首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Although syntaxin 1 is generally thought to function as the primary target-N-ethylmaleimide-sensitive factor attachment protein receptor required for pancreatic beta cell insulin secretion, we have observed that overexpression of a dominant-interfering syntaxin 4 mutant (syntaxin 4/DeltaTM) attenuated glucose-stimulated insulin secretion in betaHC-9 cells. Furthermore, these cells express the selective syntaxin 4-binding protein Synip (syntaxin 4 interacting protein), and Synip was specifically co-immunoprecipitated with syntaxin 4 but not syntaxin 1. Overexpression of the full-length Synip protein (Synip/wild type) inhibited VAMP2 association with syntaxin 4 and decreased glucose-stimulated insulin secretion. This did not occur with a Synip mutant (Synip/ DeltaEF) that was incapable of binding syntaxin 4. Consistent with a functional role of syntaxin 4 in this process, expression of syntaxin 4/DeltaTM also inhibited glucose-stimulated insulin secretion. Furthermore, analysis of first and second phase insulin secretion demonstrated that syntaxin 4/DeltaTM mainly suppressed the second phase of insulin secretion. In contrast, overexpression of Synip resulted in an inhibition of both the first and second phase of glucose-stimulated insulin secretion. These data demonstrate that syntaxin 4 plays a functional role on insulin release and granule fusion in beta cells and that this process is regulated by the syntaxin 4-specific binding protein Synip.  相似文献   

2.
Incretin promotes insulin secretion acutely. Recently, orally-administered DPP-4 inhibitors represent a new class of anti-hyperglycemic agents. Indeed, inhibitors of dipeptidyl peptidase-IV (DPP-4), sitagliptin, has just begun to be widely used as therapeutics for type 2 diabetes. However, the effects of sitagliptin-treatment on insulin exocytosis from single β-cells are yet unknown. We therefore investigated how sitagliptin-treatment in db/db mice affects insulin exocytosis by treating db/db mice with des-F-sitagliptin for 2 weeks. Perfusion studies showed that 2 weeks-sitagliptin treatment potentiated insulin secretion. We then analyzed insulin granule motion and SNARE protein, syntaxin 1, by TIRF imaging system. TIRF imaging of insulin exocytosis showed the increased number of docked insulin granules and increased fusion events from them during first-phase release. In accord with insulin exocytosis data, des-F-sitagliptin-treatment increased the number of syntaxin 1 clusters on the plasma membrane. Thus, our data demonstrated that 2-weeks des-F-sitagliptin-treatment increased the fusion events of insulin granules, probably via increased number of docked insulin granules and that of syntaxin 1 clusters.  相似文献   

3.
Attenuated levels of the Sec1/Munc18 (SM) protein Munc18-1 in human islet β-cells is coincident with type 2 diabetes, although how Munc18-1 facilitates insulin secretion remains enigmatic. Herein, using conventional Munc18-1(+/-) and β-cell specific Munc18-1(-/-) knock-out mice, we establish that Munc18-1 is required for the first phase of insulin secretion. Conversely, human islets expressing elevated levels of Munc18-1 elicited significant potentiation of only first-phase insulin release. Insulin secretory changes positively correlated with insulin granule number at the plasma membrane: Munc18-1-deficient cells lacked 35% of the normal component of pre-docked insulin secretory granules, whereas cells with elevated levels of Munc18-1 exhibited a ~20% increase in pre-docked granule number. Pre-docked syntaxin 1-based SNARE complexes bound by Munc18-1 were detected in β-cell lysates but, surprisingly, were reduced by elevation of Munc18-1 levels. Paradoxically, elevated Munc18-1 levels coincided with increased binding of syntaxin 4 to VAMP2 at the plasma membrane. Accordingly, syntaxin 4 was a requisite for Munc18-1 potentiation of insulin release. Munc18c, the cognate SM isoform for syntaxin 4, failed to bind SNARE complexes. Given that Munc18-1 does not pair with syntaxin 4, these data suggest a novel indirect role for Munc18-1 in facilitating syntaxin 4-mediated granule pre-docking to support first-phase insulin exocytosis.  相似文献   

4.
A kinetic model for insulin secretion in pancreatic β-cells is adapted from a model for fast exocytosis in chromaffin cells. The fusion of primed granules with the plasma membrane is assumed to occur only in the “microdomain” near voltage-sensitive L-type Ca2+-channels, where [Ca2+] can reach micromolar levels. In contrast, resupply and priming of granules are assumed to depend on the cytosolic [Ca2+]. Adding a two-compartment model to handle the temporal distribution of Ca2+ between the microdomain and the cytosol, we obtain a unified model that can generate both the fast granule fusion and the slow insulin secretion found experimentally in response to a step of membrane potential. The model can simulate the potentiation induced in islets by preincubation with glucose and the reduction in second-phase insulin secretion induced by blocking R-type Ca2+-channels (CaV2.3). The model indicates that increased second-phase insulin secretion induced by the amplifying signal is controlled by the “resupply” step of the exocytosis cascade. In contrast, enhancement of priming is a good candidate for amplification of first-phase secretion by glucose, cyclic adenosine 3′:5′-cyclic monophosphate, and protein kinase C. Finally, insulin secretion is enhanced when the amplifying signal oscillates in phase with the triggering Ca2+-signal.  相似文献   

5.
Second-phase insulin secretion sustains insulin release in the face of hyperglycemia associated with insulin resistance, requiring the continued mobilization of insulin secretory granules to the plasma membrane. Cdc42, the small Rho family GTPase recognized as the proximal glucose-specific trigger to elicit second-phase insulin secretion, signals downstream to activate the p21-activated kinase (PAK1), which then signals to Raf-1/MEK/ERK to induce filamentous actin (F-actin) remodeling, to ultimately mobilize insulin granules to the plasma membrane. However, the steps required to initiate Cdc42 activation in a glucose-specific manner in β cells have remained elusive. Toward this, we identified the involvement of the Src family kinases (SFKs), based upon the ability of SFK inhibitors to block glucose-stimulated Cdc42 and PAK1 activation events as well as the amplifying pathway of glucose-stimulated insulin release, in MIN6 β cells. Indeed, subsequent studies performed in human islets revealed that SFK phosphorylation was induced only by glucose and within 1 min of stimulation before the activation of Cdc42 at 3 min. Furthermore, pervanadate treatment validated the phosphorylation event to be tyrosine-specific. Although RT-PCR showed β cells to express five different SFK proteins, only two of these, YES and Fyn kinases, were found localized to the plasma membrane, and of these two, only YES kinase underwent glucose-stimulated tyrosine phosphorylation. Immunodetection and RNAi analyses further established YES kinase as a proximal glucose-specific signal in the Cdc42-signaling cascade. Identification of YES kinase provides new insight into the mechanisms underlying the sustainment of insulin secretion via granule mobilization/replenishment and F-actin remodeling.  相似文献   

6.
Daniel S  Noda M  Cerione RA  Sharp GW 《Biochemistry》2002,41(30):9663-9671
Mastoparan, a hormone receptor-mimetic peptide isolated from wasp venom, stimulates insulin release from pancreatic beta-cells in a Ca(2+)-independent but GTP-dependent manner. In this report, the role of the Rho family GTP-binding protein Cdc42, in the mastoparan stimulus-secretion pathway, was examined. Overexpression of wild-type Cdc42 in beta HC-9 cells, an insulin-secreting mouse-derived cell line, resulted in a 2-fold increase in mastoparan-stimulated insulin release over vector-transfected beta HC-9 cells. This effect was not seen with secretagogues such as glucose that stimulate secretion via Ca(2+)-dependent pathways. GDP/GTP exchange assay data and studies with pertussis (PTX) toxin suggest that mastoparan may work directly to activate Cdc42 and not via PTX-sensitive heterotrimeric GTP-binding proteins. Using bacterial glutathione S-transferase-Cdc42 fusion proteins and co-immunoprecipitation and transient transfection studies, Cdc42 was shown to be an upstream regulator of the exocytotic protein, syntaxin. These results suggest that the GTP-dependent signal underlying the mastoparan effect acts at a "distal site" in stimulus-secretion coupling on one of the SNARE proteins essential for exocytosis. In vitro binding assays, using purified Cdc42 and syntaxin proteins, show that Cdc42 mediates the GTP signal through an indirect association with syntaxin. The H3 domain at the C-terminus of syntaxin, which participates in the formation of the ternary SNARE complex with the core proteins, SNAP-25 and synaptobrevin, is also required for the association with Cdc42. Thus, these studies indicate that Cdc42 could be a putative GTP-binding protein thought to be involved in the mastoparan-stimulated GTP-dependent pathway of insulin release.  相似文献   

7.
This study was designed in order to examine the expression and functional role of syntaxin 2/epimorphin in pancreatic β cells. Northern blot analysis revealed that syntaxin 2 mRNA was able to be detected in mouse βTC3 cells, but not in isolated mouse islets. In agreement with this result, immunoblot analysis detected an appreciable amount of syntaxin 2 protein in βTC3 cells, but not in mouse islets. Immunohistochemistry of the mouse pancreas demonstrated that syntaxin 2 was little evident in islet cells of Langerhans, and somewhat predominant in exocrine tissues. In order to examine whether syntaxin 2 is anchored to cell surfaces in βTC3 cells, living cells were incubated with a monoclonal antibody against syntaxin 2 (MC-1). The antibody bound to their surfaces, indicating that syntaxin 2 was localized on cell surfaces. The addition of MC-1 to the culture medium of βTC3 cells did not affect insulin release under the presence or absence of 11 mM glucose, indicating that syntaxin 2 is not associated with insulin exocytosis. Thus, the expression of syntaxin 2 in islets of Langerhans is very low and the function of this protein is probably unrelated to the insulin exocytosis pathway. © 1997 John Wiley & Sons, Ltd.  相似文献   

8.
The mechanism of glucose-induced biphasic insulin release is unknown. We used total internal reflection fluorescence (TIRF) imaging analysis to reveal the process of first- and second-phase insulin exocytosis in pancreatic beta cells. This analysis showed that previously docked insulin granules fused at the site of syntaxin (Synt)1A clusters during the first phase; however, the newcomers fused during the second phase external to the Synt1A clusters. To reveal the function of Synt1A in phasic insulin exocytosis, we generated Synt1A-knockout (Synt1A(-/-)) mice. Synt1A(-/-) beta cells showed fewer previously docked granules with no fusion during the first phase; second-phase fusion from newcomers was preserved. Rescue experiments restoring Synt1A expression demonstrated restoration of granule docking status and fusion events. Inhibition of other syntaxins, Synt3 and Synt4, did not affect second-phase insulin exocytosis. We conclude that the first phase is Synt1A dependent but the second phase is not. This indicates that the two phases of insulin exocytosis differ spatially and mechanistically.  相似文献   

9.
We identified in a yeast two-hybrid screen the EF-hand Ca(2+)-binding protein Cab45 as an interaction partner of Munc18b. Although the full-length Cab45 resides in Golgi lumen, we characterize a cytosolic splice variant, Cab45b, expressed in pancreatic acini. Cab45b is shown to bind (45)Ca(2+), and, of its three EF-hand motifs, EF-hand 2 is demonstrated to be crucial for the ion binding. Cab45b is shown to interact with Munc18b in an in vitro assay, and this interaction is enhanced in the presence of Ca(2+). In this assay, Cab45b also binds the Munc18a isoform in a Ca(2+)-dependent manner. The endogenous Cab45b in rat acini coimmunoprecipitates with Munc18b, syntaxin 2, and syntaxin 3, soluble N-ethylmaleimide-sensitive factor attachment protein receptors with key roles in the Ca(2+)-triggered zymogen secretion. Furthermore, we show that Munc18b bound to syntaxin 3 recruits Cab45b onto the plasma membrane. Importantly, antibodies against Cab45b are shown to inhibit in a specific and dose-dependent manner the Ca(2+)-induced amylase release from streptolysin-O-permeabilized acini. The present study identifies Cab45b as a novel protein factor involved in the exocytosis of zymogens by pancreatic acini.  相似文献   

10.
Endocannabinoid signaling has been implicated in modulating insulin release from β cells of the endocrine pancreas. β Cells express CB1 cannabinoid receptors (CB1Rs), and the enzymatic machinery regulating anandamide and 2-arachidonoylglycerol bioavailability. However, the molecular cascade coupling agonist-induced cannabinoid receptor activation to insulin release remains unknown. By combining molecular pharmacology and genetic tools in INS-1E cells and in vivo, we show that CB1R activation by endocannabinoids (anandamide and 2-arachidonoylglycerol) or synthetic agonists acutely or after prolonged exposure induces insulin hypersecretion. In doing so, CB1Rs recruit Akt/PKB and extracellular signal-regulated kinases 1/2 to phosphorylate focal adhesion kinase (FAK). FAK activation induces the formation of focal adhesion plaques, multimolecular platforms for second-phase insulin release. Inhibition of endocannabinoid synthesis or FAK activity precluded insulin release. We conclude that FAK downstream from CB1Rs mediates endocannabinoid-induced insulin release by allowing cytoskeletal reorganization that is required for the exocytosis of secretory vesicles. These findings suggest a mechanistic link between increased circulating and tissue endocannabinoid levels and hyperinsulinemia in type 2 diabetes.  相似文献   

11.
The juxtamembrane domain of vesicle-associated membrane protein (VAMP) 2 (also known as synaptobrevin2) contains a conserved cluster of basic/hydrophobic residues that may play an important role in membrane fusion. Our measurements on peptides corresponding to this domain determine the electrostatic and hydrophobic energies by which this domain of VAMP2 could bind to the adjacent lipid bilayer in an insulin granule or other transport vesicle. Mutation of residues within the juxtamembrane domain that reduce the VAMP2 net positive charge, and thus its interaction with membranes, inhibits secretion of insulin granules in β cells. Increasing salt concentration in permeabilized cells, which reduces electrostatic interactions, also results in an inhibition of insulin secretion. Similarly, amphipathic weak bases (e.g., sphingosine) that reverse the negative electrostatic surface potential of a bilayer reverse membrane binding of the positively charged juxtamembrane domain of a reconstituted VAMP2 protein and inhibit membrane fusion. We propose a model in which the positively charged VAMP and syntaxin juxtamembrane regions facilitate fusion by bridging the negatively charged vesicle and plasma membrane leaflets.  相似文献   

12.

Background

A variant of the CDKAL1 gene was reported to be associated with type 2 diabetes and reduced insulin release in humans; however, the role of CDKAL1 in β cells is largely unknown. Therefore, to determine the role of CDKAL1 in insulin release from β cells, we studied insulin release profiles in CDKAL1 gene knockout (CDKAL1 KO) mice.

Principal Findings

Total internal reflection fluorescence imaging of CDKAL1 KO β cells showed that the number of fusion events during first-phase insulin release was reduced. However, there was no significant difference in the number of fusion events during second-phase release or high K+-induced release between WT and KO cells. CDKAL1 deletion resulted in a delayed and slow increase in cytosolic free Ca2+ concentration during high glucose stimulation. Patch-clamp experiments revealed that the responsiveness of ATP-sensitive K+ (KATP) channels to glucose was blunted in KO cells. In addition, glucose-induced ATP generation was impaired. Although CDKAL1 is homologous to cyclin-dependent kinase 5 (CDK5) regulatory subunit-associated protein 1, there was no difference in the kinase activity of CDK5 between WT and CDKAL1 KO islets.

Conclusions/Significance

We provide the first report describing the function of CDKAL1 in β cells. Our results indicate that CDKAL1 controls first-phase insulin exocytosis in β cells by facilitating ATP generation, KATP channel responsiveness and the subsequent activity of Ca2+ channels through pathways other than CDK5-mediated regulation.  相似文献   

13.
Glucose-stimulated insulin secretion is mediated by syntaxin 4-based SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) protein complexes and the Sec1/Munc18 protein Munc18c. Our laboratory recently reported that Munc18c-syntaxin 4 complexes are further regulated by the competitive binding of the double C2 domain protein Doc2beta to Munc18c, although the underlying mechanism for this is unknown. Because the Doc2beta binding region of Munc18c contained residue Tyr-219 and this residue becomes phosphorylated in response to glucose stimulation, we hypothesized that the mechanism would involve Munc18c phosphorylation. Coimmunoprecipitation analyses using detergent lysates prepared from pervanadate-treated MIN6 beta cells revealed that the tyrosine phosphorylation of Munc18c corresponded to a 60% decrease in Munc18c-syntaxin 4 association with a coordinate 2-fold increase in Munc18c-Doc2beta binding. In vitro binding assays identified syntaxin 4 residues 118-194 as sufficient to confer its interaction with Munc18c; residues 118-194 contain the Hc alpha-helix and flexible linker region controlling transition of syntaxins between closed and open conformations. When overexpressed in MIN6 cells, this Hc-linker region functioned as a competitive inhibitor of endogenous syntaxin 4-Munc18c binding, increased syntaxin 4 binding to VAMP2, and significantly enhanced glucose-stimulated secretion. Molecular modeling of these new interactions yielded the predictions 1) that Tyr-219 of Munc18c remains buried under basal conditions in a conformation that is favorable for interaction with "closed" syntaxin 4 and 2) that stimulation leads to changes in syntaxin 4 contacts to facilitate exposure of Munc18c Tyr-219 for phosphorylation and Doc2beta binding.  相似文献   

14.
Regulated secretion of neurotransmitter at the synapse is likely to be mediated by dynamic protein interactions involving components of the vesicle (vesicle-associated membrane protein; VAMP) and plasma membrane (syntaxin and synaptosomal associated protein of 25 kDa (SNAP-25)) along with additional molecules that allow for the regulation of this process. Recombinant Hrs-2 interacts with SNAP-25 in a calcium-dependent manner (they dissociate at elevated calcium levels) and inhibits neurotransmitter release. Thus, Hrs-2 has been hypothesized to serve a negative regulatory role in secretion through its interaction with SNAP-25. In this report, we show that Hrs-2 and SNAP-25 interact directly through specific coiled-coil domains in each protein. The presence of syntaxin enhances the binding of Hrs-2 to SNAP-25. Moreover, while both Hrs-2 and VAMP can separately bind to SNAP-25, they cannot bind simultaneously. Additionally, the presence of Hrs-2 reduces the incorporation of VAMP into the syntaxin.SNAP-25.VAMP (7 S) complex. These findings suggest that Hrs-2 may modulate exocytosis by regulating the assembly of a protein complex implicated in membrane fusion.  相似文献   

15.
β-cells in the pancreatic islet respond to elevated plasma glucose by secreting insulin to maintain glucose homeostasis. In addition to glucose stimulation, insulin secretion is modulated by numerous G-protein coupled receptors (GPCRs). The GPCR ligands Kisspeptin-10 (KP) and glucagon-like peptide-1 (GLP-1) potentiate insulin secretion through Gq and Gs-coupled receptors, respectively. Despite many studies, the signaling mechanisms by which KP and GLP-1 potentiate insulin release are not thoroughly understood. We investigated the downstream signaling pathways of these ligands and their affects on cellular redox potential, intracellular calcium activity ([Ca2+]i), and insulin secretion from β-cells within intact murine islets. In contrast to previous studies performed on single β-cells, neither KP nor GLP-1 affect [Ca2+]i upon stimulation with glucose. KP significantly increases the cellular redox potential, while no effect is observed with GLP-1, suggesting that KP and GLP-1 potentiate insulin secretion through different mechanisms. Co-treatment with KP and the Gβγ-subunit inhibitor gallein inhibits insulin secretion similar to that observed with gallein alone, while co-treatment with gallein and GLP-1 does not differ from GLP-1 alone. In contrast, co-treatment with the Gβγ activator mSIRK and either KP or GLP-1 stimulates insulin release similar to mSIRK alone. Neither gallein nor mSIRK alter [Ca2+]i activity in the presence of KP or GLP-1. These data suggest that KP likely alters insulin secretion through a Gβγ-dependent process that stimulates glucose metabolism without altering Ca2+ activity, while GLP-1 does so, at least partly, through a Gα-dependent pathway that is independent of both metabolism and Ca2+.  相似文献   

16.
Calpain-10 (CAPN10) is the first type 2 diabetes susceptibility gene to be identified through a genome scan, with polymorphisms being associated with altered CAPN10 expression. Functional data have been hitherto elusive, but we report here a corresponding increase between CAPN10 expression level and regulated insulin secretion. Pancreatic beta-cell secretory granule exocytosis is mediated by the soluble N-ethylmaleimide-sensitive fusion protein attachment receptor protein complex of synaptosomal-associated protein of 25 kDa (SNAP-25), syntaxin 1, and vesicle-associated membrane protein 2. We report, for the first time, direct binding of a calpain-10 isoform with members of this complex. Furthermore, SNAP-25 undergoes a Ca2+-dependent partial proteolysis during exocytosis, with calpain protease inhibitor similarly suppressing both insulin secretion and SNAP-25 proteolysis. Based upon these findings, we postulate that an isoform of calpain-10 is a Ca2+-sensor that functions to trigger exocytosis in pancreatic beta-cells.  相似文献   

17.
Regulation of insulin exocytosis by Munc13-1   总被引:8,自引:0,他引:8  
The slower kinetics of insulin release from pancreatic islet beta cells, as compared with other regulated secretory processes such as chromaffin granule secretion, can in part be explained by the small number of the insulin granules that are docked to the plasma membrane and readily releasable. In type-2 diabetes, the kinetics of insulin secretion become grossly distorted, and, to therapeutically correct this, it is imperative to elucidate the mechanisms that regulate priming and secretion of insulin secretory granules. Munc13-1, a synaptic protein that regulates SNARE complex assembly, is the major protein determining the priming of synaptic vesicles. Here, we demonstrate the presence of Munc13-1 in human, rat, and mouse pancreatic islet beta cells. Expression of Munc13-1, along with its cognate partners, syntaxin 1a and Munc18a, is reduced in the pancreatic islets of type-2 diabetes non-obese Goto-Kakizaki and obese Zucker fa/fa rats. In insulinoma cells, overexpressed Munc13-1-enhanced green fluorescent protein is translocated to the plasma membrane in a temperature-dependent manner. This, in turn, greatly amplifies insulin exocytosis as determined by patch clamp capacitance measurements and radioimmunoassay of the insulin released. The potentiation of exocytosis by Munc13-1 is dependent on endogenously produced diacylglycerol acting on the overexpressed Munc13-1 because it is blocked by a phospholipase C inhibitor (U73122) and abrogated when the diacylglycerol binding-deficient Munc13-1H567K mutant is expressed instead of the wild type protein. Our data demonstrate that Munc13-mediated vesicle priming is not restricted to neurotransmitter release but is also functional in insulin secretion, where it is subject to regulation by the diacylglycerol second messenger pathway. In view of our findings, Munc13-1 is a potential drug target for therapeutic optimization of insulin secretion in diabetes.  相似文献   

18.
Exocytosis from synaptic vesicles is driven by stepwise formation of a tight α-helical complex between the fusing membranes. The complex is composed of the three SNAREs: synaptobrevin 2, SNAP-25, and syntaxin 1a. An important step in complex formation is fast binding of vesicular synaptobrevin to the preformed syntaxin 1·SNAP-25 dimer. Exactly how this step relates to neurotransmitter release is not well understood. Here, we combined different approaches to gain insights into this reaction. Using computational methods, we identified a stretch in synaptobrevin 2 that may function as a coiled coil “trigger site.” This site is also present in many synaptobrevin homologs functioning in other trafficking steps. Point mutations in this stretch inhibited binding to the syntaxin 1·SNAP-25 dimer and slowed fusion of liposomes. Moreover, the point mutations severely inhibited secretion from chromaffin cells. Altogether, this demonstrates that the trigger site in synaptobrevin is crucial for productive SNARE zippering.  相似文献   

19.
Phosphoinositides (PtdIns) play important roles in exocytosis and are thought to regulate secretory granule docking by co‐clustering with the SNARE protein syntaxin to form a docking receptor in the plasma membrane. Here we tested this idea by high‐resolution total internal reflection imaging of EGFP‐labeled PtdIns markers or syntaxin‐1 at secretory granule release sites in live insulin‐secreting cells. In intact cells, PtdIns markers distributed evenly across the plasma membrane with no preference for granule docking sites. In contrast, syntaxin‐1 was found clustered in the plasma membrane, mostly beneath docked granules. We also observed rapid accumulation of syntaxin‐1 at sites where granules arrived to dock. Acute depletion of plasma membrane phosphatidylinositol (4,5) bisphosphate (PtdIns(4,5)P2) by recruitment of a 5′‐phosphatase strongly inhibited Ca2+‐dependent exocytosis, but had no effect on docked granules or the distribution and clustering of syntaxin‐1. Cell permeabilization by α‐toxin or formaldehyde‐fixation caused PtdIns marker to slowly cluster, in part near docked granules. In summary, our data indicate that PtdIns(4,5)P2 accelerates granule priming, but challenge a role of PtdIns in secretory granule docking or clustering of syntaxin‐1 at the release site.   相似文献   

20.
The increase in insulin secretion caused by glucagon-like peptide-1 (GLP-1) and GLP-1 mimetics observed during an intravenous glucose test (IVGTT) has been reported in both normal and disease animal models, as well as in humans. In this study, a hierarchical population modeling approach is used, together with a previously reported model relating glucose to insulin appearance, to determine quantitative in vivo dose-response relationships between GLP-1 dose level and both first- and second-phase insulin release. Parameters of the insulin kinetic model were estimated from the complete set of glucose and insulin data collected in 219 anesthetized nonfasted NMR-imaged mice after intravenous injection of glucose (1 g/kg) alone or with GLP-1 (0.03-100 nmol/kg). The resulting dose-response curves indicate a difference in GLP-1 effect on the two release phases, as is also evident from the different ED(50) parameter values (0.107 vs. 6.65 nmol/kg for phase 1 vs. phase 2 insulin release parameters). The first phase of insulin release is gradually augmented with increasing GLP-1 dose, reaching saturation at a dose of ~1 nmol/kg, while the second-phase release changes more abruptly at GLP-1 doses between 3 and 10 nmol/kg and shows a more pronounced 100-fold increase between control and the high GLP-1 dose of 100 nmol/kg Moreover, separate disposition indices calculated for phase 1 and 2 insulin release, show a different pattern of increase with increasing GLP-1 dose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号