首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DJ-1 is a multifunctional protein that has been implicated in pathogenesis of some solid tumors. In this study, we found that DJ-1 was overexpressed in acute leukemia (AL) patient samples and leukemia cell lines, which gave the first clue that DJ-1 overexpression might be involved in leukemogenesis and/or disease progression of AL. Inactivation of DJ-1 by RNA-mediated interference (RNAi) in leukemia cell lines K562 and HL60 resulted in inhibition of the proliferation potential and enhancement of the sensitivity of leukemia cells to chemotherapeutic drug etoposide. Further investigation of DJ-1 activity revealed that phosphatase and tensin homolog (PTEN), as well as some proliferation and apoptosis-related genes, was regulated by DJ-1. Thus, DJ-1 might be involved in leukemogesis through regulating cell growth, proliferation, and apoptosis. It could be a potential therapeutic target for leukemia.  相似文献   

2.
3.
Telomerase is an important ribonucleoprotein enzyme involved in cellular proliferation and senescence. Activation of telomerase has been detected in a vast majority of human cancer cells. In this article, we demonstrated that Interleukin-2 (IL-2) which is the pivotal cytokine in the immune system could stimulate the activity of telomerase in the cultured BA/F3beta cells. It was also found that the level of IL-2-induced telomerase activity was decreased by the treatment with chemical oxidant in vitro. Since IL-2 stimulation produces a oxidative shift of the intracellular environment, the activation and maintenance of telomerase in this oxidative circumstance requires particular protection. Here we proved the redox factor-1 (Ref-1) protein was involved in this process. The addition of GST-Ref-1 protein increased the level of IL-2-induced telomerase activity in the TRAP assay, while elimination of the endogenous Ref-1 protein by immunodepletion decreased it. Consistent with these in vitro results, IL-2-induced telomerase activity could be enhanced by transient overexpression of Ref-1 protein in BA/F3beta cells. Taken together, these findings proved that Ref-1 protein benefits the activation of telomerase activity in the oxidative microenvironment of the BA/F3beta cells stimulated by IL-2.  相似文献   

4.
PI3K/Akt and ERK pathways are important for growth and proliferation of many types of cancers. Therefore, PI3K inhibitor LY294002 (LY) and MEK1/2 inhibitor PD98059 (PD) are used to sensitize many types of cancer cell lines to chemotherapeutic agents, where AKT and ERK pathways are over activated. However, in this study, we show for the first time that PD could protect the leukemia cells independent of ERK pathway inhibition, besides, we also report a detailed mechanism for antiapoptotic effect of LY in HL-60 cells against the cytotoxicity induced by a boswellic acid analog BA145. Apoptosis induced by BA145 is accompanied by downregulation of PI3K/Akt and ERK pathways in human myelogenous leukemia HL-60 cells, having activating N-Ras mutation. Both LY and PD protected the cells against mitochondrial stress caused by BA145, and reduced the release of cytochrome c and consequent activation of caspase-9. LY and PD also diminished the activation of caspase-8 without affecting the death receptors. Besides, LY and PD also reversed the caspase dependent DNA damage induced by BA145. Further studies revealed that LY and PD significantly reversed the inhibitory effect of BA145 on cell cycle regulatory proteins by upregulating hyperphosphorylated retinoblastoma, pRB (S795) and downregulating p21 and cyclin E. More importantly, all these events were reversed by caspase inhibition by Z-VAD-fmk, suggesting that both LY and PD act at the level of caspases to diminish the apoptosis induced by BA145. These results indicate that inhibitors of PI3K/Akt and ERK pathways can play dual role and act against chemotherapeutic agents.  相似文献   

5.
The stem cell factor receptor/c-Kit plays an important physiological role in hematopoiesis, melanogenesis, and gametogenesis. It has also been implicated in numerous human malignancies. Signal transduction pathways shown to be of importance for c-Kit-mediated transformation include the phosphoinositide 3-kinase (PI3K)/Akt pathway. We have previously shown that two alternative splice forms of c-Kit, denoted GNNK(-) and GNNK(+), mediate distinctively different signals. In this study, we found that in the hematopoietic cell line Ba/F3, GNNK(-) c-Kit mediates a substantially stronger activation of PI3K/Akt than GNNK(+) c-Kit. This difference in signaling was shown to be dependent on the association of the scaffolding protein Gab2 with c-Kit, and Src-mediated phosphorylation of Gab2 was shown to be to be independent of the direct association of PI3K with c-Kit. Furthermore, proliferation and survival of Ba/F3 cells expressing a mutant of c-Kit that fails to bind to PI3K directly were slightly decreased compared with wild-type c-Kit-expressing cells. Using small interfering RNA technology, we further verified a role of Gab2 in inducing activation of PI3K/Akt downstream of c-Kit. To summarize, we show that PI3K activation by c-Kit is both splice form-dependent and cell type-specific. Furthermore, activation of PI3K by c-Kit is dependent both on the direct PI3K-binding site in c-Kit and on the phosphorylation of Gab2. The fact that c-Kit has been found mutated in numerous human malignancies, including acute myeloid leukemia, and that Gab2 is often overexpressed in acute myeloid leukemia suggests a potential role of Gab2-mediated PI3K activation in transformation.  相似文献   

6.
Stable ectopic expression of Flt3 receptor tyrosine kinase is usually performed in interleukin 3 (IL-3)-dependent murine cell lines like Ba/F3, resulting in loss of IL-3 dependence. Such high-level Flt3 expression has to date not been reported in human acute myeloid leukemia (AML) cell lines, despite the fact that oncogenic Flt3 aberrancies are frequent in AML patients. We show here that ectopic Flt3 expression in different human cancer cell lines might reduce proliferation and induce apoptotic cell death, involving Bax/Bcl2 modulation. Selective depletion of Flt3-expressing cells occurred in human AML cell lines transduced with retroviral Flt3 constructs, shown here using the HL-60 leukemic cell line. Flt3 expression was investigated in two cellular model systems, the SAOS-2 osteosarcoma cell line and the human embryonic kidney HEK293 cell line, and proliferation was reduced in both systems. HEK293 cells underwent apoptosis upon ectopic Flt3 expression and cell death could be rescued by overexpression of Bcl-2. Furthermore, we observed that the Flt3-induced inhibition of proliferation in HL-60 cells appeared to be Bax-dependent. Our results thus suggest that excessive Flt3 expression has growth-suppressive properties in several human cancer cell lines.  相似文献   

7.
8.
The Fms-like tyrosine kinase 3 (FLT3), a receptor tyrosine kinase, is involved in the proliferation, differentiation and apoptosis of hematopoietic cells. FLT3 is highly overexpressed in acute myeloid leukemia (AML) of the majority of patients. Screening for flavonoids including flavones, flavanones, flavonols, and flavanonols disclosed that luteolin was potent FLT3 enzyme inhibitor. Furthermore, luteolin suppressed cell proliferation in MV4;11 cells with constitutively activated FLT3.  相似文献   

9.
Xu Z  Zheng Y  Zhu Y  Kong X  Hu L 《PloS one》2011,6(1):e14514
Deubiquitinating enzymes (DUBs) are important regulators of cell proliferation. Here we identified a functional deubiquitinating enzyme, ovarian tumor domain-containing 6B (OTUD-6B). Mutation of the conserved Cys residue abolished its deubiquitinating activity in vitro. Otud-6b expression was induced with cytokine stimulation in both mouse Ba/F3 cells and primary B lymphocytes followed a rapid decrease. This rapid decrease was partially facilitated by tristetraprolin (TTP) destabilization of Otud-6b mRNA through AU-rich motifs. Enforced expression of OTUD-6B in Ba/F3 cells could block cell proliferation by arresting cells in G1 phase. In addition, cyclin D2 level was down-regulated when OTUD-6B WT was overexpressed. Therefore, down-regulation of Otud-6b expression after prolonged cytokine stimulation may be required for cell proliferation in B lymphocytes.  相似文献   

10.
Although the kinase receptor TrkA may play an important role in acute myeloid leukemia (AML), its involvement in other types of leukemia has not been reported. Furthermore, how it contributes to leukemogenesis is unknown. Here, we describe a molecular network that is important for TrkA function in leukemogenesis. We found that TrkA is frequently overexpressed in other types of leukemia such as acute lymphoblastic leukemia (ALL), chronic myelogenous leukemia (CML), and myelodysplastic syndrome (MDS) including AML. In addition, TrkA was overexpressed in patients with MDS or secondary AML evolving from MDS. TrkA induced significant hematological malignancies by inducing PLK-1 and Twist-1, and enhanced survival and proliferation of leukemia, which was correlated with activation of the phosphatidylinositol 3-kinase/Akt/mTOR pathway. Moreover, endogenous TrkA associated with c-Src complexes was detected in leukemia. Suppression of c-Src activation by TrkA resulted in markedly decreased expression of PLK-1 and Twist-1 via suppressed activation of Akt/mTOR cascades. These data suggest that TrkA plays a key role in leukemogenesis and reveal an unexpected physiological role for TrkA in the pathogenesis of leukemia. These data have important implications for understanding various hematological malignancies.  相似文献   

11.
The resistance of malignant cells to chemotherapy calls for the development of novel anti‐cancer drugs. TNF‐related apoptosis‐inducing ligand (TRAIL) is a pro‐apoptotic cytokine, which selectively induces apoptosis in malignant cells. We derived two TRAIL‐resistant HL‐60 subclones, HL‐60/P1 and HL‐60/P2, from a TRAIL‐sensitive HL‐60 acute promyelocytic leukemia cell line. To identify therapeutically exploitable “weaknesses” of the TRAIL‐resistant leukemia cells that could be used as molecular targets for their elimination, we performed proteomic (2‐DE) analysis and compared both TRAIL‐resistant subclones with the original TRAIL‐sensitive HL‐60 cells. We identified over 40 differentially expressed proteins. To significantly narrow the lists of candidate proteins, we excluded proteins that are known to be often differentially expressed, regardless of experiment type and tissue (the so‐called “TOP15” proteins). Decreased expression of DNA replication and maintenance proteins MCM7 and RPA32 in HL‐60/P1 cells, and the marked down‐regulation of enzyme adenosine deaminase in HL‐60/P2 cells, suggests increased sensitivity of these cells to DNA‐interfering drugs, and adenosine and its homologues, respectively. In a series of in vitro assays, we confirmed the increased toxicity of etoposide and cisplatin to TRAIL resistant HL‐60/P1 cells, and adenosine and vidarabine to HL‐60/P2, compared with TRAIL‐sensitive HL‐60 cells.  相似文献   

12.
5-Lipoxygenase activating protein (FLAP) functions as a facilitator of 5-lipoxygenase (5-LOX) activity. However, on the basis of the induction of apoptosis by the FLAP inhibitor MK886 in cells lacking 5-LOX, it is possible that this fatty acid-binding protein has other activities. This study was designed to examine potential roles of FLAP in apoptosis and cell proliferation. Overexpression of FLAP protein (2.2-fold) was achieved by stable transfection of IL-3-dependent murine prolymphoid progenitor cells (FL5.12) with a construct expressing the cDNA under a CMV promoter. The overexpressed protein was localized to nuclear membranes as with endogenous FLAP. The initial growth rate of FLAP-transfected cells was greater than that of control cells. After 48 h, when cell density had increased, the growth rate of FLAP-transfected cells declined substantially and there and there was a decrease in viability relative to control transfected cells. The FLAP-transfected cells were also more susceptible to withdrawal of IL-3 than were control cells. There was, however, no difference between FLAP and control cells in their susceptibility to MK886, NDGA, or etoposide during the log growth phase. Overexpression of FLAP did not alter Bcl-xL protein expression, but did decrease Bax protein and somewhat increased COX-1 and COX-2 mRNA levels. The failure of increased FLAP to alter susceptibility to MK886 provides further support to the concept that this agent induces apoptosis by mechanisms unrelated to FLAP. The data also suggest that FLAP can affect cell proliferation.  相似文献   

13.
Hatchi E  Rodier G  Sardet C  Le Cam L 《Autophagy》2011,7(12):1566-1567
The multifunctional E4F1 protein was originally identified as a cellular target of the E1A adenoviral oncoprotein. Although E4F1 is implicated in several key oncogenic pathways, its roles in tumorigenesis remain unclear. Using a genetically engineered mouse model of myeloid leukemia (histiocytic sarcomas, HS) based on the genetic inactivation of the tumor suppressor Ink4a/Arf locus, we have recently unraveled an unsuspected function of E4F1 in the survival of leukemic cells. In vivo, genetic ablation of E4F1 in established myeloid tumors results in tumor regression. E4F1 inactivation results in a cascade of alterations originating from dysfunctional mitochondria that induce increased reactive oxygen species (ROS) levels and ends in massive autophagic cell death in HS transformed, but not normal myeloid cells. E4F1 depletion also induces cell death in various human myeloid leukemic cell lines, including acute myeloid leukemic (AML) cell lines. Interestingly, the E4F1 protein is overexpressed in a large proportion of human AML samples. These data provide new insights into E4F1-associated survival functions implicated in tumorigenesis and could open the path for new therapeutic strategies.  相似文献   

14.
15.
Lasting B cell persistence depends on survival signals that are transduced by cell surface receptors. In this study, we describe a novel biological mechanism essential for survival and homeostasis of normal peripheral mature B cells and chronic lymphocytic leukemia cells, regulated by the heparin-binding cytokine, midkine (MK), and its proteoglycan receptor, the receptor-type tyrosine phosphatase ζ (RPTPζ). We demonstrate that MK initiates a signaling cascade leading to B cell survival by binding to RPTPζ. In mice lacking PTPRZ, the proportion and number of the mature B cell population are reduced. Our results emphasize a unique and critical function for MK signaling in the previously described MIF/CD74-induced survival pathway. Stimulation of CD74 with MIF leads to c-Met activation, resulting in elevation of MK expression in both normal mouse splenic B and chronic lymphocytic leukemia cells. Our results indicate that MK and RPTPζ are important regulators of the B cell repertoire. These findings could pave the way toward understanding the mechanisms shaping B cell survival and suggest novel therapeutic strategies based on the blockade of the MK/RPTPζ-dependent survival pathway.  相似文献   

16.
17.
18.
19.
The extracellular-regulated kinase (ERK) 4 (MAPK4) and ERK3 (MAPK6) are structurally related atypical MAPKs displaying major differences only in the C-terminal extension. ERK3 is known as an unstable mostly cytoplasmic protein that binds, translocates, and activates the MAPK-activated protein kinase (MK) 5. Here we have investigated the stability and expression of ERK4 and have analyzed its ability to bind, translocate, and activate MK5. We show that, in contrast to ERK3, ERK4 is a stable protein that binds to endogenous MK5. Interaction of ERK4 with MK5 leads to translocation of MK5 to the cytoplasm and to its activation by phosphorylation. In transfected HEK293 cells, where overexpressed catalytically dead ERK3 is able to activate MK5, catalytic activity of ERK4 is necessary for activation of MK5, indicating that ERK4 directly phosphorylates MK5. Interestingly, ERK4 dimerizes and/or oligomerizes with ERK3, suggesting that overexpressed inactive ERK3 recruits active endogenous ERK4 to MK5 for its activation. Hence, ERK3 and ERK4 cooperate in activation of MK5.  相似文献   

20.
Kidney mainly arises from the induction of metanephric mesenchymal cells (MM cells) and the ureteric bud (UB). Transmembrane protein-100 (Tmem100) consists of two transmembrane regions with strong temporal and spatial expression characteristics during renal development. However, the function of Tmem100 in mouse embryonic kidney-derived cells remained unclear. We provided qPCR to verify the relationship between Tmem100 and the BMP signal pathway. To clarify the role of Tmem100 in cell proliferation and apoptosis, we carry out EdU incorporation, annexin V- fluorescein isothiocyanate (FITC) apoptosis assay. Here, we find that the knockdown of Tmem100 increases the proliferation and apoptosis of mouse embryonic kidney-derived cells, and this promotion can be inhibited by knockdown of BMP7 at the same time; these results suggest that BMP7 plays a crucial role in Tmem100-regulated cell proliferation and apoptosis. qRT-PCR results further demonstrate that the deficiency of Tmem100 leads to BMP7 upregulation and overexpression could get opposite results. In BMP7-depleted MK3 cells, Tmem100 is highly upregulated and BMPR-II is downregulated. And in BMP7-overexpressed MK3 cells, the expression of Tmem100 is decreased. In BMPR-II-depleted MK3 cells, Tmem100 is downregulated and BMP7 expression remains still. These findings indicate that both BMP7 and BMPR-II can regulate Tmem100 and vice versa, and BMPR-II expression is regulated by BMP7. However, BMP7 has no association with BMPR-II in MK3 cells. Our data demonstrated the significant role of BMP7 in Tmem100-regulated cell proliferation and apoptosis and revealed the complicated regulation network among Tmem100, BMP7, and BMPR-II in mouse embryonic kidney-derived cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号