首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Cohesin and condensin are similar, but distinct multi-subunit protein complexes that have well-described roles in sister chromatid cohesion and chromosome condensation, respectively. Recently it has emerged that cohesin, and proteins that regulate cohesin function have additional developmental roles. To further understand the role of cohesin in development, we analyzed the expression of genes encoding cohesin and condensin subunits in developing zebrafish embryos and juvenile brain. We found that cohesin subunits are expressed in a pattern that is similar (but not quite identical) to the expression of condensin subunits. Cohesin genes smc1a, rad21, pds5b and smc3 were expressed in the forebrain ventricular zone, the tectum, the mid-hindbrain boundary, the fourth ventricle, branchial arches, the otic vesicle, the eye and faintly in the developing pectoral fins. Condensin genes smc2 and smc4 were expressed in the forebrain ventricular zone, the tectum, the mid-hindbrain boundary, the fourth ventricle, branchial arches, eye and pectoral fins. Condensin genes were additionally expressed in the hindbrain proliferative zone, an area in which cohesin genes were not detected. A comparison with pcna expression and BrdU incorporation revealed that the expression of cohesins and condensins closely overlap with zones of proliferation. Interestingly, cohesin genes were expressed in non-proliferating cells flanking rhombomere boundaries in the developing brain. In mature brain and eye, cohesin was expressed in both proliferating cells and in broad zones of post-mitotic cells. The distribution of cohesin and condensin mRNAs supports existing evidence for a non-cell cycle role for cohesin in the developing brain.  相似文献   

5.
Vertebrate craniofacial development requires coordinated morphogenetic interactions between the extracellular matrix (ECM) and the differentiating chondrocytes essential for cartilage formation. Recent studies reveal a critical role for specific lysyl oxidases in ECM integrity required for embryonic development. We now demonstrate that loxl3b is abundantly expressed within the head mesenchyme of the zebrafish and is critically important for maturation of neural crest derived cartilage elements. Histological and ultrastructural analyses of cartilage elements in loxl3b morphant embryos reveal abnormal maturation of cartilage and altered chondrocyte morphology. Spatiotemporal analysis of craniofacial markers in loxl3b morphant embryos shows that cranial neural crest cells migrate normally into the developing pharyngeal arches but that differentiation and condensation markers are aberrantly expressed. We further show that the loxl3b morphant phenotype is not due to P53 mediated cell death but likely to be due to reduced chondrogenic progenitor cell proliferation within the pharyngeal arches. Taken together, these data demonstrate a novel role for loxl3b in the maturation of craniofacial cartilage and can provide new insight into the specific genetic factors important in the pathogenesis of craniofacial birth defects.  相似文献   

6.
Although Wnt signaling plays an important role in body patterning during early vertebrate embryogenesis, the mechanisms by which Wnts control the individual processes of body patterning are largely unknown. In zebrafish, wnt3a and wnt8 are expressed in overlapping domains in the blastoderm margin and later in the tailbud. The combined inhibition of Wnt3a and Wnt8 by antisense morpholino oligonucleotides led to anteriorization of the neuroectoderm, expansion of the dorsal organizer, and loss of the posterior body structure-a more severe phenotype than with inhibition of each Wnt alone-indicating a redundant role for Wnt3a and Wnt8. The ventrally expressed homeobox genes vox, vent, and ved mediated Wnt3a/Wnt8 signaling to restrict the organizer domain. Of posterior body-formation genes, expression of the caudal-related cdx1a and cdx4/kugelig, but not bmps or cyclops, was strongly reduced in the wnt3a/wnt8 morphant embryos. Like the wnt3a/wnt8 morphant embryos, cdx1a/cdx4 morphant embryos displayed complete loss of the tail structure, suggesting that Cdx1a and Cdx4 mediate Wnt-dependent posterior body formation. We also found that cdx1a and cdx4 expression is dependent on Fgf signaling. hoxa9a and hoxb7a expression was down-regulated in the wnt3a/wnt8 and cdx1a/cdx4 morphant embryos, and in embryos with defects in Fgf signaling. Fgf signaling was required for Cdx-mediated hoxa9a expression. Both the wnt3a/wnt8 and cdx1a/cdx4 morphant embryos failed to promote somitogenesis during mid-segmentation. These data indicate that the cdx genes mediate Wnt signaling and play essential roles in the morphogenesis of the posterior body in zebrafish.  相似文献   

7.
Neph3 (filtrin) is a membrane protein expressed in the glomerular epithelial cells (podocytes), but its role in the glomerulus is still largely unknown. To characterize the function of Neph3 in the glomerulus, we employed the zebrafish as a model system. Here we show that the expression of neph3 in pronephros starts before the onset of nephrin and podocin expression, peaks when the nephron primordium differentiates into glomerulus and tubulus, and is then downregulated upon glomerular maturation. By histology, we found that neph3 is specifically expressed in pronephric podocytes at 36 hpf. Furthermore, disruption of neph3 expression by antisense morpholino oligonucleotides results in distorted body curvature and transient pericardial edema, the latter likely reflecting perturbation of glomerular osmoregulatory function. Histological analysis of neph3 morphants reveals altered glomerular morphology and dilated pronephric tubules. The phenotype of neph3 morphants, curved body and pericardial edema, is rescued by wild-type zebrafish neph3 mRNA. In addition to glomerulus, neph3 is highly expressed in the developing brain and specific regions of mature midbrain and hindbrain. In line with this, neph3 morphants show aberrant brain morphology. Collectively, the expression of neph3 in glomerulus and brain together with the morphant phenotype imply that neph3 is a pleiotropic gene active during distinct stages of tissue differentiation and associates directly in the regulation of both glomerular and neural development.  相似文献   

8.
9.
10.
Fish specific duplication of Dmrt2: characterization of zebrafish Dmrt2b   总被引:1,自引:0,他引:1  
Zhou X  Li Q  Lu H  Chen H  Guo Y  Cheng H  Zhou R 《Biochimie》2008,90(6):878-887
  相似文献   

11.
12.
Plakoglobin, or gamma-catenin, is found in both desmosomes and adherens junctions and participates in Wnt signalling. Mutations in the human gene are implicated in the congenital heart disorder, arrhythmogenic right ventricular cardiomyopathy (ARVC), but the signalling effects of plakoglobin loss in ARVC have not been established. Here we report that knockdown of plakoglobin in zebrafish results in decreased heart size, reduced heartbeat, cardiac oedema, reflux of blood between heart chambers and a twisted tail. Wholemount in situ hybridisation shows reduced expression of the heart markers nkx2.5 at 24 hours post fertilisation (hpf), and cmlc2 and vmhc at 48 hpf, while there is lack of restriction of the valve markers notch1b and bmp4 at 48 hpf. Wnt target gene expression was examined by semi-quantitative RT-PCR and found to be increased in morphant embryos indicating that plakoglobin is antagonistic to Wnt signalling. Co-expression of the Wnt inhibitor, Dkk1, rescues the cardiac phenotype of the plakoglobin morphant. β-catenin protein expression is increased in morphant embryos as is its colocalisation with E-cadherin in adherens junctions. Endothelial cells at the atrioventricular boundary of morphant hearts have an aberrant morphology, indicating problems with valvulogenesis. Morphants also have decreased numbers of desmosomes and adherens junctions in the intercalated discs. These results establish the zebrafish as a model for ARVC caused by loss of plakoglobin function and indicate that there are signalling as well as structural consequences of this loss.  相似文献   

13.
N-terminal acetylation, catalysed by N-terminal acetyltransferases (NATs), is among the most common protein modifications in eukaryotes and involves the transfer of an acetyl group from acetyl-CoA to the α-amino group of the first amino acid. Functions of N-terminal acetylation include protein degradation and sub-cellular targeting. Recent findings in humans indicate that a dysfunctional Nα-acetyltransferase (Naa) 10, the catalytic subunit of NatA, the major NAT, is associated with lethality during infancy. In the present study, we identified the Danio rerio orthologue zebrafish Naa 10 (zNaa10). In vitro N-terminal acetylation assays revealed that zNaa10 has NAT activity with substrate specificity highly similar to that of human Naa10. Spatiotemporal expression pattern was determined by in situ hybridization, showing ubiquitous expression with especially strong staining in brain and eye. By morpholino-mediated knockdown, we demonstrated that naa10 morphants displayed increased lethality, growth retardation and developmental abnormalities like bent axis, abnormal eyes and bent tails. In conclusion, we identified the zebrafish Naa10 orthologue and revealed that it is essential for normal development and viability of zebrafish.  相似文献   

14.
15.
张立凤  桂永浩  王跃祥  蒋璆  宋后燕 《中国实验动物学报》2009,17(5):321-325,F0002,I0001
目的采用吗啡啉修饰反义寡核苷酸显微注射方法下调斑马鱼Tbx1基因表达,研究斑马鱼Tbx1基因功能下调对其他两个T盒基因Tbx20和Tbx2表达的影响。方法采用吗啡啉修饰的反义寡核苷酸显微注射方法抑制斑马鱼Tbx1基因表达,分别将2.5、5、8、10 ng吗啡啉反义寡核苷酸在斑马鱼0-4细胞期注入胚胎,并构建Tbx20,骨形成蛋白2b(Bmp2b)和Tbx2反义RNA探针,进行整体原位杂交,观察Tbx1基因下调对Tbx20、Bmp2b及Tbx2表达的影响。结果Tbx1吗啡啉寡核苷酸显微注射组胚胎表现出鳃弓、耳囊、心血管系统和胸腺的发育异常。Tbx1基因下调导致Tbx20的表达出现改变,Tbx20在心脏的表达与对照组相比明显下调,神经元的表达范围明显缩小;Tbx1基因功能下调会导致Bmp2b在心脏和咽囊的表达减低,Bmp2b在后部咽囊的表达较前部咽囊减低得更为明显;Tbx1基因功能下调胚胎,Tbx2在鳃弓的表达模式发生改变,48 hpf,Tbx2在鳃弓的表达出现从后向前逐渐减低,鳃弓的表达范围较对照组明显缩小。结论Tbx1在发育过程中,会对其他T盒基因,如Tbx20和Tbx2具有激活或抑制的调控作用。Tbx1对Tbx20的作用可能是通过影响Bmp2b的途径,继发地影响Tbx20的表达。Tbx1基因功能下调,会改变Tbx2在鳃弓的表达模式。  相似文献   

16.
17.
Neurons of cranial sensory ganglia are derived from the neural crest and ectodermal placodes, but the mechanisms that control the relative contributions of each are not understood. Crest cells of the second branchial arch generate few facial ganglion neurons and no vestibuloacoustic ganglion neurons, but crest cells in other branchial arches generate many sensory neurons. Here we report that the facial ganglia of Hoxa2 mutant mice contain a large population of crest-derived neurons, suggesting that Hoxa2 normally represses the neurogenic potential of second arch crest cells. This may represent an anterior transformation of second arch neural crest cells toward a fate resembling that of first arch neural crest cells, which normally do not express Hoxa2 or any other Hox gene. We additionally found that overexpressing Hoxa2 in cultures of P19 embryonal carcinoma cells reduced the frequency of spontaneous neuronal differentiation, but only in the presence of cotransfected Pbx and Meis Hox cofactors. Finally, expression of Hoxa2 and the cofactors in chick neural crest cells populating the trigeminal ganglion also reduced the frequency of neurogenesis in the intact embryo. These data suggest an unanticipated role for Hox genes in controlling the neurogenic potential of at least some cranial neural crest cells.  相似文献   

18.
In Xenopus embryos, XMeis3 protein activity is required for normal hindbrain formation. Our results show that XMeis3 protein knock down also causes a loss of primary neuron and neural crest cell lineages, without altering expression of Zic, Sox or Pax3 genes. Knock down or inhibition of the Pax3, Zic1 or Zic5 protein activities extinguishes embryonic expression of the XMeis3 gene, as well as triggering the loss of hindbrain, neural crest and primary neuron cell fates. Ectopic XMeis3 expression can rescue the Zic knock down phenotype. HoxD1 is an XMeis3 direct-target gene, and ectopic HoxD1 expression rescues cell fate losses in either XMeis3 or Zic protein knock down embryos. FGF3 and FGF8 are direct target genes of XMeis3 protein and their expression is lost in XMeis3 morphant embryos. In the genetic cascade controlling embryonic neural cell specification, XMeis3 lies below general-neuralizing, but upstream of FGF and regional-specific genes. Thus, XMeis3 protein is positioned at a key regulatory point, simultaneously regulating multiple neural cell fates during early vertebrate nervous system development.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号