首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The total amount of cellular mitochondrial DNA (mtDNA) varies widely and seems to be related to the nature and metabolic state of tissues and cells in culture. It is not known, however, whether this variation has any significance in vivo, and to which extent it regulates energy production. To better understand the importance of the cellular mtDNA level, we studied the influence of a gradual reduction of mtDNA copy number on oxidative phosphorylation in two models: (a) a control human cell line treated with different concentrations of 2′, 3′-dideoxycytidine, a nucleoside analogue that inhibits mtDNA replication by interfering with mitochondrial DNA polymerase γ, and (b) a cell line derived from a patient presenting mtDNA depletion. The two models were used to construct biochemical and phenotypic threshold curves. Our results show that oxidative phosphorylation activities are under a tight control by the amount of mtDNA in the cell, and that the full complement of mtDNA molecules are necessary to maintain a normal energy production level.  相似文献   

2.
3.
4.
Arnost Horak  Helena Horak  Mary Packer 《BBA》1987,890(3):302-309
Submitochondrial particles were prepared from pea cotyledon mitochondria by sonication in a medium containing 5 mM MgCl2. The resulting particles (Mg2+-submitochondrial particles) catalyzed oxidative phosphorylation at the rate of 100–200 nmol ATP formed / min per mg protein. Treatment of Mg2+-submitochondrial particles with 3.0 M urea resulted in a preparation of highly resolved particles with low ATPase activity and no capacity for oxidative phosphorylation. However, the resulting membranes were not capable of reconstitution of oxidative posphorylation with the purified mitochondrial F1-ATPase. Urea particles capable of reconstitution of oxidative phosphorylation could be prepared by extracting Mg2+-submitochondrial particles with concentrations of urea ranging from 1.7 to 2.0 M. We have used 1.9 M urea for large-scale preparation of urea particles that could be stored in liquid nitrogen without any loss of reconstitution capacity. The residual oxidative phosphorylation rate of these particles was 6–8 nmol ATP / min per mg protein and this rate could increase to 60–70 nmol ATP / min per mg protein on incubation with saturating amounts of purified mitochondrial F1-ATPase. In contrast to the mitochondrial F1, purified activated pea chloroplast CF1 was unable to stimulate ATP synthesis in 1.9 M urea particles.  相似文献   

5.
Studies were made to determine whether the energy-dependent binding of ethidium to the mitochondrial inner membrane reflects the membrane potential or the energization of localized regions of the membrane.The number of binding sites of ethidium in mitochondria energized with ATP was 72 nmol/mg protein and decreased with increase in the amount of the ATPase system (F1 · Fo) inactivated by oligomycin. These findings clearly show that the energy-dependent binding of ethidium to the mitochondrial inner membrane energized with ATP does not reflect the membrane potential, in good accord with the previous conclusion (Higuti, T., Yokota, M., Arakaki, N., Hattori, A. and Tani, I. (1978) Biochim. Biophys. Acta 503, 211–222), but that ethidium binds to localized regions of the energized membrane that are directly affected by ATPase (F1), reflecting the localized energization of the membrane by ATP.  相似文献   

6.
The present study contributes to the problem of the dynamic structure of mitochondrial F1-ATPase and the functional interrelation of so-called tight nucleotide binding sites. Nucleotide analogs are used as a tool to differentiate two distinct functional states of the membrane-bound enzyme, proposed to reflect corresponding conformational states; they reveal F1-ATPase as a dual-state enzyme: ATP-synthetase, and ATP-hydrolase. The analogs used are 3-naphthoyl esters of AD(T)P, and 2(3)-O-trinitrophenyl ethers of AD(T)P. Both types of analogs act inversely to each other with respect to their relative effects on oxidative phosphorylation and on ATPase in submitochondrial vesicles. The respective ratios ofK i versus both processes are 250/1 compared to 1/170. It is also shown that in the presence of the inhibitory 3-esters oxidative phosphorylation deviates from linear kinetics and that these inhibitors induce a lag time of oxidative phosphorylation depending on the initial pattern of nucleotides available to energized submitochondrial vesicles. The duration of the lag time coincides with the time course of displacement of the analog from a tight binding site. The conclusions of the study are: (a) the catalytic sites of F1-ATP-synthetase are not operating independently from each other; they rather interact in a cooperative manner; (b) F1-ATPase as a dual-state enzyme exhibits highly selective responses to tight binding of nucleotides or analogs in its energized (membrane-bound) state versus its nonenergized state, respectively.Abbreviations used: N-AD(T)P, 3-O-naphthoyl(1)-AD(T)P; DMAN-AD(T)P, 3-O-(5-dimethylaminonaphthoyl(1))-AD(T)P, also termed F-AD(T)P in previous papers because of its fluorescence; TNP-AD(T)P, 2(3)-O-(2,4,6-trinitrophenyl)-AD(T)P; FCCP,p-trifluoromethoxycarbonylcyanide phenylhydrazone.  相似文献   

7.
In this study, we investigated the pathogenicity of a homozygous Asp446Asn mutation in the NDUFS2 gene of a patient with a mitochondrial respiratory chain complex I deficiency. The clinical, biochemical, and genetic features of the NDUFS2 patient were compared with those of 4 patients with previously identified NDUFS2 mutations. All 5 patients presented with Leigh syndrome. In addition, 3 out of 5 showed hypertrophic cardiomyopathy. Complex I amounts in the patient carrying the Asp446Asn mutation were normal, while the complex I activity was strongly reduced, showing that the NDUFS2 mutation affects complex I enzymatic function. By contrast, the 4 other NDUFS2 patients showed both a reduced amount and activity of complex I. The enzymatic defect in fibroblasts of the patient carrying the Asp446Asn mutation was rescued by transduction of wild type NDUFS2. A 3-D model of the catalytic core of complex I showed that the mutated amino acid residue resides near the coenzyme Q binding pocket. However, the KM of complex I for coenzyme Q analogs of the Asp446Asn mutated complex I was similar to the KM observed in other complex I defects and in controls. We propose that the mutation interferes with the reduction of coenzyme Q or with the coupling of coenzyme Q reduction with the conformational changes involved in proton pumping of complex I.  相似文献   

8.
A new assay has been developed to measure mitochondrial ATP synthesis of cultured mammalian cells. Cells in a microplate are exposed to streptolysin O to make plasma membranes permeable without damaging mitochondrial function and ATP synthesis is monitored by luciferase. Addition of inhibitors of FoF1-ATP synthase (FoF1), respiratory chain, TCA cycle and ATP/ADP translocator, as well as knockdown of β-subunit of FoF1, resulted in loss of ATP synthesis. Compared with the conventional procedures that need mitochondria fractionation and detergent, this assay is simple, sensitive and suitable for high-throughput analysis of genes and drugs that could affect mitochondrial functional integrity as represented by ATP synthesis activity.  相似文献   

9.
Alkaliphilic Bacillus species that are isolated from nonmarine, moderate salt, and moderate temperature environments offer the opportunity to explore strategies that have developed for solving the energetic challenges of aerobic growth at pH values between 10 and 11. Such bacteria share many structural, metabolic, genomic, and regulatory features with nonextremophilic species such as Bacillus subtilis. Comparative studies can therefore illuminate the specific features of gene organization and special features of gene products that are homologs of those found in non-extremophiles, and potentially identify novel gene products of importance in alkaliphily. We have focused our studies on the facultative alkaliphile Bacillus firmus OF4, which is routinely grown on malate-containing medium at either pH 7.5 or 10.5. Current work is directed toward clarification of the characteristics and energetics of membrane-associated proteins that must catalyze inward proton movements. One group of such proteins are the Na+/H+ antiporters that enable cells to adapt to a sudden upward shift in pH and to maintain a cytoplasmic pH that is 2–2.3 units below the external pH in the most alkaline range of pH for growth. Another is the proton-translocating ATP synthase that catalyzes robust production of ATP under conditions in which the external proton concentration and the bulk chemiosmotic driving force are low. Three gene loci that are candidates for Na+/H+ antiporter encoding genes with roles in Na+- dependent pH homeostasis have been identified. All of them have homologs in B. subtilis, in which pH homeostasis can be carried out with either K+ or Na+. The physiological importance of one of the B. firmus OF4 loci, nhaC, has been studied by targeted gene disruption, and the same approach is being extended to the others. The atp genes that encode the alkaliphile's F1FO-ATP synthase are found to have interesting motifs in areas of putative importance for proton translocation. As an initial step in studies that will probe the importance and possible roles of these motifs, the entire atp operon from B. firmus OF4 has been cloned and functionally expressed in an Escherichia coli mutant that has a full deletion of its atp genes. The transformant does not exhibit growth on succinate, but shows reproducible, modest increases in the aerobic growth yields on glucose as well as membrane ATPase activity that exhibits characteristics of the alkaliphile enzyme. Received: January 22, 1998 / Accepted: February 16, 1998  相似文献   

10.
The schizothoracine fishes, also known as “mountain carps” are widely distributed in the Qinghai-Tibetan Plateau and its peripheral regions. Although they provide a prime example of high altitude adaptation, the phylogenetic relationships and the divergence times among these carp lineages are still controversial. Moreover, the genetic basis for high altitude adaptation is also poorly understood. In this study, we determined the mitochondrial genomes from two species of the schizothoracine fishes, representing a “morphologically primitive” clade and “morphologically specialized” clade, respectively. The phylogenetic tree and the divergence times were estimated within the evolutionary framework of the entire order Cypriniformes. Our results indicate a polyphylyetic relationship of the schizothoracine fishes and suggest two independent migration events into the Qinghai-Tibetan Plateau: one by the “morphologically primitive” clade in the Late Miocene and another by the “morphologically specialized” clade in the Eocene. Rapid speciation events of each clade from the Late Miocene to the Pliocene correspond to the timing of the geologic acceleration of the Qinghai-Tibetan Plateau. Interestingly, we found evidence for positive selection acting on the protein coding genes in the mitochondrial genomes of the “morphologically specialized” clade, implying a possible genetic basis for high altitude adaptation in this derived lineage of cypriniform fishes.  相似文献   

11.
Skeletal muscle takes up glucose in an insulin-sensitive manner and is thus important for the maintenance of blood glucose homeostasis. Insulin resistance during development of type 2 diabetes is associated with decreased ATP synthesis, but the causality of this association is controversial. In this paper, we report real-time oxygen uptake and medium acidification data that we use to quantify acute insulin effects on intracellular ATP supply and ATP demand in rat and human skeletal muscle cells. We demonstrate that insulin increases overall cellular ATP supply by stimulating the rate of glycolytic ATP synthesis. Stimulation is immediate and achieved directly by increased glycolytic capacity, and indirectly by elevated ATP demand from protein synthesis. Raised glycolytic capacity does not result from augmented glucose uptake. Notably, insulin-sensitive glucose uptake is increased synergistically by nitrite. While nitrite has a similar stimulatory effect on glycolytic ATP supply as insulin, it does not amplify insulin stimulation. These data highlight the multifarious nature of acute bioenergetic insulin sensitivity of skeletal muscle cells, and are thus important for the interpretation of changes in energy metabolism that are seen in insulin-resistant muscle.  相似文献   

12.
A two-compartment kinetic model was used to describe reconstituted systems in which mitochondria compete with pyruvate kinase for kinase-generated ADP. The modelling suggests that cytosolic CK deficiency results in a 50% increase in outer mitochondrial membrane permeability.  相似文献   

13.
High temperature requirement A2 (HtrA2)/Omi is a serine protease localized in mitochondria. In response to apoptotic stimuli, HtrA2 is released to the cytoplasm and cleaves many proteins, including XIAP, Apollon/BRUCE, WT1, and Ped/Pea-15, to promote apoptosis. However, the function of HtrA2 in mitochondria under normal conditions remains unclear. Here, we show that the mitochondrial proteins, LON protease 1 (LONP1) and prohibitin (PHB), are overexpressed in HtrA2−/− mouse embryonic fibroblast (MEF) cells and HtrA2 knock-down HEK293T cells. We also confirm the effect of the HtrA2 protease on the stability of the above mitochondrial quality control proteins in motor neuron degeneration 2 (mnd2) mice, which have a greatly reduced protease activity as a result of a Ser276Cys missense mutation of the HtrA2 gene. In addition, PHB interacts with and is directly cleaved by HtrA2. Luminescence assays demonstrate that the intracellular ATP level is decreased in HtrA2−/− cells compared to HtrA2+/+ cells. HtrA2 deficiency causes a decrease in the mitochondrial membrane potential, and reactive oxygen species (ROS) generation is greater in HtrA2−/− cells than in HtrA2+/+ cells. Our results implicate that HtrA2 might be an upstream regulator of mitochondrial homeostasis.  相似文献   

14.
Most cells grown in glucose-containing medium generate almost all their ATP via glycolysis despite abundant oxygen supply and functional mitochondria, a phenomenon known as the Crabtree effect. By contrast, most cells within the body rely on mitochondrial oxidative phosphorylation (OXPHOS) to generate the bulk of their energy supply. Thus, when utilising the accessibility of cell culture to elucidate fundamental elements of mitochondria in health and disease, it is advantageous to adopt culture conditions under which the cells have greater reliance upon OXPHOS for the supply of their energy needs. Substituting galactose for glucose in the culture medium can provide these conditions, but additional benefit can be gained from alternate in vitro models. Herein we describe culture conditions in which complete autonomous depletion of medium glucose induces a lactate-consuming phase marked by increased MitoTracker Deep Red staining intensity, increased expression of Kreb’s cycle proteins, increased expression of electron transport chain subunits, and increased sensitivity to the OXPHOS inhibitor rotenone. We propose these culture conditions represent an alternate accessible model for the in vitro study of cellular processes and diseases involving the mitochondrion without limitations incurred via the Crabtree effect.  相似文献   

15.

Background

Mitochondrial respiratory chain disorders (MRCDs) are some of the most common metabolic disorders presenting in childhood, however because of it clinical heterogeneity, diagnosis is often challenging. Being a multisystemic disorder with variable and non-specific presentations, definitive diagnosis requires a combination of investigative approaches, and is often a laborious process.

Scope of review

In this review we provide a broad overview of the clinical presentations of MRCDs in childhood, evaluating the different diagnostic approaches and treatment options, and highlighting the recent research advances in this area.

Major conclusions

Extensive research over the years has significantly increased the frequency with which accurate diagnosis is being made, including the identification of new biomarkers and next generation sequencing (NGS) technologies. NGS has provided a breakthrough in unravelling the genetic basis of MRCDs, especially considering the complexity of mitochondrial genetics with its dual genetic contributions.

General significance

With an increased understanding of the pathophysiology of this group of disorders, clinical trials are now being established using a number of different therapeutic approaches, with the hope of changing the focus of treatment from being largely supportive to potentially having a positive effect on the natural history of the disorder.This article is part of a Special Issue entitled: Special Issue: Frontiers of Mitochondria IG000218.  相似文献   

16.
Nucleoside diphosphate kinases (NDPKs/Nm23), responsible for intracellular di- and tri-phosphonucleoside homeostasis, play multi-faceted roles in cellular energetic, signaling, proliferation, differentiation and tumor invasion. The mitochondrial NDPK-D, the NME4 gene product, is a peripheral protein of the inner membrane. Several new aspects of the interaction of NDPK-D with the inner mitochondrial membrane have been recently characterized. Surface plasmon resonance analysis using recombinant NDPK-D and different phospholipid liposomes showed that NDPK-D interacts electrostatically with anionic phospholipids, with highest affinity observed for cardiolipin, a phospholipid located mostly in the mitochondrial inner membrane. Mutation of the central arginine (R90) in a surface exposed cationic RRK motif unique to NDPK-D strongly reduced phospholipid interaction in vitro and in vivo. Stable expression of NDPK-D proteins in HeLa cells naturally almost devoid of this isoform revealed a tight functional coupling of NDPK-D with oxidative phosphorylation that depends on the membrane-bound state of the enzyme. Owing to its symmetrical hexameric structure exposing membrane binding motifs on two opposite sides, NDPK-D could bridge liposomes containing anionic phospholipids and promote lipid transfer between them. In vivo, NDPK-D could induce intermembrane contacts and facilitate lipid movements between mitochondrial membranes. Most of these properties are reminiscent to those of the mitochondrial creatine kinase. We review here the common properties of both kinases and we discuss their potential roles in mitochondrial functions such as energy production, apoptosis and mitochondrial dynamics.  相似文献   

17.
Robert S. Balaban 《BBA》2009,1787(11):1334-391
The heart is capable of balancing the rate of mitochondrial ATP production with utilization continuously over a wide range of activity. This results in a constant phosphorylation potential despite a large change in metabolite turnover. The molecular mechanisms responsible for generating this energy homeostasis are poorly understood. The best candidate for a cytosolic signaling molecule reflecting ATP hydrolysis is Ca2+. Since Ca2+ initiates and powers muscle contraction as well as serves as the primary substrate for SERCA, Ca2+ is an ideal feed-forward signal for priming ATP production. With the sarcoplasmic reticulum to cytosolic Ca2+ gradient near equilibrium with the free energy of ATP, cytosolic Ca2+ release is exquisitely sensitive to the cellular energy state providing a feedback signal. Thus, Ca2+ can serve as a feed-forward and feedback regulator of ATP production. Consistent with this notion is the correlation of cytosolic and mitochondrial Ca2+ with work in numerous preparations as well as the localization of mitochondria near Ca2+ release sites. How cytosolic Ca2+ signaling might regulate oxidative phosphorylation is a focus of this review. The relevant Ca2+ sensitive sites include several dehydrogenases and substrate transporters together with a post-translational modification of F1-FO-ATPase and cytochrome oxidase. Thus, Ca2+ apparently activates both the generation of the mitochondrial membrane potential as well as utilization to produce ATP. This balanced activation extends the energy homeostasis observed in the cytosol into the mitochondria matrix in the never resting heart.  相似文献   

18.
Mitochondria are recognized as modulators of neuronal viability during ischemia, hypoxia and toxic chemical exposure, wherein mitochondria dysfunction leading to ATP depletion may be a common pathway of cell death. Estrogens have been reported to be neuroprotective and proposed to play a role in the modulation of cerebral energy/glucose metabolism. To address the involvement of 17beta-estradiol preservation of mitochondrial function, we examined various markers of mitochondrial activity in human SK-N-SH neuroblastoma cells exposed to 3-nitroproprionic acid (3-NPA), a succinate dehydrogenase inhibitor which uncouples oxidative phosphorylation. 3-NPA (10 mM) significantly increased ATP levels at 2 h then caused a 40% and a 50% decrease in ATP levels from baseline when treated for 12 h and 24 h, respectively. 3-NPA also induced significant increases in levels of cellular hydrogen peroxide and peroxynitrite at 2 h and a 60% decrease in mitochondrial membrane potential (MMP) at 12 h exposure. 17beta-Estradiol (17beta-E(2)) pretreatment restored the ATP level back to 80% at 12 h of that in control cells treated with 3-NPA but without E(2), blunted the effect of 3-NPA on MMP and reactive oxygen species levels. The present study indicates that 17beta-E(2) can preserve mitochondrial function in the face of inhibition of oxidative phosphorylation.  相似文献   

19.
Mitochondrial disorders have the highest incidence among congenital metabolic diseases, and are thought to occur at a rate of 1 in 5000 births. About 25% of the diseases diagnosed as mitochondrial disorders in the field of pediatrics have mitochondrial DNA abnormalities, while the rest occur due to defects in genes encoded in the nucleus. The most important function of the mitochondria is biosynthesis of ATP. Mitochondrial disorders are nearly synonymous with mitochondrial respiratory chain disorder, as respiratory chain complexes serve a central role in ATP biosynthesis. By next-generation sequencing of the exome, we analyzed 104 patients with mitochondrial respiratory chain disorders. The results of analysis to date were 18 patients with novel variants in genes previously reported to be disease-causing, and 27 patients with mutations in genes suggested to be associated in some way with mitochondria, and it is likely that they are new disease-causing genes in mitochondrial disorders. This article is part of a Special Issue entitled Frontiers of Mitochondrial Research.  相似文献   

20.
The diagnosis of mitochondrial disorders is difficult due to clinical and genetic heterogeneity. Measurements of mitochondrial respiratory chain (RC) enzyme activities are essential for both clinical diagnoses and many basic research questions. Current protocols for RC analysis are not standardized, and so are prone to inter-laboratory variability, and also to biochemical interferences that lead to analytical discrepancies. Moreover, knowledge of the analytical performances of these assays, which is essential to draw meaningful conclusions from the results, is lacking. To understand this variability and to propose possible solutions, we systematically investigated the effect of different homogenization protocols and chemical conditions on RC assays using muscle homogenates. We developed optimized protocols and a novel complex III method with improved sensitivity, precision, and linearity. These methods can be reliably performed on minute muscle samples with a single-wavelength spectrophotometer. Moreover, we measured the variability of the proposed homogenization protocol and we provide a systematic evaluation of each assay's specificity, precision, and linearity. These data will be useful for quality control in both clinical and research laboratories.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号