首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Activin, a member of the transforming growth factor-beta superfamily, is an endocrine hormone that regulates differentiation and proliferation of a wide variety of cells. In the brain, activin protects neurons from ischemic damage. In this study, we demonstrate that activin modulates anxiety-related behavior by analyzing ACM4 and FSM transgenic mice in which activin and follistatin (which antagonizes the activin signal), respectively, were overexpressed in a forebrain-specific manner under the control of the alphaCaMKII promoter. Behavioral analyses revealed that FSM mice exhibited enhanced anxiety compared to wild-type littermates, while ACM4 mice showed reduced anxiety. Importantly, survival of newly formed neurons in the subgranular zone of adult hippocampus was significantly decreased in FSM mice, which was partially rescued in ACM4/FSM double transgenic mice. Our findings demonstrate that the level of activin in the adult brain bi-directionally influences anxiety-related behavior. These results further suggest that decreases in postnatal neurogenesis caused by activin inhibition affect an anxiety-related behavior in adulthood. Activin and its signaling pathway may represent novel therapeutic targets for anxiety disorder as well as ischemic brain injury.  相似文献   

2.
Disturbances of circadian rhythms are associated with many types of mood disorders; however, it is unknown whether a dysfunctional circadian pacemaker can be the primary cause of altered emotional behavior. To test this hypothesis, male and female mice carrying a mutation of the circadian gene, Clock, were compared to wild-type mice in an array of behavioral tests used to measure exploratory activity, anxiety, and behavioral despair. Female Clock mutant mice exhibited significantly greater activity and rearing in an open field and a greater number of total arm entries in the elevated plus maze. In addition, female Clock mutant mice spent significantly more time swimming in the forced swim test than wild-type mice on both days of a 2-day test. Male Clock mutant mice also exhibited increased exploration of the open field and increased swimming in the forced swim test; however, behavioral changes were less robust in Clock mutant males compared to Clock mutant females. These changes in behavior were not dependent on the expression of a lengthened free-running period but were more or less striking depending on the testing conditions. These data indicate that the Clock mutation leads to increased exploratory behavior and increased escape-seeking behavior, and, conversely, does not result in increased anxiety or depressive-like behavior. These results suggest that the Clock gene is involved in regulating behavioral arousal, and that Clock may interact with sex hormones to produce these behavioral changes.  相似文献   

3.
Activins, TGF-beta superfamily members, have multiple functions in a variety of cells and tissues. Recently, additional activin beta subunit genes, betaC and betaE, have been identified. To explore the role of activin E, we created transgenic mice overexpressing human activin betaE subunit. There were pronounced differences in the pancreata of the transgenic animals as compared with their wild-type counterparts. Pancreatic weight, expressed relative to total body weight, was significantly reduced. Histologically, adipose replacement of acini in the exocrine pancreas was observed. There was a significant decrease in the number of PCNA-positive cells in the acinar cells, indicating reduced proliferation in the exocrine pancreas of the transgenic mice. However, quantitative pancreatic morphometry showed that the total number and mass of the islets of the transgenic mice were comparable with those of the nontransgenic control mice. Our findings suggest a role for activin E in regulating the proliferation of pancreatic exocrine cells.  相似文献   

4.
Increased anxiety is co-morbid with human immunodeficiency virus (HIV) infection. Actions of the neurotoxic HIV-1 regulatory protein, Tat, may contribute to affective dysfunction. We hypothesized that Tat expression would increase anxiety-like behavior of female GT-tg bigenic mice that express HIV-1 Tat protein in the brain in a doxycycline-dependent manner. Furthermore, given reports that HIV-induced anxiety may occur at lower rates among women, and that the neurotoxic effects of Tat are ameliorated by sex steroids in vitro, we hypothesized that 17β-estradiol and/or progesterone would ameliorate Tat-induced anxiety-like effects. Among naturally-cycling proestrous and diestrous mice, Tat-induction via 7 days of doxycycline treatment significantly increased anxiety-like responding in an open field, elevated plus maze and a marble-burying task, compared to treatment with saline. Proestrous mice demonstrated less anxiety-like behavior than diestrous mice in the open field and elevated plus maze, but these effects did not significantly interact with Tat-induction. Among ovariectomized mice, doxycycline-induced Tat protein significantly increased anxiety-like behavior in an elevated plus maze and a marble burying task compared to saline-treated mice, but not an open field (where anxiety-like responding was already maximal). Co-administration of progesterone (4 mg/kg), but not 17β-estradiol (0.09 mg/kg), with doxycycline significantly ameliorated anxiety-like responding in the elevated plus maze and marble burying tasks. When administered together, 17β-estradiol partially antagonized the protective effects of progesterone on Tat-induced anxiety-like behavior. These findings support evidence of steroid-protection over HIV-1 proteins, and extend them by demonstrating the protective capacity of progesterone on Tat-induced anxiety-like behavior of ovariectomized female mice.  相似文献   

5.
6.
Activity-regulated cytoskeletal-associated protein (Arc) and c-Fos are immediate early gene (IEG) products induced by novelty in the hippocampus and involved in the consolidation of synaptic plasticity and long-term memory. We investigated whether induction of arc and c-fos after exposure to a novel open field environment was compromised in different neocortical areas and the hippocampal formation in APP/PS1ΔE9 transgenic mice characterized by pronounced accumulation and deposition of beta amyloid (Aβ). Notably, the basal level of Arc and c-fos mRNA in the neocortex was significantly lower in APP/PS1ΔE9 compared to wild-type mice. Novelty exposure induced an increase in Arc and c-Fos mRNA in the medial prefrontal cortex (mPFC), parietal cortex, and hippocampal formation in both APP/PS1ΔE9 transgenic and wild-type mice. However, novelty-induced IEG expression did not reach the same levels in APP/PS1ΔE9 as in the wild-type mice. In contrast, synaptophysin levels did not differ between mutant and wild type mice, suggesting that the observed effect was not due to a general decrease in the number of presynapses. These data suggest a reduction in basal and novelty-induced neuronal activity in a transgenic mouse model of Alzheimer’s disease, which is most pronounced in cortical regions, indicating that a decreased functional response in IEG expression could be partly responsible for the cognitive deficits observed in patients with Alzheimer’s disease.  相似文献   

7.
The ganglioside GM3 synthase (SAT-I), encoded by a single-copy gene, is a primary glycosyltransferase for the synthesis of complex gangliosides. Although its expression is tightly controlled during early embryo development and postnatal development and maturation in the brain, the physiological role of ganglioside GM3 in the regulation of neuronal functions has not been elucidated. In the present study, we examined motor activity, cognitive and emotional behaviors, and drug administration in juvenile GM3-knockout (GM3-KO) mice. GM3-KO male and female mice showed hyperactivity in the motor activity test, Y-maze test, and elevated plus maze test. In the Y-maze test, there was significantly less spontaneous alternation behavior in GM3-KO male mice than in wild-type mice. In the elevated plus maze test, the amount of time spent on the open arms by GM3-KO male mice was significantly higher than that of sex-matched wild-type mice. In contrast, there was no significant difference between GM3-KO and wild-type female mice in these tests. Thus, juvenile GM3-KO mice show gender-specific phenotypes resembling attention-deficit hyperactivity disorder (ADHD), namely hyperactivity, reduced attention, and increased impulsive behaviors. However, administration of methylphenidate hydrochloride (MPH) did not ameliorate hyperactivity in either male or female GM3-KO mice. Although these data demonstrate the involvement of ganglioside GM3 in ADHD and the ineffectiveness of MPH, the first-choice psychostimulant for ADHD medication, our studies indicate that juvenile GM3-KO mice are a useful tool for neuropsychological studies.  相似文献   

8.
9.
Cannabis is an annual herbaceous plant sometimes grown for decoration and used as bird food that looks like flax. The study wanted to determine if a Cannabis extract may have an effect on how anxious and depressed the female mice behaved. forty healthy female mice were divided into four groups. Tap water was administered to the first group (control). Ethanol was administered to second group (positive control). The third and four groups were given 1 and 2 mg/kg cannabis extract respectively. Treatment continued for 14 days. After therapy, the light–dark chamber, forced swimming, tail suspension, plus lamb and open field tests were done to assess anxiety and depressive behavior. The results indicated that the anxiety and depression were increased in treated females significantly compared to control. Biochemical results showed that DA,5-HT, AChE, GSH, GST, CAT and SOD were decreased while TBARS, corticosterone and cortisol were increased. In conclusion, cannabis effects this kind of females’ behavior but the mechanisms are not clear yet. We need more researches on this trend.  相似文献   

10.
Smad7 is an inhibitory molecule induced by members of the transforming growth factor-β (TGF-β) family, including TGF-β, activin, nodal and bone morphogenetic proteins (BMPs). To elucidate the in vivo functions of Smad7, we generated conditional Smad7-knockout mice in which the Mad homology 2 (MH2) domain and the poly (A) signal sequence were flanked with loxP sites (floxed). The Smad7-floxed mice exhibited no obvious phenotype. Smad7 total-null mice on a C57BL/6 background died within a few days of birth, whereas mice with an ICR background developed to adulthood but were significantly smaller than wild-type mice. Unexpectedly, phospho-Smad2 and phospho-Smad3 were decreased in Smad7-deficient mouse embryonic fibroblast (MEF) cells, whereas phospho-Smad1/5/8 was similarly expressed in wild-type and Smad7-deficient MEF cells. Moreover, expression levels of TGF-β type I receptor (ALK5) were higher in Smad7-deficient MEF cells than in wild-type MEF cells. Plasminogen activator inhibitor-1 (PAI-1) and inhibitor of differentiation-1 (Id-1) mRNA were similarly expressed in wild-type and Smad7-deficient MEF cells. Some differences were observed in mitogen-activated protein kinase (MAPK)-signalling between wild-type and Smad7-deficient MEF cells. We demonstrated that Smad7 plays an important role in normal mouse growth and provide a useful tool for analysing Smad7 functions in vivo.  相似文献   

11.
Activin A, a homodimeric protein (betaAbetaA) and a member of the TGF-beta superfamily, is involved in the inflammatory repair process. Using cDNA microarray analysis, we discovered strong induction of the activin betaA gene in human mast cells (MC) on stimulation with PMA and calcium ionophore (A23187). Activin betaA mRNA was also highly induced in primary cultured murine bone marrow MC (BMMC) after stimulation by IgE receptor cross-linking. Secretion of activin A was evident in human mast cell-1 line cells 3 h after stimulation and progressively increased over time. Activin A was present in the cytoplasm of activated but not unstimulated murine bone marrow MC as demonstrated by immunofluorescence studies, suggesting that secretion of activin A by MC was due to de novo synthesis rather than secretion of preformed protein. Activin A also colocalized with human lung MC from patients with asthma by double-immunofluorescence staining. Furthermore, secretion of activin A was significantly increased in the airway of wild-type mice after OVA sensitization followed by intranasal challenge. Secretion of activin A, however, was greatly reduced in MC-deficient WBB6F(1)-W/W(v) mice as compared with wild-type mice, indicating that MC are an important contributor of activin A in the airways of a murine asthma model. Additionally, activin A promoted the proliferation of human airway smooth muscle cells. Taken together, these data suggest that MC-derived activin A may play an important role in the process of airway remodeling by promoting the proliferation of airway smooth muscle.  相似文献   

12.
Activin has numerous biological activities including regulation of follicular development, spermatogenesis, and steroidogenesis within the gonads. Activities of activin are regulated by follistatin (FST), an activin binding protein, and perhaps follistatin-like 3 (FSTL3; also known as FLRG and FSRP). FSTL3 is a recently described member of the FST family having an overall structure and activity profile similar to that of FST, including binding and neutralization of activin. FSTL3 is most highly expressed in the placenta and testis, whereas FST is highest in the ovary and kidney, suggesting that FSTL3 has biological actions that do not entirely overlap those of FST. To investigate the role of local FSTL3 as a potential regulator of activin action in gonad development and function, we examined FSTL3 expression in the mouse testis. FSTL3 protein was localized to Leydig cells, spermatagonia, and mature spermatids in normal male mice. We then created transgenic mice using a human FSTL3 cDNA driven by the mouse alpha-inhibin promoter. Three of five transgenic founders were fertile and were bred to establish lines. In the highest expressing line 3, transgene expression was largely restricted to gonads, with pituitary, adrenal, brain, and uterine expression being substantially lower. Gonad weights, sperm counts, and fertility were significantly reduced in transgenic males, and reduced litter size was evident in line 3 females. Within the testis, highest transgene expression was observed in Sertoli cells, and although most tubules showed evidence of normal spermatogenic development, degenerating tubules devoid of germ cells and Leydig cell hyperplasia were also evident in every line 3 animal examined. Ovaries from line 3 females contained fewer antral follicles and more apparent follicular atresia. Although circulating human FSTL3 levels were undetectable, FSH and LH levels in adult transgenic mice were not significantly different from wild-type animals. However, testosterone levels were significantly increased at d 21 and significantly reduced at d 60 compared with wild-type males. These results suggest that FSTL3 is likely to be a local regulator of activin action in gonadal development and gametogenesis and, further, that activin appears to have important actions in gonadal development and function that are critical for normal reproduction.  相似文献   

13.
In a previous article (J. Frohlich, M. Morgan, S. Ogawa, L. Burton, and D. Pfaff, 2001, Horm. Behav. 39, 39-47) an experiment to explore the structure of behavioral arousal in female mice was described. The present study extends this, to investigate the roles of thyroid hormone and estradiol in altering the statistical structure of arousal measures. Each of four groups of ovariectomized female mice was administered either thyroxine (T4), estradiol benzoate (EB), both (T4 + EB), or neither (control). They were then subjected to the same rigid protocol of tests bearing on arousal concepts used in our previous study. T4-treated mice manifested significantly increased freezing behavior relative to control mice in a fear-conditioning paradigm. When compared with EB mice, T4-treated mice evinced significantly increased acoustic startle and open-field behavior. T4 mice were also significantly more active in the open field than EB + T4-treated mice. Mice administered EB demonstrated significantly decreased acoustic startle and open-field performance than controls. Evidence for increased anxiety in the open-field test was obtained in the EB condition. Factor and cluster analysis indicated the statistical structure of arousal measures to be reasonably robust across hormonal conditions. Hormone effects on arousal components are of interest because of their likely contributions to emotional states and cognitive performance.  相似文献   

14.
Recently, we demonstrated a strong upregulation of activin expression after skin injury. Furthermore, overexpression of this transforming growth factor beta family member in the skin of transgenic mice caused dermal fibrosis, epidermal hyperthickening and enhanced wound repair. However, the role of endogenous activin in wound healing has not been determined. To address this question we overexpressed the soluble activin antagonist follistatin in the epidermis of transgenic mice. These animals were born with open eyes, and the adult mice had larger ears, longer tails and reduced body weight compared with non-transgenic littermates. Their skin was characterized by a mild dermal and epidermal atrophy. After injury, a severe delay in wound healing was observed. In particular, granulation tissue formation was significantly reduced, leading to a major reduction in wound breaking strength. The wounds, however, finally healed, and the resulting scar area was smaller than in control animals. These results implicate an important function of endogenous activin in the control of wound repair and scar formation.  相似文献   

15.
16.
Epidemiological studies have shown a positive relationship between cycad flour consumption and the development of the neurodegenerative disorder, amyotrophic lateral sclerosis - parkinsonism - dementia complex (ALS-PDC). Apolipoprotein E (apo E) allele variations have been associated with genetic susceptibility in neurodegenerative diseases, including ALS-PDC. We have studied cycad toxicity in a mouse model of ALS-PDC with a particular interest in its impact on the central nervous system (CNS) in both apo E knock-out (KO) mice and their wild-type (WT) counterparts. Behavioral motor tests, motor neuron counts, and immunohistochemical staining in brain and spinal cord, as well as routine histological examinations on internal organs, were performed to evaluate cycad toxicity. Plasma cholesterol levels were also measured before and during the study. Cycad treatment was associated with higher levels of plasma cholesterol only in apo E KO mice; increased levels of plasma cholesterol did not result in increased athero genesis. Cycad-fed wild-type mice developed progressive behavioral deficits including ALS-PDC-like pathological outcomes, while cycad-fed apo E KO mice were not significantly affected. Cycad-fed wild-type mice had shorter gait length measurements along with higher active caspase-3 levels in the striatum, substantia nigra, primary motor cortex, and spinal cord as compared with corresponding controls. These changes were associated with decreased labeling for glutamate transporter 1B and tyrosine hydroxylase activity levels. No evidence of cycad toxicity was observed in internal organs of either wild-type or apo E KO mice. Our data demonstrate that apo E KO mice are less susceptible to cycad toxicity, suggesting a role for apo E as a possible genetic susceptibility factor for some forms of toxin-induced neurodegeneration.  相似文献   

17.
In studies of gene-ablated mice, activin signaling through activin type IIB receptors (ActRIIB) and Smad2 has been shown to regulate not only pancreatic β cell mass but also insulin secretion. However, it still remains unclear whether gain of function of activin signaling is involved in the modulation of pancreatic β cell mass and insulin secretion. To identify distinct roles of activin signaling in pancreatic β cells, the Cre-loxP system was used to activate signaling through activin type IB receptor (ActRIB) in pancreatic β cells. The resultant mice (pancreatic β cell-specific ActRIB transgenic (Tg) mice; ActRIBCAβTg) exhibited a defect in glucose-stimulated insulin secretion (GSIS) and a progressive impairment of glucose tolerance. Patch-clamp techniques revealed that the activity of ATP-sensitive K+ channels (KATP channels) was decreased in mutant β cells. These results indicate that an appropriate level of activin signaling may be required for GSIS in pancreatic β cells, and that activin signaling involves modulation of KATP channel activity.  相似文献   

18.
Mutations in the myostatin gene are associated with hypermuscularity, suggesting that myostatin inhibits skeletal muscle growth. We postulated that increased tissue-specific expression of myostatin protein in skeletal muscle would induce muscle loss. To investigate this hypothesis, we generated transgenic mice that overexpress myostatin protein selectively in the skeletal muscle, with or without ancillary expression in the heart, utilizing cDNA constructs in which a wild-type (MCK/Mst) or mutated muscle creatine kinase (MCK-3E/Mst) promoter was placed upstream of mouse myostatin cDNA. Transgenic mice harboring these MCK promoters linked to enhanced green fluorescent protein (EGFP) expressed the reporter protein only in skeletal and cardiac muscles (MCK) or in skeletal muscle alone (MCK-3E). Seven-week-old animals were genotyped by PCR of tail DNA or by Southern blot analysis of liver DNA. Myostatin mRNA and protein, measured by RT-PCR and Western blot, respectively, were significantly higher in gastrocnemius, quadriceps, and tibialis anterior of MCK/Mst-transgenic mice compared with wild-type mice. Male MCK/Mst-transgenic mice had 18-24% lower hind- and forelimb muscle weight and 18% reduction in quadriceps and gastrocnemius fiber cross-sectional area and myonuclear number (immunohistochemistry) than wild-type male mice. Male transgenic mice with mutated MCK-3E promoter showed similar effects on muscle mass. However, female transgenic mice with either type of MCK promoter did not differ from wild-type controls in either body weight or skeletal muscle mass. In conclusion, increased expression of myostatin in skeletal muscle is associated with lower muscle mass and decreased fiber size and myonuclear number, decreased cardiac muscle mass, and increased fat mass in male mice, consistent with its role as an inhibitor of skeletal muscle mass. The mechanism of gender specificity remains to be clarified.  相似文献   

19.
We have studied the expression of the tight junction proteins (TJ) occludin, claudin-1 and ZO-2 in the epidermis of female mice. We observed a peak of expression of these proteins at postnatal day 7 and a decrease in 6 week-old mice to values similar to those found in newborn animals. We explored if the expression of the E6 oncoprotein from high-risk human papilloma virus type 16 (HPV16) in the skin of transgenic female mice (K14E6), altered TJ protein expression in a manner sensitive to ovarian hormones. We observed that in ovariectomized mice E6 up-regulates the expression of occludin and ZO-2 in the epidermis and that this effect was canceled by 17β-estradiol. Progesterone instead induced occludin and ZO-2 over-expression. However, the decreased expression of occludin and ZO-2 induced by 17β-estradiol in the epidermis was not overturned by E6 or progesterone. In addition, we employed MDCK cells transfected with E6, and observed that ZO-2 delocalizes from TJs and accumulates in the cell nuclei due to a decrease in the turnover rate of the protein. These results reinforce the view of 17β-estradiol and E6 as risk factors for the development of cancer through effects on expression and mislocalization of TJ proteins.  相似文献   

20.
Detrimental changes in body composition are often associated with declining levels of testosterone. Here, we evaluated the notion that multipotent mesenchymal stem cells, that give rise to both fat and muscle tissue, can play a significant role to alter existing body composition in the adult. Transgenic mice with targeted androgen receptor (AR) overexpression in stem cells were employed. Wild-type littermate and AR-transgenic male and female mice were gonadectomized and left untreated for 2 months. After the hypogonadal period, mice were then treated with 5α-dihydrotestosterone (DHT) for 6 weeks. After orchidectomy (ORX), wild-type males have reduced lean mass and increased fat mass compared to shams. DHT treatment was beneficial to partially restore body composition. In wild-type females, ovariectomy (OVX) produced a similar change but there was no improvement with DHT. In targeted AR transgenic mice, DHT treatment increased lean and reduced fat mass to sham levels. In contrast to wild-type females, DHT treatment in female transgenic mice significantly ameliorated the increased fat and decreased lean mass changes that result after OVX. Our results show that DHT administration reduces fat mass and increases lean mass in wild-type males but not females, indicating that wild-type females are not as sensitive to androgen treatment. Because both male and female transgenic mice are more responsive than wild-type, results suggest that body composition remains linked to stem cell fate in the adult and that targeted androgen signaling in stem cells can play a significant role to reverse detrimental changes in body composition in both sexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号