首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of the target cell in determining the structures and the amounts of hydrocarbon-DNA adducts formed after hydrocarbon activation by an exogenous metabolic ativation system was investigated by exposing intact cells of the Chinese hamster lung cell line V79, V79 cell nuclei and calf thymus DNA to benzo[a]pyrene (B[a]P) in the presenceof a rat liver homogenate activation system (S9). The DNA was isolated, enzymatically degraded to deoxyribonucleosides and the B[a]P-deoxyribonucleoside adducts analyzed by high-performance liquid chromatography. Two major adducts were present in all samples; one formed by reaction of r-7, t-8-dihydroxy-t-9, 10-epoxy-7, 8, 9, 10-tetrahydro-B[a]P (anti-B[a]PDE) with the 2-amino group of deoxyguanosine, the other formed by reaction of a metabolite of 9-hydroxybenzo[a]pyrene (9-OH-B[a]P) with an unidentified deoxyribonucleoside. The ratios of the anti-B[a]PDE-DNA adduct to the 9-OH-B[a]P-DNA adduct were: calf thymus DNA, 3 to 1: DNA from V79 nuclei, 8 to 1; DNA from intact V79 cells, 11 to 1. Similar several-fold increases in the proportion of anti-B[a]PDE-DNA adducts in V79 cells over those in calf thymus DNA were observed for a dose range of 1–10 μg B[a]P per ml. The relative extent of binding of the activated metabolite of 9-OH-B[a]P to DNA was also much lower in intact V79 cells than in calf thymus DNA after exposure to 9-OH-B[a]P in the presence of the S9 activation system.These results demonstrate that the relative abilities of various reactive bbenzo[a]pyrene metabolites formed by an exogenous activation system to reach DNA differ substantially. Therefore, assessment of the biological activity of hydrocarbons in mutation assays using exogenous activation systems must take into account not only the amounts of different reactive hydrocarbon metabolites formed but also the relative abilities of these metabolites to reach the DNA of the target cell.  相似文献   

2.
3.
We evaluated determinants of anti-benzo[a]pyrenediolepoxide-(B[a]PDE)–DNA adduct formation (adduct induced by the ultimate carcinogenic metabolite of B[a]P) in lymphomonocytes of subjects environmentally exposed to low doses of polycyclic aromatic hydrocarbons (PAHs) (B[a]P). Our study population consisted of 585 Caucasian subjects, all municipal workers living in North-East Italy and recruited during their periodic check-ups after informed consent. PAH (B[a]P) exposure was assessed by questionnaire. Anti-B[a]PDE–DNA levels were measured by HPLC fluorescence analysis.We found that cigarette smoking (smokers (22%) versus non-smokers, p < 0.0001), dietary intake of PAH-rich meals (≥52 (38%) versus <52 times/year, p < 0.0001), and outdoor exposure (≥4 (19%) versus <4 h/day; p = 0.0115) significantly influenced adduct levels. Indoor exposure significantly increased the frequency of positive subjects (≥0.5 adducts/108 nucleotides; χ2 for linear trend, p = 0.051). In linear multiple regression analysis the major determinants of increased DNA adduct levels (ln values) were smoking (t = 6.362, p < 0.0001) and diet (t = 4.035, p < 0.0001). In this statistical analysis, indoor and outdoor exposure like other factors of PAH exposure had no influence. In non-smokers, the influence of diet (p < 0.0001) and high indoor exposure (p = 0.016) on anti-B[a]PDE–DNA adduct formation became more evident, but not that of outdoor exposure, as was confirmed by linear multiple regression analysis (diet, t = 3.997, p < 0.0001 and high indoor exposure, t = 2.522, p = 0.012).This study indicates that anti-B[a]PDE–DNA adducts can be detected in the general population and are modulated by PAH (B[a]P) exposure not only with smoking – information already known from studies with limited number of subjects – but also with dietary habits and high indoor exposure. In non-smokers, these two factors are the principal determinants of DNA adduct formation. The information provided here seems to be important, since DNA adduct formation in surrogate tissue is an index of genotoxic exposure also in target organs (e.g., lung) and their increase may also be predictive of higher risk for PAH-related cancers.  相似文献   

4.
The effects of non-nearest base sequences, beyond the nucleotides flanking a DNA lesion on either side, on nucleotide excision repair (NER) in extracts from human cells were investigated. We constructed two duplexes containing the same minor groove-aligned 10S (+)-trans-anti-B[a]P-N2-dG (G?) DNA adduct, derived from the environmental carcinogen benzo[a]pyrene (B[a]P): 5′-C-C-A-T-C-G?-C-T-A-C-C-3′ (CG?C-I), and 5′-C-A-C3-A4-C5-G?-C-A-C-A-C-3′ (CG?C-II). We used polyacrylamide gel electrophoresis to compare the extent of DNA bending, and molecular dynamics simulations to analyze the structural characteristics of these two DNA duplexes. The NER efficiencies are 1.6(± 0.2)-fold greater in the case of the CG?C-II than the CG?C-I sequence context in 135-mer duplexes. Gel electrophoresis and self-ligation circularization experiments revealed that the CG?C-II duplex is more bent than the CG?C-I duplex, while molecular dynamics simulations showed that the unique -C3-A4-C5- segment in the CG?C-II duplex plays a key role. The presence of a minor groove-positioned guanine amino group, the Watson-Crick partner to C3, acts as a wedge; facilitated by a highly deformable local -C3-A4- base step, this amino group allows the B[a]P ring system to produce a more enlarged minor groove in CG?C-II than in CG?C-I, as well as a local untwisting and enlarged and flexible Roll only in the CG?C-II sequence. These structural properties fit well with our earlier findings that in the case of the family of minor groove 10S (+)-trans-anti-B[a]P-N2-dG lesions, flexible bends and enlarged minor groove widths constitute NER recognition signals, and extend our understanding of sequence context effects on NER to the neighbors that are distant to the lesion.  相似文献   

5.
Chun HS  Kim HJ  Kim Y  Chang HJ 《Biotechnology letters》2004,26(22):1701-1706
Diallyl sulfide (DAS) and diallyl disulfide (DADS) at 25 g ml–1decreased the benzo[a]pyrene (B[a]P)-induced colony growth inhibition of human epidermal keratinocytes. DAS and DADS decreased B[a]P-DNA and B[a]P-protein adducts by 65% and 49–55%, respectively. The B[a]P-induced ethoxyresorufin O-deethylase activity, a marker enzyme for cytochrome P450 1, was decreased from 3 to 1.7–1.9 nmol min–1 mg–1 microsomal protein by DAS and DADS treatments. The activity of glutathione S-transferase, a detoxifying enzyme for B[a]P, but was decreased by DADS, but was unaffected by DAS.  相似文献   

6.
We have investigated the effect of benzo[a]pyrene (B[a]P), a carcinogen of tobacco smoke and an agonist for the aryl hydrocarbon receptor (AHR), on hypoxia-induced angiogenesis. Ischemia was induced by femoral artery ligation in wild-type and AHR-null mice, and the animals were subjected to oral administration of B[a]P (125 mg/kg) once a week. Exposure to B[a]P up-regulated the expression of metallothionein in the ischemic hindlimb and markedly inhibited ischemia-induced angiogenesis in wild-type mice. The amounts of interleukin-6 and of vascular endothelial growth factor (VEGF) mRNA in the ischemic hindlimb of wild-type mice were reduced by exposure to B[a]P. These various effects of B[a]P were markedly attenuated in AHR-null mice. Our observations suggest that the loss of the inhibitory effect of B[a]P on ischemia-induced angiogenesis apparent in AHR-null mice may be attributable to maintenance of interleukin-6 expression and consequent promotion of angiogenesis through up-regulation of VEGF expression.  相似文献   

7.
Several epidemiologic studies have shown an interactive effect of heavy smoking and heavy alcohol drinking on the development of hepatocellular carcinoma. It has also been recently described that chronic hepatocyte death can trigger excessive compensatory proliferation resulting later in the formation of tumors in mouse liver. As we previously demonstrated that both benzo[a]pyrene (B[a]P), an environmental agent found in cigarette smoke, and ethanol possess similar targets, especially oxidative stress, to trigger death of liver cells, we decided to study here the cellular and molecular mechanisms of the effects of B[a]P/ethanol coexposure on cell death. After an 18-h incubation with 100 nM B[a]P, primary rat hepatocytes were supplemented with 50 mM ethanol for 5 or 8 h. B[a]P/ethanol coexposure led to a greater apoptotic cell death that could be linked to an increase in lipid peroxidation. Plasma membrane remodeling, as depicted by membrane fluidity elevation and physicochemical alterations in lipid rafts, appeared to play a key role, because both toxicants acted with specific complementary effects. Membrane remodeling was shown to induce an accumulation of lysosomes leading to an important increase in low-molecular-weight iron cellular content. Finally, ethanol metabolism, but not that of B[a]P, by providing reactive oxygen species, induced the ultimate toxic process. Indeed, in lysosomes, ethanol promoted the Fenton reaction, lipid peroxidation, and membrane permeabilization, thereby triggering cell death. To conclude, B[a]P exposure, by depleting hepatocyte membrane cholesterol content, would constitute a favorable ground for a later toxic insult such as ethanol intoxication. Membrane stabilization of both plasma membrane and lysosomes might be a potential target for further investigation considering cytoprotective strategies.  相似文献   

8.
The mammalian genome encodes two A-type cyclins, which are considered potentially redundant yet essential regulators of the cell cycle. Here, we tested requirements for cyclin A1 and cyclin A2 function in cerebellar development. Compound conditional loss of cyclin A1/A2 in neural progenitors resulted in severe cerebellar hypoplasia, decreased proliferation of cerebellar granule neuron progenitors (CGNP), and Purkinje (PC) neuron dyslamination. Deletion of cyclin A2 alone showed an identical phenotype, demonstrating that cyclin A1 does not compensate for cyclin A2 loss in neural progenitors. Cyclin A2 loss lead to increased apoptosis at early embryonic time points but not at post-natal time points. In contrast, neural progenitors of the VZ/SVZ did not undergo increased apoptosis, indicating that VZ/SVZ-derived and rhombic lip-derived progenitor cells show differential requirements to cyclin A2. Conditional knockout of cyclin A2 or the SHH proliferative target Nmyc in CGNP also resulted in PC neuron dyslamination. Although cyclin E1 has been reported to compensate for cyclin A2 function in fibroblasts and is upregulated in cyclin A2 null cerebella, cyclin E1 expression was unable to compensate for loss-of cyclin A2 function.  相似文献   

9.
Lung cancer is primarily caused by exposure to tobacco smoke. Tobacco smoke contains numerous carcinogens, including polycyclic aromatic hydrocarbons (PAH). The most common PAH studied is benzo[a]pyrene (B[a]P). B[a]P is metabolically activated through multiple routes, one of which is catalyzed by aldo-keto reductase (AKR) to B[a]P-7,8-dione (BPQ). BPQ undergoes a futile redox cycle in the presence of NADPH to generate reactive oxygen species (ROS). ROS, in turn, damages DNA. Studies with a yeast p53 mutagenesis system found that the generation of ROS by PAH o-quinones may contribute to lung carcinogenesis because of similarities between the patterns (types of mutations) and spectra (location of mutations) and those seen in lung cancer. The patterns were dominated by G to T transversions, and the spectra in the experimental system have mutations at lung cancer hotspots. To address repair mechanisms that are responsible for BPQ induced damage we observed the effect of mutating two DNA repair genes OGG1 and APE1 (APN1 in yeast) and tested them in a yeast reporter system for p53 mutagenesis. There was an increase in both the mutant frequency and the number of G:C/T:A transversions in p53 treated with BPQ in ogg1 yeast but not in apn1 yeast. Knocking out APN2 increased mutagenesis in the apn1 cells. In addition, we did not find a strand bias on p53 treated with BPQ in ogg1 yeast. These studies suggest that Ogg1 is involved in repairing the oxidative damage caused by BPQ, Apn1 and Apn2 have redundant functions and that the stand bias seen in lung cancer may not be due to impaired repair of oxidative lesions.  相似文献   

10.
C3H/10T1/2 clone 8 (10T1/2) cells possess aryl hydrocarbon hydroxylase (AHH) activity capable of metabolizing polycyclic aromatic hydrocarbons to ultimate carcinogenic forms. AHH activity in 10T1/2 cells was measured before and after culturing in the presence of benzo[a]pyrene (B[a]P), and compared to the AHH activity found in carcinogen-transformed 10T1/2 cell lines treated similarly. The cell lines were also examined for B[a]P-DNA adduct formation, using the 32P-postlabelling technique. Treatment of parental 10T1/2 cells with B[a]P was found to significantly increase AHH activity and produce substantial numbers of DNA adducts. In addition to a major B[a]P-DNA adduct, 5-6 minor DNA adducts were also detected. Relative to parental 10T1/2 cells, an aflatoxin B1-transformed 10T1/2 cell line (7SA) was found to have significantly depressed AHH activity. In addition, after treatment with B[a]P, 7SA cells had only 8% of the B[a]P-DNA adduct levels found in 10T1/2 cells. This system may provide an in vitro model for investigating mechanisms responsible for the depression of cytochrome P-450 activities by chemical carcinogens.  相似文献   

11.
Ca2+ is a key player in plant cell responses to biotic and abiotic stress. Owing to the central role of cytosolic Ca2+ ([Ca2+]cyt) during early signaling and the need for precise determination of [Ca2+]cyt variations, we used a Cameleon YC 3.6 reporter protein expressed in Arabidopsis thaliana to quantify [Ca2+]cyt variations upon leaf mechanical damage (MD), herbivory by 3rd and 5th instar larvae of Spodoptera littoralis and S. littoralis oral secretions (OS) applied to MD. YC 3.6 allowed a clear distinction between MD and herbivory and discriminated between the two larvae instars. To our knowledge this is the first report of quantitative [Ca2+]cyt determination upon herbivory using a Cameleon calcium sensor.  相似文献   

12.
Y-family DNA polymerases (DNAPs) are often required in cells to synthesize past DNA-containing lesions, such as [+ ta]-B[a]P-N2-dG, which is the major adduct of the potent mutagen/carcinogen benzo[a]pyrene. The current model for the non-mutagenic pathway in Escherichia coli involves DNAP IV inserting deoxycytidine triphosphate opposite [+ ta]-B[a]P-N2-dG and DNAP V doing the next step(s), extension. We are investigating what structural differences in these related Y-family DNAPs dictate their functional differences. X-ray structures of Y-family DNAPs reveal a number of interesting features in the vicinity of the active site, including (1) the “roof-amino acid” (roof-aa), which is the amino acid that lies above the nucleobase of the deoxynucleotide triphosphate (dNTP) and is expected to play a role in dNTP insertion efficiency, and (2) a cluster of three amino acids, including the roof-aa, which anchors the base of a loop, whose detailed structure dictates several important mechanistic functions. Since no X-ray structures existed for UmuC (the polymerase subunit of DNAP V) or DNAP IV, we previously built molecular models. Herein, we test the accuracy of our UmuC(V) model by investigating how amino acid replacement mutants affect lesion bypass efficiency. A ssM13 vector containing a single [+ ta]-B[a]P-N2-dG is transformed into E. coli carrying mutations at I38, which is the roof-aa in our UmuC(V) model, and output progeny vector yield is monitored as a measure of the relative efficiency of the non-mutagenic pathway. Findings show that (1) the roof-aa is almost certainly I38, whose β-carbon branching R-group is key for optimal activity, and (2) I38/A39/V29 form a hydrophobic cluster that anchors an important mechanistic loop, aa29-39. In addition, bypass efficiency is significantly lower both for the I38A mutation of the roof-aa and for the adjacent A39T mutation; however, the I38A/A39T double mutant is almost as active as wild-type UmuC(V), which probably reflects the following. Y-family DNAPs fall into several classes with respect to the [roof-aa/next amino acid]: one class has [isoleucine/alanine] and includes UmuC(V) and DNAP η (from many species), while the second class has [alanine (or serine)/threonine] and includes DNAP IV, DNAP κ (from many species), and Dpo4. Thus, the high activity of the I38A/A39T double mutant probably arises because UmuC(V) was converted from the V/η class to the IV/κ class with respect to the [roof-aa/next amino acid]. Structural and mechanistic aspects of these two classes of Y-family DNAPs are discussed.  相似文献   

13.
14.
Lysophospholipids regulate a wide array of biological processes including cell survival and proliferation. In our previous studies, we found that in addition to SRE, CRE is required for maximal c-fos promoter activation triggered by lysophosphatidic acid (LPA). c-fos is an early indicator of various cells into the cell cycle after mitogenic stimulation. However, role of CREB activation in LPA-stimulated proliferation has not been elucidated yet. Here, we investigate how LPA induces proliferation in Rat-2 fibroblast cell via CREB activation. We found that total cell number and BrdU-positive cells were increased by LPA. Moreover, levels of c-fos mRNA and cyclin D1 protein were increased via LPA-induced CREB phosphorylation. Furthermore, LPA-induced Rat-2 cell proliferation was decreased markedly by ERK inhibitor (U0126) and partially by MSK inhibitor (H89). Taken together, these results suggest that CREB activation could partially up-regulate accumulation of cyclin D1 protein level and proliferation of LPA-stimulated Rat-2 fibroblast cells.  相似文献   

15.
Previous efforts by our group have established pyrazolo[1,5-a]pyrimidine as a viable core for the development of potent and selective CDK inhibitors. As part of an effort to utilize the pyrazolo[1,5-a]pyrimidine core as a template for the design and synthesis of potent and selective kinase inhibitors, we focused on a key regulator in the cell cycle progression, CHK1. Continued SAR development of the pyrazolo[1,5-a]pyrimidine core at the C5 and C6 positions, in conjunction with previously disclosed SAR at the C3 and C7 positions, led to the discovery of potent and selective CHK1 inhibitors.  相似文献   

16.
A series of ethyl 3-aryl-4-oxo-3,3a,4,6-tetrahydro-1H-furo[3,4-c]pyran-3a-carboxylates were prepared through the metal-catalyzed domino reaction of alkylidene malonates and 1,4-butynediol under a one-pot reaction condition at room temperature. Their in vitro anti-proliferative activities were subsequently evaluated in A549, QGY and HeLa cells. The majority of the compounds showed potent anti-tumor activity against HeLa cells. In particular, compound 3l was the most potent compound with IC50 value of 5.4 μM. For the first time, the X-ray structure of the anti-tumor ethyl 3-aryl-4-oxo-3,3a,4,6-tetrahydro-1H-furo[3,4-c]pyran-3a-carboxylates is determined.  相似文献   

17.
Loss of tritium from specific positions in [3H,14C] aromatic hydrocarbons can elucidate their binding site(s) to DNA and RNA and indicate the mechanism of activation. Studies of tritium loss from [6-3H,14C]benzo[a]pyrene(B[a]P), [1,3-3H,14C]B[a]P, [1,3,6-3H,14C]B[a]P, [6,7-3H,14C]B[a]P, and [7-3H,14C]B[a]P were conducted in vitro using liver nuclei and microsomes from 3-methylcholanthrene-induced Sprague-Dawley rats and in vivo on the skin of Charles River CD-1 mice. The relative loss of tritium from [3H, 14C]B[a]P was measured after binding to skin DNA and RNA, to nuclear DNA, and to native and denatured calf thymus and rat liver DNA's and poly(G) by microsomal activation. In skin, nuclei, and microsomes plus native DNA, virtually all B[a]P binding occurred at positions 1,3 and 6; while with microsomes plus denatured DNA or poly(G), B[a]P showed no binding at the 6 position and a small amount at the 1 and 3 positions. In vivo and with nuclei, binding at the 6 position predominated. Little loss of tritium from the 7 position was seen; this was expected because binding at this position is not thought to occur. This confirms the interpretation of loss of tritium as an indication of binding at a given position. These results demonstrate that the use of microsomes to activate B[a]P is not a valid model system for delineating the in vivo mechanism of B[a]P activation, and support previous evidence for one-electron oxidation as the mechanism of activation of hydrocarbons in binding to nucleic acids.  相似文献   

18.
Benzo-[a]-pyrene (B[a]P) is a family member of polycyclic aromatic hydrocarbons and a widespread environmental pollutant. It is a mammary carcinogen in rodents and contributes to the development of human breast cancer. However, the signal transduction pathways induced by B[a]P and its role in breast cancer progression have not been studied in detail. Here, we demonstrate that B[a]P induces cell migration through a lipoxygenase- and Src-dependent pathway, as well as the activation of focal adhesion kinase, Src, and the extracellular signal-regulated kinase 2 in MDA-MB-231 breast cancer cells. However, B[a]P is not able to promote migration in the mammary nontumorigenic epithelial cells MCF12A. Moreover, B[a]P promotes an increase of αvβ3 integrin–cell surface levels and an increase of metalloproteinase (MMP)-2 and MMP-9 secretions. In summary, our findings demonstrate that B[a]P induces the activation of signal transduction pathways and biological processes involved in the invasion/metastasis process in MDA-MB-231 breast cancer cells.  相似文献   

19.

Background and Aims

Tersonia cyathiflora (Gyrostemonaceae) is a fire ephemeral with an obligate requirement for smoke to germinate. Whether it is stimulated to germinate by 3-methyl-2H-furo[2,3-c]pyran-2-one (karrikinolide, KAR1), the butenolide isolated from smoke that stimulates the germination of many other smoke-responsive species, is tested.

Methods

Seeds of T. cyathiflora were buried in autumn following collection and were exhumed 1 year later, as this alleviates dormancy and enables seeds to germinate in response to smoke-water. Exhumed seeds were tested with smoke-water and KAR1. Fresh preparations of these solutions were again tested on seeds exhumed 2 months later under a broader range of conditions. They were also tested on Grevillea eriostachya (Proteaceae) and Stylidium affine (Stylidiaceae) to confirm the activity of KAR1.

Key Results

T. cyathiflora seeds germinated in response to smoke-water but not to KAR1. In contrast, G. eriostachya and S. affine germinated in response to both smoke-water and KAR1.

Conclusions

Although many smoke-responsive seeds germinate in the presence of KAR1, this does not apply universally. This suggests that other chemical(s) in smoke-water may play an important role in stimulating the germination of certain species.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号