首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Alzheimer’s disease (AD) is defined both by its progressive cognitive deterioration and hallmark increase in neuronal Aβ plaque formation. However, many of the underlying neurobiological facets of this disease are still being elucidated. Previous research has demonstrated that production of neuronal hydrogen sulfide (H2S) is significantly decreased in patients with AD. Moreover, systemic plasma H2S levels are negatively correlated with its severity. However, how a decrease in H2S production might be correlated with either the etiology or pathophysiology of AD remains unknown. To better understand the role of H2S in AD, we examined both levels of H2S and the expression and activity H2S-synthesizing enzyme (cystathionine beta synthase or CBS) in an APP/PS1 transgenic mouse line at 3, 6, 9 and 12 months. After intraperitoneal (i.p.) administration of an H2S donor (NaHS) into APP/PS1 mice, application of exogenous H2S resulted in improved spatial learning and memory acquisition in APP/PS1 mice. H2S administration also led to significant decrease in extracellular levels of Aβ40 and Aβ42, the expression of BACE1 and PS1, and a significant increase of ADAM17 expression. Similarly, an increase in non-amyloidogenic C83 fragment generation and a decrease in amyloidogenic C99 fragment generation were also observed. Thus, NaHS application resulted in a shift from the plaque-forming beta pathway to the non-plaque forming alpha pathway of APP cleavage in 6 and 12 month APP/PS1 mice. These results indicate the importance of H2S to AD severity and that administration of exogenous H2S can promote a non-amyloidogenic processing of APP.  相似文献   

2.

Background

Crocetin, an agent derived from saffron, has multiple pharmacological properties, such as neuroprotective, anti-oxidant, and anti-inflammatory actions. These properties might benefit the treatment of Alzheimer’s disease (AD). In the present study, we tested whether crocetin attenuates inflammation and amyloid-β (Aβ) accumulation in APPsw transgenic mice, AD mouse models. Cell viability and the levels of Aβ40 and Aβ42 in HeLa cells stably transfected with Swedish mutant APP751 were evaluated. Mice with Swedish mutant APP751 transgene were used as transgenic mouse models of AD, and were orally administrated with crocetin. Aβ protein and inflammatory cytokines were measured with ELISA. NF-κB and P53 were measured with western blot assay. Learning and memory were analyzed with Morris water maze and novel object recognition tests.

Results

Crocetin significantly reduced Aβ40 and Aβ42 secretion in Hela cells without effecting cell viability. In AD transgenic mice, crocetin significantly reduced the pro-inflammatory cytokines and enhanced anti-inflammatory cytokine in plasma, suppressed NF-κB activation and P53 expression in the hippocampus, decreased Aβ in various brain areas, and improved learning and memory deficits.

Conclusion

Crocetin improves Aβ accumulation-induced learning and memory deficit in AD transgenic mice, probably due to its anti-inflammatory and anti-apoptotic functions.
  相似文献   

3.
Inflammation of the gastrointestinal tract increases the risk of developing colon cancer especially in younger adults. Dietary compounds are not only associated with the etiology of inflammation and colon cancer but also in their prevention. Sphingolipid metabolites have been shown to play a role in the initiation and perpetuation of inflammatory responses. In the present study, we investigated the suppression of dextran sodium sulfate-induced colitis and azoxymethane-induced colon cancer by dietary sphingomyelin (SM) in mice that lack functional peroxisome proliferator-activated receptor γ (PPAR-γ) in intestinal epithelial and immune cells. Dietary SM decreased disease activity and colonic inflammatory lesions in mice of both genotypes but more efficiently in mice expressing PPAR-γ. The increased survival and suppression of tumor formation in the SM-fed mice appeared to be independent of PPAR-γ expression in immune and epithelial cells. Using a real-time polymerase chain reaction array, we detected an up-regulation in genes involved in Th1 (interferon γ) and Th17 (interleukin [IL]-17 and IL-23) responses despite the reduced inflammation scores. However, the genes involved in Th2 (IL-4, IL-13 and IL-13ra2) and Treg (IL-10rb) anti-inflammatory responses were up-regulated in a PPAR-γ-dependent manner. In line with the PPAR-γ dependency of our in vivo findings, treatment of RAW macrophages with sphingosine increased the PPAR-γ reporter activity. In conclusion, dietary SM modulated inflammatory responses at the early stages of the disease by activating PPAR-γ, but its anticarcinogenic effects followed a PPAR-γ-independent pattern.  相似文献   

4.
Ola Philipson 《FEBS letters》2009,583(18):3021-1309
Intraneuronal punctate immunostaining in Alzheimer’s disease brain and amyloid-β precursor protein (APP) transgenic mice has been suggested to represent Aβ, but this is somewhat controversial. Here we show that both biochemical Aβ levels and intraneuronal immunostaining are reduced in APP transgenic mice when γ-secretase is inhibited. Moreover, BACE-1 deficient APP transgenic mice show neither Aβ production nor intraneuronal immunostaining. Our findings suggest that the punctate immunostaining with APP antibodies is due to Aβ that has accumulated inside neurons. Similar type of intraneuronal Aβ accumulation, which precedes senile plaque formation, may link Aβ to tauopathy and neurodegeneration in Alzheimer’s disease pathogenesis.  相似文献   

5.
6.
Xu W  Hou D  Jiang X  Lu Z  Guo T  Liu Y  Wang D  Zen K  Yu B  Zhang CY 《Journal of cellular physiology》2012,227(9):3243-3253
Heart failure is a major cause of death throughout the world. Hyperthyroidism has been shown to induce cardiac hypertrophy, which is a contributing factor to heart failure. However, the mechanism underling effect of thyroid hormone is not completely clear. The present study investigates the role of peroxisome proliferator-activated receptor (PPAR) γ coactivator-1α (PGC-1α) in cardiac hypertrophy induced by Triiodothyronine (T3). We investigated PGC-1α mRNA expression in rat hearts exposed to T3 in vivo and ex vivo. Surprisingly, we found that the extended periods of T3 treatment led to an increase in PGC-1α expression compared to shorter treatment times, which resulted in a reduction of PGC-1α expression. Mechanistic studies showed that suppression of PGC-1α by small interfering RNA in cardiomyocytes amplified the cellular hypertrophic response to T3 stimulation, whereas overexpression of PGC-1α was protective. Furthermore, we presented evidence to show that T3 decreased PGC-1α expression via p38 mitogen-activated protein kinases (MAPK) pathway. Our studies also revealed that overexpression of PGC-1α in cardiomyocytes inhibited basal and T3-induced p38 MAPK phosphorylation. These data indicate for the first time that PGC-1α plays protective role in T3-induced cardiac hypertrophy and that hypertrophic growth induced by T3 involves a regulatory pathway between PGC-1α and p38 MAPK.  相似文献   

7.
The peroxisome proliferator-activated receptor gamma (PPARγ or PPARG) belongs to the nuclear receptor superfamily, and is a potential drug target for a variety of diseases. In this work, we constructed a series of bacterial biosensors for the identification of functional PPARγ ligands. These sensors entail modified Escherichia coli cells carrying a four-domain fusion protein, comprised of the PPARγ ligand binding domain (LBD), an engineered mini-intein domain, the E. coli maltose binding protein (MBD), and a thymidylate synthase (TS) reporter enzyme. E. coli cells expressing this protein exhibit hormone ligand-dependent growth phenotypes. Unlike our published estrogen (ER) and thyroid receptor (TR) biosensors, the canonical PPARγ biosensor cells displayed pronounced growth in the absence of ligand. They were able to distinguish agonists and antagonists, however, even in the absence of agonist. To improve ligand sensitivity of this sensor, we attempted to engineer and optimize linker peptides flanking the PPARγ LBD insertion point. Truncation of the original linkers led to decreased basal growth and significantly enhanced ligand sensitivity of the PPARγ sensor, while substitution of the native linkers with optimized G(4)S (Gly-Gly-Gly-Gly-Ser) linkers further increased the sensitivity. Our studies demonstrate that the properties of linkers, especially the C-terminal linker, greatly influence the efficiency and fidelity of the allosteric signal induced by ligand binding. Our work also suggests an approach to increase allosteric behavior in this multidomain sensor protein, without modification of the functional LBD.  相似文献   

8.
9.
10.

Background

Preventing or reducing amyloid-beta (Aβ) accumulation in the brain is an important therapeutic strategy for Alzheimer’s disease (AD). Recent studies showed that the water channel aquaporin-4 (AQP4) mediates soluble Aβ clearance from the brain parenchyma along the paravascular pathway. However the direct evidence for roles of AQP4 in the pathophysiology of AD remains absent.

Results

Here, we reported that the deletion of AQP4 exacerbated cognitive deficits of 12-moth old APP/PS1 mice, with increases in Aβ accumulation, cerebral amyloid angiopathy and loss of synaptic protein and brain-derived neurotrophic factor in the hippocampus and cortex. Furthermore, AQP4 deficiency increased atrophy of astrocytes with significant decreases in interleukin-1 beta and nonsignficant decreases in interleukin-6 and tumor necrosis factor-alpha in hippocampal and cerebral samples.

Conclusions

These results suggest that AQP4 attenuates Aβ pathogenesis despite its potentially inflammatory side-effects, thus serving as a promising target for treating AD.
  相似文献   

11.
12.
13.
14.
Traumatic brain injury (TBI) is a major environmental risk factor for Alzheimer's disease. Intracellular accumulations of amyloid-β and tau proteins have been observed within hours following severe TBI in humans. Similar abnormalities have been recapitulated in young 3xTg-AD mice subjected to the controlled cortical impact model (CCI) of TBI and sacrificed at 24 h and 7 days post injury. This study investigated the temporal and anatomical distributions of amyloid-β and tau abnormalities from 1 h to 24 h post injury in the same model. Intra-axonal amyloid-β accumulation in the fimbria was detected as early as 1 hour and increased monotonically over 24 hours following injury. Tau immunoreactivity in the fimbria and amygdala had a biphasic time course with peaks at 1 hour and 24 hours, while tau immunoreactivity in the contralateral CA1 rose in a delayed fashion starting at 12 hours after injury. Furthermore, rapid intra-axonal amyloid-β accumulation was similarly observed post controlled cortical injury in APP/PS1 mice, another transgenic Alzheimer's disease mouse model. Acute increases in total and phospho-tau immunoreactivity were also evident in single transgenic Tau(P301L) mice subjected to controlled cortical injury. These data provide further evidence for the causal effects of moderately severe contusional TBI on acceleration of acute Alzheimer-related abnormalities and the independent relationship between amyloid-β and tau in this setting.  相似文献   

15.
16.
Obese white adipose tissue is hypoxic but is incapable of inducing compensatory angiogenesis. Brown adipose tissue is highly vascularized, facilitating delivery of nutrients to brown adipocytes for heat production. In this study, we investigated the mechanisms by which white and brown adipocytes respond to hypoxia. Brown adipocytes produced lower amounts of hypoxia-inducible factor 1α (HIF-1α) than white adipocytes in response to low O(2) but induced higher levels of hypoxia-associated genes. The response of white adipocytes to hypoxia required HIF-1α, but its presence alone was incapable of inducing target gene expression under normoxic conditions. In addition to the HIF-1α targets, hypoxia also induced many inflammatory genes. Exposure of white adipocytes to a peroxisome proliferator-activated receptor γ (PPARγ) ligand (troglitazone) attenuated induction of these genes but enhanced expression of the HIF-1α targets. Knockdown of PPARγ in mature white adipocytes prevented the usual robust induction of HIF-1α targets in response to hypoxia. Similarly, knockdown of PPARγ coactivator (PGC) 1β in PGC-1α-deficient brown adipocytes eliminated their response to hypoxia. These data demonstrate that the response of white adipocytes requires HIF-1α but also depends on PPARγ in white cells and the PPARγ cofactors PGC-1α and PGC-1β in brown cells.  相似文献   

17.
18.
19.
Peroxisome Proliferator-Activated Receptor γ (PPARγ) is a nuclear receptor important for glucose homeostasis and insulin sensitivity. The anti-diabetic drugs thiazolidinediones improve insulin sensitivity by blocking PPARγ phosphorylation at S273; however, their full agonism on PPARγ also causes significant unwanted side effects. The indole derivative UHC1 displays insulin-sensitizing effect by acting as a partial agonist through the inhibition of PPARγ S273 phosphorylation, but without full agonist-associated side effects; however, its potency leaves much to be desired. Herein we report the design and synthesis of potent indole analogs as partial PPARγ agonists via the structure-activity relationship studies. Our studies revealed that vanillylamine and piperonyl benzylamine at Site 1 are favored to bind PPARγ with either biphenyl or 3-trifluoromethyl benzyl group at Site 2. In particular, compound WO91A with vanillylamine at Site 1 displays highly potent PPARγ binding affinity (IC50 = 16.7 nM), over 30-fold more potent than the parental compound UHC1, yet with less side effect-associated transactivation activity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号