely abolished the persistent oxidative stress-induced G2/M arrest and DNA damage response in vivo. Our study suggests that FA pathway is an integral part of a versatile cellular mechanism by which HSPCs respond to oxidative stress.  相似文献   

10.
Microcystins produced by cyanobacteria are potent inhibitors of some protein phosphatases, but recent evidence also indicates its potential to generate oxidative stress. In the present study, the effects of microcystin raw extracts (Mic; 0.01 and 20microg/L) and purified okadaic acid (OA; 0.01 and 10microg/L) on short- and long-term memory alteration and antioxidant and oxidative damage were investigated in hippocampus of rats. The results showed an amnesic effect with 0.01 and 20microg/L Mic on retrieval and only with 0.01microg/L Mic on spatial learning. Parallel to these effects oxidative damage was observed as evidenced by augmented levels of lipid peroxides and DNA damage and the absence of antioxidant responses in terms of total oxyradical scavenging capacity. Phase II reactions catalyzed by glutathione-S-transferase were not modified after microcystins exposure. Overall this study showed physiological events (retrieval and spatial learning) that can be related to the classical toxic effects of microcystins (i.e., phosphatase inhibition). In addition, evidence of alternative toxicity mechanisms via oxidative stress generation was also obtained. The fact that organic anion transporter polypeptides (OATP) involved in microcystins uptake are expressed not only in liver but also in brain points to the environmental relevance of the observed effects.  相似文献   

11.
This study was aimed to determine the effects of boric acid on oxidative stress, testicular tissue and spermatozoon DNA. Experiments were performed with Swiss Albino mice divided equally into two groups based on the tratment period: one for 4 and the other for 6-week duration. These groups were further divided into subgroups as Control and those administered daily at oral doses of 115 mg/kg, 250 mg/kg and 450 mg/kg of boric acid. Then, testicular tissue were examined postmortem and analyzed using ex-vivo biochemical tools for oxidative stress, spermatozoon membrane integrity, sperm motility and live cell rate (%). In both 4 and 6-week groups, v. seminalis weight, membrane integrity, motility, live cells and GSH levels exhibited a decreasing trent compared to the controls. In addition, 6-week group had a decrease in SOD level. MDA level was higher in controls in both 4 and 6-week groups. Spermatozoon DNA was intact in the 4-week group, but damaged in the 6-week group, and the degree of the damage dependent on the administered dose. Boric acid induces oxidative stress in testicular tissue, and its long-term application (only 6 weeks) caused damage in spermatozoon DNA.  相似文献   

12.
We examined HeLa cell viability and RNA oxidative damage in response to hydrogen peroxide (H2O2) treatment. The level of damaged RNA, measured by the content of 8-hydroxyguanosine (7,8-dihydro-8-oxoguanosine, 8-oxoG), increases depending on H2O2 dosage and is inversely correlated with cell viability. The elevated level of 8-oxoG in RNA decreases after removal of oxidative challenge, suggesting the existence of surveillance mechanism(s) for cleaning up oxidized RNA. Human polynucleotide phosphorylase (hPNPase), an exoribonuclease primarily located in mitochondria, has been previously shown to bind 8-oxoG-RNA with high affinity. The role of hPNPase in HeLa cell under oxidative stress conditions is examined here. Overexpression of hPNPase reduces RNA oxidation and increases cell viability against H2O2 insult. Conversely, hPNPase knockdown decreases viability and increases 8-oxoG level in HeLa cell exposed to H2O2. Our results suggest that hPNPase plays an important role in protecting cells and limiting damaged RNA under oxidative stress.  相似文献   

13.
The purpose of these experiments was to examine the influence of various fluid replacement drinks on exercise-induced disturbances in homeostasis during heavy exercise. Nine trained cyclists performed constant load exercise on a cycle ergometer to fatigue on three occasions with 1-week separating experiments. The work rate was set initially at approximately 85% of VO2max (range 82-88%) with fatigue being defined as a 10% decline in power output below the initial value. During each experiment subjects consumed one of the following three beverages prior to and every 15 min during exercise: (1) non-electrolyte placebo (NEP; 31 mosmol.kg-1); (2) glucose polymer drink containing electrolytes (GP; 7% CHO, 231 mosmol.kg-1), and (3) electrolyte placebo drink without carbohydrate (EP; 48 mosmol.kg-1). Both the GP and EP beverage contained sodium citrate/citric acid (C) as a flavoring agent while C was not contained in the NEP drink. Although seven of nine subjects worked longer during the GP and EP treatment when compared with the NEP trial, the difference was not significant (P greater than 0.05). No differences (P greater than 0.05) existed between the GP and EP treatments in performance time. Exercise changes in rectal temperature, heart rate, delta % plasma volume and plasma concentrations of total protein, free fatty acids, glucose, lactate, potassium, chloride, calcium, and sodium did not differ (P greater than 0.05) between trials.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
This study was designed to determine the effect of diphenyl diselenide and ebselen, synthetic organoselenium compounds with antioxidant properties, in diabetic rats. Diabetes was induced by the administration of streptozotocin (STZ) (45mg/kg, intravenous). In experimental trials, diphenyl diselenide, but not ebselen, caused a significant reduction in blood glucose levels of STZ-treated rats. This effect of diphenyl diselenide was accompanied by a reduction in the levels of glycated proteins. Diphenyl diselenide ameliorate superoxide dismutase activity (liver and erythrocytes) and Vitamin C levels (liver, kidney and blood), which were decreased in STZ-treated rats. In normal rats, diphenyl diselenide caused per se an increase in hepatic, renal and blood GSH levels. Similarly, treatment with diphenyl diselenide restored hepatic and renal GSH levels in STZ-treated rats. TBARS and protein carbonyl levels were not modified by STZ and/or diphenyl diselenide and ebselen treatments. Our findings suggest that diphenyl diselenide can be considered an anti-diabetogenic agent by exhibiting anti-hyperglycemic and antioxidant properties.  相似文献   

15.
16.
In this review, we summarize the role of hyperglycemia during cerebral ischemia. Hyperglycemia occurring during experimental and clinical stroke has been associated with increased cerebral damage. Increased oxidative stress resulting from hyperglycemia is believed to contribute to the exacerbated damage. More specifically, superoxide, nitric oxide and peroxynitrite are believed to play an important role in cerebral damage. This also involves increased recruitment of various blood cells to the ischemic zone that contribute to inflammation. We present data from our group and others that demonstrate that free radical production is increased during hyperglycemic stroke in rodents. Recent data suggest that inflammation is an important component of ischemic damage under both normo- and hyperglycemic conditions. We summarize numerous studies that indicate that a variety of antioxidant (inhibition of free radical production, scavenging of free radicals and increasing free radical degradation) and anti-inflammatory strategies decrease cerebral infarction. Finally, we compare the success of some of these strategies in clinical trials compared to the animal models.  相似文献   

17.
Phillips JR  Dalmay T  Bartels D 《FEBS letters》2007,581(19):3592-3597
It was recently discovered that plants respond to environmental stress not only with a specific gene expression programme at the mRNA and protein level but also small RNAs as response modulators play an important role. The small RNAs lead to cleavage or translational inhibition of mRNAs via complementary target sites. Different examples are described where small RNAs have been shown to be involved in stress responses. A link between hormonal action and small RNA activities has frequently been observed thus coupling exogenous factors with endogenous transmitters. Using the CDT-1 gene from the desiccation tolerant plant Craterostigma plantagineum as an example, it is discussed that generation of novel small RNAs could be an evolutionary pathway in plants to adapt to extreme environments.  相似文献   

18.
Flavonoids are a class of secondary metabolites abundantly found in fruits and vegetables. In addition, flavonoids have been reported as potent antioxidants with beneficial effects against oxidative stress-related diseases such as cancer, aging, and diabetes. The present study was carried out to investigate the cytoprotective effects of morin (2′,3,4′,5,7-pentahydroxyflavone), a member of the flavonoid group, against hydrogen peroxide (H2O2)-induced DNA and lipid damage. Morin was found to prevent the cellular DNA damage induced by H2O2 treatment, which is shown by the inhibition of 8-hydroxy-2′-deoxyguanosine (8-OHdG) formation (a modified form of DNA base), inhibition of comet tail (a form of DNA strand breakage), and decrease of nuclear phospho histone H2A.X expression (a marker for DNA strand breakage). In addition, morin inhibited membrane lipid peroxidation, which is detected by inhibition of thiobarbituric acid reactive substance (TBARS) formation. Morin was found to scavenge the intracellular reactive oxygen species (ROS) generated by H2O2 treatment in cells, which is detected by a spectrofluorometer, flow cytometry, and confocal microscopy after staining of 2′,7′-dichlorodihydrofluorescein diacetate (DCF-DA). Morin also induces an increase in the activity of catalase and protein expression. The results of this study suggest that morin protects cells from H2O2-induced damage by inhibiting ROS generation and by inducing catalase activation.  相似文献   

19.
20.
Concentrations of reactive oxygen species (ROS) increase during exercise secondary to increased oxygen uptake, xanthine oxidase activity, and immune system activation. Carbohydrate compared to placebo beverage ingestion is associated with an attenuated cortisol and catecholamine response. Catecholamines can undergo autooxidation to form ROS. We hypothesized that during intense exercise, ingestion of carbohydrate compared to placebo would diminish oxidative stress. Sixteen experienced marathoners ran on treadmills for 3 h at ∼70% VO
2max
on two occasions while receiving carbohydrate or placebo beverages (1 l/h, double-blinded) in a randomized, counterbalanced order. Blood samples were collected before and immediately after exercise, snap frozen in liquid nitrogen, and stored at -80°C until analysis. Plasma samples were analyzed for F2-isoprostanes (FIP) and lipid hydroperoxides (ROOH) as measures for lipid peroxidation, ferric reducing ability of plasma (FRAP) as a measure of plasma antioxidant potential and for cortisol. The pattern of change in cortisol was significantly different between carbohydrate and placebo conditions (P=0.024), with post-exercise levels higher in the placebo condition. Under both carbohydrate and placebo conditions, significant increases in FIP, ROOH, and FRAP were measured, but the pattern of increase was not different (FIP, interaction effect, P=0.472; ROOH, P=0.572; FRAP, P=0.668). Despite an attenuation in the cortisol response, carbohydrate compared to placebo ingestion does not counter the increase in oxidative stress or modulate plasma antioxidant potential in athletes running 3 h at 70% VO
2max
.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号