首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Imatinib is a selective tyrosine kinase inhibitor, successfully used for the treatment of chronic myelogenous leukaemia. Its strong plasma protein binding referred to α1-acid glycoprotein (AGP) component was found to inhibit the pharmacological activity. AGP shows genetic polymorphism and the two main genetic variants have different drug binding properties. The binding characteristics of imatinib to AGP genetic variants and the possibility of its binding interactions were investigated by various methods. The results proved that binding of imatinib to the two main genetic variants is very different, the high affinity binding belongs dominantly to the F1-S variant. This interaction is accompanied with specific spectral changes (induced circular dichroism, UV change, intrinsic fluorescence quenching), suggesting that the bound ligand has chiral conformation that would largely overlap with other ligands inside the protein cavity. Binding parameters of Ka = 1.7(± 0.2) × 106 M− 1 and n = 0.94 could be determined for the binding on the F1-S variant at 37°. Imatinib binding on the A variant is weaker and less specific. The binding affinity of imatinib to human serum albumin (nKa ≈ 3 × 104 M− 1) is low. Pharmacologically relevant binding interactions with other drugs can be expected on the F1-S variant of AGP.  相似文献   

2.
The zeamines (zeamine, zeamine I, and zeamine II) constitute an unusual class of cationic polyamine-polyketide-nonribosomal peptide antibiotics produced by Serratia plymuthica RVH1. They exhibit potent bactericidal activity, killing a broad range of Gram-negative and Gram-positive bacteria, including multidrug-resistant pathogens. Examination of their specific mode of action and molecular target revealed that the zeamines affect the integrity of cell membranes. The zeamines provoke rapid release of carboxyfluorescein from unilamellar vesicles with different phospholipid compositions, demonstrating that they can interact directly with the lipid bilayer in the absence of a specific target. DNA, RNA, fatty acid, and protein biosynthetic processes ceased simultaneously at subinhibitory levels of the antibiotics, presumably as a direct consequence of membrane disruption. The zeamine antibiotics also facilitated the uptake of small molecules, such as 1-N-phenylnaphtylamine, indicating their ability to permeabilize the Gram-negative outer membrane (OM). The valine-linked polyketide moiety present in zeamine and zeamine I was found to increase the efficiency of this process. In contrast, translocation of the large hydrophilic fluorescent peptidoglycan binding protein PBDKZ-GFP was not facilitated, suggesting that the zeamines cause subtle perturbation of the OM rather than drastic alterations or defined pore formation. At zeamine concentrations above those required for growth inhibition, membrane lysis occurred as indicated by time-lapse microscopy. Together, these findings show that the bactericidal activity of the zeamines derives from generalized membrane permeabilization, which likely is initiated by electrostatic interactions with negatively charged membrane components.  相似文献   

3.
As part of ongoing work aimed at generating proteolytically stable, readily applicable, radiolabeled endomorphin-2 (EM-2) analogs for elucidation of the topological requirements of peptide binding to μ-opioid receptors, we report here on the synthesis, radiolabeling, binding kinetics and binding site distribution of an EM-2 analog in which Pro2 is replaced by 2-aminocyclohexanecarboxylic acid, ACHC. [3H][(1S,2R)ACHC]2EM-2 (specific activity 63.49 Ci × mmol−1) bound specifically to its binding sites with high affinity (KD = 0.55 ± 0.06 nM) and saturably, yielding a receptor density, Bmax of 151 ± 4 fmol × mg protein−1 in rat brain membranes. A similar affinity value was obtained in kinetic assays. Both Na+ and Gpp(NH)p decreased the affinity, proving the agonist character of the radioligand. Specific μ-opioid ligands displaced the radioligand with much higher affinities than did δ- and κ-ligands. The autoradiographic distribution of the binding sites of [3H][(1S,2R)ACHC]2EM-2 agreed well with the known locations of the μ-opioid receptors in the rat brain. In consequence of its high affinity, selectivity and enzymatic resistance [19], the new radioligand will be a good tool in studies of the topographical requirements of μ-opioid-specific peptide binding.  相似文献   

4.
Efficient electron transfer from reductase domain to oxygenase domain in nitric oxide synthase (NOS) is dependent on the binding of calmodulin (CaM). Rate constants for the binding of CaM to NOS target peptides was only determined previously by surface plasmon resonance (SPR) (Biochemistry 35, 8742-8747, 1996) suggesting that the binding of CaM to NOSs is slow and does not support the fast electron transfer in NOSs measured in previous and this studies. To resolve this contradiction, the binding rates of holo Alexa 350 labeled T34C/T110W CaM (Alexa-CaM) to target peptides from three NOS isozymes were determined using fluorescence stopped-flow. All three target peptides exhibited fast kon constants at 4.5 °C: 6.6 × 108 M− 1 s− 1 for nNOS726-749, 2.9 × 108 M− 1 s− 1 for eNOS492-511 and 6.1 × 108 M− 1 s− 1 for iNOS507-531, 3-4 orders of magnitude faster than those determined previously by SPR. Dissociation rates of NOS target peptides from Alexa-CaM/peptide complexes were measured by Ca2+ chelation with ETDA: 3.7 s− 1 for nNOS726-749, 4.5 s− 1 for eNOS492-511, and 0.063 s− 1 for iNOS507-531. Our data suggest that the binding of CaM to NOS is fast and kinetically competent for efficient electron transfer and is unlikely rate-limiting in NOS catalysis. Only iNOS507-531 was able to bind apo Alexa-CaM, but in a very different conformation from its binding to holo Alexa-CaM.  相似文献   

5.

Aims

Glucagon-like peptide 1 (GLP-1) is an insulin secretagogue, released in response to meal ingestion and efficiently lowers blood glucose in Type 2 diabetic patients. GLP-1(7-36) is rapidly metabolized by dipeptidyl peptidase IV to the major metabolite GLP-1(9-36)-amide, often thought to be inactive. Inhibitors of this enzyme are widely used to treat diabetes. Our aim was to characterize the binding of GLP-1(9-36) to native mouse tissues and to cells expressing GLP1-R as well as to measure functional responses in the mouse aorta compared with GLP-1(7-36).

Main methods

The affinity of [125I]GLP-1(7-36) and [125I]GLP-1(9-36) was measured in mouse tissues by saturation binding and autoradiography used to determine receptor distribution. The affinity of both peptides was compared in binding to recombinant GLP-1 receptors using cAMP and scintillation proximity assays. Vasoactivity was determined in mouse aortae in vitro.

Key findings

In cells expressing GLP-1 receptors, GLP-1(7-36) bound with the expected high affinities (0.1 nM) and an EC50 of 0.07 nM in cAMP assays but GLP-1(9-36) bound with 70,000 and 100,000 fold lower affinities respectively. In contrast, in mouse brain, both labeled peptides bound with a single high affinity, with Hill slopes close to unity, although receptor density was an order of magnitude lower for [125I]GLP-1(9-36). In functional experiments both peptides had similar potencies, GLP-1(7-36), pD2 = 7.40 ± 0.24 and GLP-1(9-36), pD2 = 7.57 ± 0.64.

Significance

These results suggest that GLP-1(9-36) binds and has functional activity in the vasculature but these actions may be via a pathway that is distinct from the classical GLP-1 receptor and insulin secretagogue actions.  相似文献   

6.
To demonstrate the interaction of calpastatin (CS) domain L (CSL) with Cav1.2 channel, we investigated the binding of CSL with various C-terminus-derived peptides at ≈ free, 100 nM, 10 μM, and 1 mM Ca2+ by using the GST pull-down assay method. Besides binding with the IQ motif, CSL was also found to bind with the PreIQ motif. With increasing [Ca2+], the affinity of the CSL–IQ interaction gradually decreased, and the affinity of the CSL–PreIQ binding gradually increased. The results suggest that CSL may bind with both the IQ and PreIQ motifs of the Cav1.2 channel in different Ca2+-dependent manners.  相似文献   

7.
Calmodulin (CaM) is a Ca2+ signaling protein that binds to a wide variety of target proteins, and it is important to establish methods for rapid characterization of these interactions. Here we report the use of fluorescence polarization (FP) to measure the Kd for the interaction of CaM with the plasma membrane Ca2+-ATPase (PMCA), a Ca2+ pump regulated by binding of CaM. Previous assays of PMCA-CaM interactions were indirect, based on activity or kinetics measurements. We also investigated the Ca2+ dependence of CaM binding to PMCA. FP assays directly detect CaM-target interactions and are rapid, sensitive, and suitable for high-throughput screening assay formats. Values for the dissociation constant Kd in the nanomolar range are readily measured. We measured the changes in anisotropy of CaM labeled with Oregon Green 488 on titration with PMCA, yielding a Kd value of CaM with PMCA (5.8 ± 0.5 nM) consistent with previous indirect measurements. We also report the binding affinity of CaM with oxidatively modified PMCA (Kd = 9.8 ± 2.0 nM), indicating that the previously reported loss in CaM-stimulated activity for oxidatively modified PMCA is not a result of reduced CaM binding. The Ca2+ dependence follows a simple Hill plot demonstrating cooperative binding of Ca2+ to the binding sites in CaM.  相似文献   

8.
Binding of Na+ to thrombin ensures high activity toward physiological substrates and optimizes the procoagulant and prothrombotic roles of the enzyme in vivo. Under physiological conditions of pH and temperature, the binding affinity of Na+ is weak due to large heat capacity and enthalpy changes associated with binding, and the Kd = 80 mM ensures only 64% saturation of the site at the concentration of Na+ in the blood (140 mM). Residues controlling Na+ binding and activation have been identified. Yet, attempts to improve the interaction of Na+ with thrombin and possibly increase catalytic activity under physiological conditions have so far been unsuccessful. Here we report how replacement of the flexible autolysis loop of human thrombin with the homologous rigid domain of the murine enzyme results in a drastic (up to 10-fold) increase in Na+ affinity and a significant improvement in the catalytic activity of the enzyme. Rigidification of the autolysis loop abolishes the heat capacity change associated with Na+ binding observed in the wild-type and also increases the stability of thrombin. These findings have general relevance to protein engineering studies of clotting proteases and trypsin-like enzymes.  相似文献   

9.
Although many synthetic calcium indicators are available, a search for compounds with improved characteristics continues. Here, we describe the synthesis and properties of Asante Calcium Red-1 (ACR-1) and its low affinity derivative (ACR-1-LA) created by linking BAPTA to seminaphthofluorescein. The indicators combine a visible light (450–540 nm) excitation with deep-red fluorescence (640 nm). Upon Ca2+ binding, the indicators raise their fluorescence with longer excitation wavelengths producing higher responses. Although the changes occur without any spectral shifts, it is possible to ratio Ca2+-dependent (640 nm) and quasi-independent (530 nm) emission when using visible (<490 nm) or multiphoton (∼780 nm) excitation. Therefore, both probes can be used as single wavelength or, less dynamic, ratiometric indicators. Long indicator emission might allow easy [Ca2+]i measurement in GFP expressing cells. The indicators bind Ca2+ with either high (Kd = 0.49 ± 0.07 μM; ACR-1) or low affinity (Kd = 6.65 ± 0.13 μM; ACR-1-LA). Chelating Zn2+ (Kd = 0.38 ± 0.02 nM) or Mg2+ (Kd ∼ 5 mM) slightly raises and binding Co2+ quenches dye fluorescence. New indicators are somewhat pH-sensitive (pKa = 6.31 ± 0.07), but fairly resistant to bleaching. The probes are rather dim, which combined with low AM ester loading efficiency, might complicate in situ imaging. Despite potential drawbacks, ACR-1 and ACR-1-LA are promising new calcium indicators.  相似文献   

10.
Steady state and time resolved fluorescence spectroscopy, combined with molecular modeling computations, have been used to explore the interactions of two therapeutically important flavonoids, fisetin (3,7,3′,4′-OH-flavone) and 3-hydroxyflavone (3-HF), with normal human hemoglobin (HbA). Distinctive ‘two color’ fluorescence signatures and fairly high fluorescence anisotropy (r = 0.12-0.28) of fisetin and 3-HF reveal their specific interactions with HbA. Binding constants estimated from the fluorescence studies were ≈ 4.00 × 104 M− 1 and 9.83 × 103 M− 1 for fisetin and 3-HF respectively. Specific interactions with HbA were further confirmed from flavonoid-induced static quenching of the protein tryptophan fluorescence as indicated by: (a) bimolecular quenching constant Kq ? diffusion controlled limit (b) closely matched values of Stern-Volmer quenching constant and binding constant (c) τo/τ ≈ 1 (where τo and τ are the unquenched and quenched tryptophan fluorescence lifetimes respectively). Molecular docking and electrostatic surface potential calculations reveal contrasting binding modes of fisetin and 3-HF with HbA.  相似文献   

11.
S-Adenosyl-l-methionine (SAM) is recognized as an important cofactor in a variety of biochemical reactions. As more proteins and pathways that require SAM are discovered, it is important to establish a method to quickly identify and characterize SAM binding proteins. The affinity of S-adenosyl-l-homocysteine (SAH) for SAM binding proteins was used to design two SAH-derived capture compounds (CCs). We demonstrate interactions of the proteins COMT and SAHH with SAH–CC with biotin used in conjunction with streptavidin–horseradish peroxidase. After demonstrating SAH-dependent photo-crosslinking of the CC to these proteins, we used a CC labeled with a fluorescein tag to measure binding affinity via fluorescence anisotropy. We then used this approach to show and characterize binding of SAM to the PR domain of PRDM2, a lysine methyltransferase with putative tumor suppressor activity. We calculated the Kd values for COMT, SAHH, and PRDM2 (24.1 ± 2.2 μM, 6.0 ± 2.9 μM, and 10.06 ± 2.87 μM, respectively) and found them to be close to previously established Kd values of other SAM binding proteins. Here, we present new methods to discover and characterize SAM and SAH binding proteins using fluorescent CCs.  相似文献   

12.
The Cu,Zn superoxide dismutase (Cu,ZnSOD) isolated from Haemophilus ducreyi possesses a His-rich N-terminal metal binding domain, which has been previously proposed to play a copper(II) chaperoning role. To analyze the metal binding ability and selectivity of the histidine-rich domain we have carried out thermodynamic and solution structural analysis of the copper(II) and zinc(II) complexes of a peptide corresponding to the first 11 amino acids of the enzyme (H2N-HGDHMHNHDTK-OH, L). This peptide has highly versatile metal binding ability and provides one and three high affinity binding sites for zinc(II) and copper(II), respectively. In equimolar solutions the MHL complexes are dominant in the neutral pH-range with protonated lysine ε-amino group. As a consequence of its multidentate nature, L binds zinc and copper with extraordinary high affinity (KD,Zn = 1.6 × 10−9 M and KD,Cu = 5.0 × 10−12 M at pH 7.4) and appears as the strongest zinc(II) and copper(II) chelator between the His-rich peptides so far investigated. These KD values support the already proposed role of the N-terminal His-rich region of H. ducreyi Cu,ZnSOD in copper recruitment under metal starvation, and indicate a similar function in the zinc(II) uptake, too. The kinetics of copper(II) transfer from L to the active site of Cu-free N-deleted H. ducreyi Cu,ZnSOD showed significant pH and copper-to-peptide ratio dependence, indicating specific structural requirements during the metal ion transfer to the active site. Interestingly, the complex CuHL has significant superoxide dismutase like activity, which may suggest multifunctional role of the copper(II)-bound N-terminal His-rich domain of H. ducreyi Cu,ZnSOD.  相似文献   

13.

Background

Chitinase inhibitors have chemotherapeutic potential as fungicides, pesticides and antiasthmatics. The majority of chitinase inhibitors reported are natural products like argifin, argifin linear fragments, argadin, allosamidin and disulfide-cyclized peptides. Here, we report a novel peptidic inhibitor API (Aspartic Protease Inhibitor), isolated from Bacillus licheniformis that inhibits chitinase A (ChiA) from Serratia marcescens.

Methods

The binding affinity of API with ChiA and type of inhibition was determined by the inhibition kinetics assays. Fluorescence and CD spectroscopic analysis and chemical modification of API with different affinity reagents elucidated the mechanism of binding of API with ChiA.

Results and conclusions

The peptide has an amino acid sequence N-Ile1-Cys2-Glu3-Ala4-Glu5-His6-Lys7-Trp8-Gly9-Asp10-Tyr11-Leu12-Asp13-C. The ChiA–API kinetic interactions reveal noncompetitive, irreversible and tight binding nature of API with I50 = 600 nM and Ki = 510 nM in the presence of chromogenic substrate p-nitrophenyl-N,N′-diacetyl-β-chitobioside[p-NP-(GlcNAc)2]. The inhibition progress curves show a two-step slow tight binding inhibition mechanism with the rate constant k5 = 8.7 ± 1 × 10− 3 s− 1 and k6 = 7.3 ± 0.6 × 10− 5 s− 1. CD-spectra and tryptophanyl fluorescence analysis of ChiA incubated with increasing API concentrations confirms conformational changes in enzyme structure which may be due to irreversible denaturation of enzyme upon binding of API. Chemical modifications by WRK abolished the anti-chitinase activity of API and revealed the involvement of carboxyl groups in the enzyme inactivation. Abolished isoindole fluorescence of OPTA-labeled ChiA demonstrates the irreversible denaturation of ChiA upon incubation with API for prolonged time and distortion of active site of the enzyme.

General significance

The data provide useful information that could lead to the generation of drug-like, natural product-based chitinase inhibitors.  相似文献   

14.
The bovine milk lipocalin, β-Lactoglobulin (β-LG), has been associated with the binding and transport of small hydrophobic and amphiphilic compounds, whereby it is proposed to increase their bioavailability. We have studied the binding of the fluorescent phospholipid-derivative, NBD-didecanoylphosphatidylethanolamine (NBD-diC10PE) to β-LG by following the increase in amphiphile fluorescence upon binding to the protein using established methods. The equilibrium association constant, KB, was (1.2 ± 0.2) × 106 M− 1 at 25 °C, pH 7.4 and I = 0.15 M. Dependence of KB on pH and on the monomer-dimer equilibrium of β-LG gave insight on the nature of the binding site which is proposed to be the hydrophobic calyx formed by the β-barrel in the protein. The monomer-dimer equilibrium of β-LG was re-assessed using fluorescence anisotropy of Tryptophan. The equilibrium constant for dimerization, KD, was (7.0 ± 1.5) × 105 M− 1 at 25 °C, pH 7.4, and 0.15 M ionic strength. The exchange of NBD-diC10PE between β-LG and POPC lipid bilayers was followed by the change in NBD fluorescence. β-LG was shown to be a catalyst of phospholipid exchange between lipid bilayers, the mechanism possibly involving adsorption of the protein at the bilayer surface.  相似文献   

15.
16.
The hexahistidine (His6)/nickel(II)-nitrilotriacetic acid (Ni2+-NTA) system is widely used for affinity purification of recombinant proteins. The NTA group has many other applications, including the attachment of chromophores, fluorophores, or nanogold to His6 proteins. Here we explore several applications of the NTA derivative, (Ni2+-NTA)2-Cy3. This molecule binds our two model His6 proteins, N-ethylmaleimide sensitive factor (NSF) and O6-alklyguanine-DNA alkyltransferase (AGT), with moderate affinity (K ∼ 1.5 × 106 M−1) and no effect on their activity. Its high specificity makes (Ni2+-NTA)2-Cy3 ideal for detecting His6 proteins in complex mixtures of other proteins, allowing (Ni2+-NTA)2-Cy3 to be used as a probe in crude cell extracts and as a His6-specific gel stain. (Ni2+-NTA)2-Cy3 binding is reversible in 10 mM ethylenediaminetetraacetic acid (EDTA) or 500 mM imidazole, but in their absence it exchanges slowly (kexchange ∼ 5 × 10−6 s−1 with 0.2 μM labeled protein in the presence of 1 μM His6 peptide). Labeling with (Ni2+-NTA)2-Cy3 allows characterization of hydrodynamic properties by fluorescence anisotropy or analytical ultracentrifugation under conditions that prevent direct detection of protein (e.g., high ADP absorbance). In addition, fluorescence resonance energy transfer (FRET) between (Ni2+-NTA)2-Cy3-labeled proteins and suitable donors/acceptors provides a convenient assay for binding interactions and for measurements of donor-acceptor distances.  相似文献   

17.
Leukotriene A4 hydrolase (LTA4H) is a bifunctional zinc-dependent metalloprotease bearing both an epoxide hydrolase, producing the pro-inflammatory LTB4 leukotriene, and an aminopeptidase activity, whose physiological relevance has long been ignored. Distinct substrates are commonly used for each activity, although none is completely satisfactory; LTA4, substrate for the hydrolase activity, is unstable and inactivates the enzyme, whereas aminoacids β-naphthylamide and para-nitroanilide, used as aminopeptidase substrates, are poor and nonselective. Based on the three-dimensional structure of LTA4H, we describe a new, specific, and high-affinity fluorigenic substrate, PL553 [l-(4-benzoyl)phenylalanyl-β-naphthylamide], with both in vitro and in vivo applications. PL553 possesses a catalytic efficiency (kcat/Km) of 3.8 ± 0.5 × 104 M−1 s−1 using human recombinant LTA4H and a limit of detection and quantification of less than 1 to 2 ng. The PL553 assay was validated by measuring the inhibitory potency of known LTA4H inhibitors and used to characterize new specific amino-phosphinic inhibitors. The LTA4H inhibition measured with PL553 in mouse tissues, after intravenous administration of inhibitors, was also correlated with a reduction in LTB4 levels. This authenticates the assay as the first allowing the easy measurement of endogenous LTA4H activity and in vitro specific screening of new LTA4H inhibitors.  相似文献   

18.
BACE1 is a novel type I transmembrane aspartyl protease that has been implicated in the pathogenesis of Alzheimer's disease. Cleavage of the amyloid precursor protein by the β-secretase, BACE1, is the first step in the production of the Aβ peptide and is a prime target for therapeutic intervention. Using circular dichroism, we reveal that the secondary structure of BACE1 in a membrane environment is significantly different from what was determined from the previously resolved crystal structure, and, we provide the first evidence that show differences in stability between the active (pH 4.8) and inactive (pH 7.4) forms of BACE1. In this study we have also examined Ca2+ binding to BACE1, the effect of this binding on the secondary and tertiary structural characteristics of BACE1, and the influence of this binding on the specific activity of the purified protein. Circular dichroism and endogenous tryptophan fluorescence measurements demonstrated that the secondary and tertiary structures, respectively, are sensitive to increasing concentrations of Ca2+. Isothermal titration calorimetry was then used to characterize the Ca2+-BACE1 interaction in more detail. Our results suggest that there is a high affinity of binding (kd = 2.0 × μM) between Ca2+ and BACE1 and that the binding process was exothermic (ΔH = − 3.5 kcal/mol). We also could demonstrate that low concentrations of Ca2+ (μM range) significantly increased the proteolytic activity of BACE1. Collectively, these results identify a direct interaction between BACE1 and Ca2+ and suggest that under physiological conditions, the function(s) of BACE1 must also be influenced by Ca2+.  相似文献   

19.
Discoidin I (DiscI) and discoidin II (DiscII) are N-acetylgalactosamine (GalNAc)-binding proteins from Dictyostelium discoideum. They consist of two domains: an N-terminal discoidin domain and a C-terminal H-type lectin domain. They were cloned and expressed in high yield in recombinant form in Escherichia coli. Although both lectins bind galactose (Gal) and GalNAc, glycan array experiments performed on the recombinant proteins displayed strong differences in their specificity for oligosaccharides. DiscI and DiscII bind preferentially to Gal/GalNAcβ1-3Gal/GalNAc-containing and Gal/GalNAcβ1-4GlcNAcβ1-6Gal/GalNAc-containing glycans, respectively. The affinity of the interaction of DiscI with monosaccharides and disaccharides was evaluated using isothermal titration calorimetry experiments. The three-dimensional structures of native DiscI and its complexes with GalNAc, GalNAcβ1-3Gal, and Galβ1-3GalNAc were solved by X-ray crystallography. DiscI forms trimers with involvement of calcium at the monomer interface. The N-terminal discoidin domain presents a structural similarity to F-type lectins such as the eel agglutinin, where an amphiphilic binding pocket suggests possible carbohydrate-binding activity. In the C-terminal H-type lectin domain, the GalNAc residue establishes specific hydrogen bonds that explain the observed affinity (Kd = 3 × 10− 4 M). The different specificities of DiscI and DiscII for oligosaccharides were rationalized from the different structures obtained by either X-ray crystallography or molecular modeling.  相似文献   

20.
Single-stranded DNA (ssDNA)-binding protein (SSB) plays an important role in DNA replication, recombination, and repair. SSB consists of an N-terminal ssDNA-binding domain with an oligonucleotide/oligosaccharide binding fold and a flexible C-terminal tail involved in protein-protein interactions. SSB from Helicobacter pylori (HpSSB) was isolated, and the ssDNA-binding characteristics of HpSSB were analyzed by fluorescence titration and electrophoretic mobility shift assay. Tryptophan fluorescence quenching was measured as 61%, and the calculated cooperative affinity was 5.4 × 107 M− 1 with an ssDNA-binding length of 25-30 nt. The crystal structure of the C-terminally truncated protein (HpSSBc) in complex with 35-mer ssDNA [HpSSBc-(dT)35] was determined at a resolution of 2.3 Å. The HpSSBc monomer folds as an oligonucleotide/oligosaccharide binding fold with a Y-shaped conformation. The ssDNA wrapped around the HpSSBc tetramer through a continuous binding path comprising five essential aromatic residues and a positively charged surface formed by numerous basic residues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号