首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Targeting of oncogenic Kras to the pancreatic Nestin-expressing embryonic progenitor cells and subsequently to the adult acinar compartment and Nestin-expressing cells is sufficient for the development of low grade pancreatic intraepithelial neoplasia (PanIN) between 2 and 4 months. The mice die around 6 month-old of unrelated causes, and it is therefore not possible to assess whether the lesions will progress to carcinoma. We now report that two brief episodes of caerulein-induced acute pancreatitis in 2 month-old mice causes rapid PanIN progression and pancreatic ductal adenocarcinoma (PDAC) development by 4 months of age. These events occur with similar frequency as observed in animals where the oncogene is targeted during embryogenesis to all pancreatic cell types. Thus, these data show that oncogenic Kras-driven PanIN originating in a non-ductal compartment can rapidly progress to PDAC when subjected to a brief inflammatory insult.  相似文献   

2.
Individuals with Down syndrome exhibit remarkably reduced incidence of most solid tumors including pancreatic cancer. Multiple mechanisms arising from the genetic complexity underlying Down syndrome has been suggested to contribute to such a broad cancer protection. In this study, utilizing a genetically engineered mouse model of pancreatic cancer, we demonstrate that trisomy of the Down syndrome critical region-1 (Dscr1), an endogenous calcineurin inhibitor localized on chromosome 21, suppresses the progression of pancreatic intraepithelial neoplasia-1A (PanIN-1A) to PanIN-1B lesions without affecting the initiation of PanIN lesions mediated by oncogenic KrasG12D. In addition, we show that Dscr1 trisomy attenuates nuclear localization of nuclear factor of activated T-cells (NFAT) accompanied by upregulation of the p15Ink4b tumor suppressor and reduction of cell proliferation in early PanIN lesions. Our data suggest that attenuation of calcineurin–NFAT signaling in neoplastic pancreatic ductal epithelium by a single extra copy of Dscr1 is sufficient to inhibit the progression of early PanIN lesions driven by oncogenic Kras, and thus may be a potential mechanism underlying reduced incidence of pancreatic cancer in Down syndrome individuals.  相似文献   

3.
4.
Oncogenic RAS is a critical driver for the initiation and progression of several types of cancers. However, effective therapeutic strategies by targeting RAS, in particular RASG12D and RASG12V, and associated downstream pathways have been so far unsuccessful. Treatment of oncogenic RAS-ravaged cancer patients remains a currently unmet clinical need. Consistent with a major role in cancer metabolism, oncogenic RAS activation elevates both reactive oxygen species (ROS)-generating NADPH oxidase (NOX) activity and ROS-scavenging glutathione biosynthesis. At a certain threshold, the heightened oxidative stress and antioxidant capability achieve a higher level of redox balance, on which cancer cells depend to gain a selective advantage on survival and proliferation. However, this prominent metabolic feature may irrevocably render cancer cells vulnerable to concurrent inhibition of both NOX activity and glutathione biosynthesis, which may be exploited as a novel therapeutic strategy. In this report, we test this hypothesis by treating the HRASG12V-transformed ovarian epithelial cells, mutant KRAS-harboring pancreatic and colon cancer cells of mouse and human origins, as well as cancer xenografts, with diphenyleneiodonium (DPI) and buthionine sulfoximine (BSO) combination, which inhibit NOX activity and glutathione biosynthesis, respectively. Our results demonstrate that concomitant targeting of NOX and glutathione biosynthesis induces a highly potent lethality to cancer cells harboring oncogenic RAS. Therefore, our studies provide a novel strategy against RAS-bearing cancers that warrants further mechanistic and translational investigation.Subject terms: Chemotherapy, Oncogenes  相似文献   

5.
6.
Acidosis commonly observed in solid tumors like pancreatic cancer promotes genetic instability and selection of a more malignant phenotype of cancer cells. Overexpression or activation of integral membrane proteins mediating H+ efflux may contribute to extracellular acidification. Neurotensin (NT) induces intracellular alkalinization and stimulates interleukin-8 production in pancreatic cancer cells and, as demonstrated here, the stable NT analog Lys8-ψ-Lys9NT(8-13) enhances the amiloride-sensitive, Na+-dependent transmembrane H+ flux by a factor of 2.05 ± 0.28 and 2.69 ± 0.07 in BxPC-3 and PANC-1 pancreatic cancer cells, respectively, by phosphorylation of the Na+/H+ exchanger 1 (NHE1). Human genome-wide gene expression analysis was performed to detect effects of Lys8-ψ-Lys9NT(8-13) on BxPC-3 cells. Results indicated upregulation of genes involved in regulation of NHE1, hypoxic response and glycolysis in response to Lys8-ψ-Lys9NT(8-13) even under normoxic conditions. Therefore, our findings suggest that growth factors like NT may be implicated in the early progression of pancreatic cancer by localized acidification and induction of an aerobic glycolytic phenotype with higher metastatic potential in small cell aggregates.  相似文献   

7.
The genetic landscape of pancreatic cancer shows nearly ubiquitous mutations of K-RAS. However, oncogenic K-Rasmt alone is not sufficient to lead to pancreatic ductal adenocarcinoma (PDAC) in either human or in genetically modified adult mouse models. Many stimulants, such as high fat diet, CCK, LPS, PGE2 and others, have physiological effects at low concentrations that are mediated in part through modest increases in K-Ras activity. However, at high concentrations, they induce inflammation that, in the presence of oncogenic K-Ras expression, substantially accelerates PDAC formation. The mechanism involves increased activity of oncogenic K-Rasmt. Unlike what has been proposed in the standard paradigm for the role of Ras in oncogenesis, oncogenic K-Rasmt is now known to not be constitutively active. Rather, it can be activated by standard mechanisms similar to wild-type K-Ras, but its activity is sustained for a prolonged period. Furthermore, if the level of K-Ras activity exceeds a threshold at which it begins to generate its own activators, then a feed-forward loop is formed between K-Ras activity and inflammation and pathological processes including oncogenesis are initiated. Oncogenic K-Rasmt activation, a key event in PDAC initiation and development, is subject to complex regulatory mechanisms. Reagents which inhibit inflammation, such as the Cox2 inhibitor celecoxib, block the feed-forward loop and prevent induction of PDAC in models with endogenous oncogenic K-Rasmt. Increased understanding of the role of activating and inhibitory mechanisms on oncogenic K-Rasmt activity is of paramount importance for the development of preventive and therapeutic strategies to fight against this lethal disease.  相似文献   

8.
9.
BACKGROUND: Pancreatic cancer is characterized initially by non-specific abdominal symptoms followed by rapid tumor progression. Although chronic pancreatitis is a benign disorder, it can be one of the causative factors of pancreatic cancer. The level of the tumor marker carbohydrate antigen 19-9 (CA 19-9) in pancreatic cancer does not correlate with the stage of the neoplasm. Soluble interleukin 2 receptor (sIL-2R) is a cytokine that shows increased levels during some inflammatory processes and malignant disorders. AIM: Our aim in this study was to investigate whether sIL-2Ralpha levels can be used in association with CA 19-9 in the early diagnosis of pancreatic cancer and chronic pancreatitis. PATIENTS: Serum samples were obtained from the blood of 21 pancreatic cancer patients without distant metastasis who were deemed inoperable, 16 chronic pancreatitis patients and 20 normal volunteers. RESULTS: We did not find any significant differences in CA 19-9 levels between normal controls and patients with chronic pancreatitis. There was a significant difference in the levels between the control group and the pancreatic cancer group (p = 0.003) and between patients with chronic pancreatitis and those with pancreatic cancer (p = 0.004). Although there was no significant difference in sIL-2Ralpha levels between the control group and the patient groups, we found a slight correlation between sIL-2Ralpha and CA 19-9 levels in the pancreatic cancer group (p = 0.003, r = 0.623) and a more marked correlation in the chronic pancreatitis group (p < 0.01, r = 0.751). CONCLUSION: According to our results, sIL-2Ralpha alone is not a good candidate marker in the diagnosis of pancreatic cancer; it can, however, be used in association with CA 19-9 for this purpose.  相似文献   

10.
Hereditary chronic pancreatitis (HCP) is a very rare form of early onset chronic pancreatitis. With the exception of the young age at diagnosis and a slower progression, the clinical course, morphological features and laboratory findings of HCP do not differ from those of patients with alcoholic chronic pancreatitis. As well, diagnostic criteria and treatment of HCP resemble that of chronic pancreatitis of other causes. The clinical presentation is highly variable and includes chronic abdominal pain, impairment of endocrine and exocrine pancreatic function, nausea and vomiting, maldigestion, diabetes, pseudocysts, bile duct and duodenal obstruction, and rarely pancreatic cancer. Fortunately, most patients have a mild disease. Mutations in the PRSS1 gene, encoding cationic trypsinogen, play a causative role in chronic pancreatitis. It has been shown that the PRSS1 mutations increase autocatalytic conversion of trypsinogen to active trypsin, and thus probably cause premature, intrapancreatic trypsinogen activation disturbing the intrapancreatic balance of proteases and their inhibitors. Other genes, such as the anionic trypsinogen (PRSS2), the serine protease inhibitor, Kazal type 1 (SPINK1) and the cystic fibrosis transmembrane conductance regulator (CFTR) have been found to be associated with chronic pancreatitis (idiopathic and hereditary) as well. Genetic testing should only be performed in carefully selected patients by direct DNA sequencing and antenatal diagnosis should not be encouraged. Treatment focuses on enzyme and nutritional supplementation, pain management, pancreatic diabetes, and local organ complications, such as pseudocysts, bile duct or duodenal obstruction. The disease course and prognosis of patients with HCP is unpredictable. Pancreatic cancer risk is elevated. Therefore, HCP patients should strongly avoid environmental risk factors for pancreatic cancer.  相似文献   

11.
This study highlights the highly dynamic nature of SULF1/SULF2 splice variants in different human pancreatic cancers that regulate the activities of multiple cell signalling pathways in development and disease. Most pancreatic tumours expressed variable levels of both SULF1 and SULF2 variants including some expression during inflammation and pancreatitis. Many ductal and centro-acinar cell-derived pancreatic tumours are known to evolve into lethal pancreatic ductal adenocarcinomas but the present study also detected different stages of such tumour progression in the same tissue biopsies of not only acinar cell origin but also islet cell-derived cancers. The examination of caerulein-induced pancreatic injury and tumorigenesis in a Kras-driven mouse model confirmed the activation and gradual increase of SULF1/SULF2 variants during pancreatitis and tumorigenesis but with reduced levels in Stat3 conditional knockout mice with reduced inflammation. The significance of differential spatial and temporal patterns of specific SULF1/SULF2 splice variant expression during cancer growth became further apparent from their differential stimulatory or inhibitory effects on growth factor activities, tumour growth and angiogenesis not only during in vitro but also in vivo growth thus providing possible novel therapeutic targets.  相似文献   

12.
Pancreatic inflammation appears to increase the risk of pancreatic cancer. This observation is striking in the hereditary pancreatitis kindreds but also occurs in alcoholic, idiopathic, and tropical chronic pancreatitis and cystic fibrosis. However, the mutations associated with hereditary pancreatitis or cystic fibrosis are not found in sporadic pancreatic adenocarcinomas, suggesting that the effects are indirect by causing recurrent pancreatitis and chronic inflammation. The process of mutation accumulation and clonal expansion that is required for development of invasive pancreatic adenocarcinoma must therefore be accelerated in chronic pancreatitis to account for the high incidence of pancreatic cancer in these patients.  相似文献   

13.
Most attacks of acute pancreatitis are self-limiting, suggesting that the pancreatic cells adapt their phenotype to prevent progression of the disease. Such phenotypic change must involve a coordinated modification in the expression of numerous genes. To identify differentially expressed genes, high-density mouse cDNA microarrays were hybridized with cDNA probes from both healthy pancreas and pancreas affected by acute pancreatitis. From the 7981 mouse genes analyzed, 239 showed significant changes in their expression during the acute phase of pancreatitis. Among them, 107 genes were up-regulated whereas 132 were down-regulated. They include genes whose function was not previously related to pancreatitis, suggesting that they are involved in some way into the acute pancreatic response. Finally, 40% of differentially expressed genes corresponded to ESTs. Demonstration that a large quantity of unexpected or yet uncharacterized genes showed altered expression during acute pancreatitis underscores the interest of a genome-based investigation. Some of these genes are certainly involved in the cellular defense against pancreatitis and, as such, deserve being studied further.  相似文献   

14.
15.
16.
Excessive alcohol consumption is associated with most cases of chronic pancreatitis, a progressive necrotizing inflammatory disease that can result in pancreatic insufficiency due to acinar atrophy and fibrosis and an increased risk of pancreatic cancer. At a cellular level acute alcohol exposure can sensitize pancreatic acinar cells to secretagogue stimulation, resulting in dysregulation of intracellular Ca2+ homeostasis and premature digestive enzyme activation; however, the molecular mechanisms by which ethanol exerts these toxic effects have remained undefined. In this study we identify Raf-1 kinase inhibitory protein as an essential mediator of ethanol-induced sensitization of cholecystokinin- and carbachol-regulated Ca2+ signaling in pancreatic acinar cells. We show that exposure of rodent acinar cells to ethanol induces protein kinase C-dependent Raf-1 kinase inhibitory protein phosphorylation, sensitization of cholecystokinin-stimulated Ca2+ signaling, and potentiation of both basal and cholecystokinin-stimulated extracellular signal-regulated kinase activation. Furthermore, we show that either suppression of Raf-1 kinase inhibitory protein expression using short hairpin RNA or gene ablation prevented the sensitizing effects of ethanol on cholecystokinin- and carbachol-stimulated Ca2+ signaling and intracellular chymotrypsin activation in pancreatic acinar cells, suggesting that the modulation of Raf-1 inhibitory protein expression may have future therapeutic utility in the prevention or treatment of alcohol-associated pancreatitis.  相似文献   

17.
Aberrant activation of MAP kinase signaling pathway and loss of tumor suppressor LKB1 have been implicated in lung cancer development and progression. Although oncogenic KRAS mutations are frequent, BRAF mutations (BRAFV600E) are found in 3% of human non-small cell lung cancers. Contrary to KRAS mutant tumors, BRAFV600E-induced tumors are benign adenomas that fail to progess. Interestingly, loss of tumor supressor LKB1 coexists with KRAS oncogenic mutations and synergizes in tumor formation and progression, however, its cooperation with BRAFV600E oncogene is unknown. Our results describe a lung cell population in neonates mice where expression of BRAFV600E leads to lung adenoma development. Importantly, expression of BRAFV600E concomitant with the loss of only a single-copy of Lkb1, overcomes senencence–like features of BRAFV600E-mutant adenomas leading malignization to carcinomas. These results posit LKB1 haploinsufficiency as a risk factor for tumor progression of BRAFV600E mutated lung adenomas in human cancer patients.  相似文献   

18.
Ductal epithelial cells of the exocrine pancreas secrete HCO3 rich, alkaline pancreatic juice, which maintains the intraluminal pH and washes the digestive enzymes out from the ductal system. Importantly, damage of this secretory process can lead to pancreatic diseases such as acute and chronic pancreatitis. Intracellular Ca2+ signaling plays a central role in the physiological regulation of HCO3 secretion, however uncontrolled Ca2+ release can lead to intracellular Ca2+ overload and toxicity, including mitochondrial damage and impaired ATP production. Recent findings suggest that the most common pathogenic factors leading to acute pancreatitis, such as bile acids, or ethanol and ethanol metabolites can evoke different types of intracellular Ca2+ signals, which can stimulate or inhibit ductal HCO3 secretion. Therefore, understanding the intracellular Ca2+ pathways and the mechanisms which can switch a good signal to a bad signal in pancreatic ductal epithelial cells are crucially important. This review summarizes the variety of Ca2+ signals both in physiological and pathophysiological aspects and highlight molecular targets which may strengthen our old friend or release our nasty enemy.  相似文献   

19.
Exosomes are small extracellular membrane vesicles important in intercellular communication, with their oncogenic cargo attributed to tumor progression and pre‐metastatic niche formation. To gain an insight into key differences in oncogenic composition of exosomes, human non‐malignant epithelial and pancreatic cancer cell models and purified and characterized resultant exosome populations are utilized. Proteomic analysis reveals the selective enrichment of known exosome markers and signaling proteins in comparison to parental cells. Importantly, valuable insights into oncogenic exosomes (362 unique proteins in comparison to non‐malignant exosomes) of key metastatic regulatory factors and signaling molecules fundamental to pancreatic cancer progression (KRAS, CD44, EGFR) are provided. It is reported that oncogenic exosomes contain factors known to regulate the pre‐metastatic niche (S100A4, F3, ITGβ5, ANXA1), clinically‐relevant proteins which correlate with poor prognosis (CLDN1, MUC1) as well as protein networks involved in various cancer hallmarks including proliferation (CLU, CAV1), invasion (PODXL, ITGA3), metastasis (LAMP1, ST14) and immune surveillance escape (B2M). The presence of these factors in oncogenic exosomes offers an understanding of select differences in exosome composition during tumorigenesis, potential components as prognostic and diagnostic biomarkers in pancreatic cancer, and highlights the role of exosomes in mediating crosstalk between tumor and stromal cells.  相似文献   

20.
Pancreatic cancer is a challenging disease for patients, doctors and researchers who for decades have searched for a cure for this deadly malignancy. Although existing mouse models of pancreatic cancer have shed light on the mechanistic basis of the neoplastic conversion of the pancreas, their impact in terms of offering new diagnostics and therapeutic modalities remains limited. Chronic pancreatitis is an inflammatory disease of the pancreas that is associated with a gradual damage of the organ and an increased risk of developing neoplastic lesions. In this review, we propose that detailed studies of chronic inflammatory processes in the pancreas will provide insights into the evolution of pancreatic cancer. This information may prove useful in the design of effective therapeutic strategies to battle the disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号