首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
A selective p38 MAP kinase (p38 MAPK) inhibitor, SB202190, induced apoptotic cell death of a macrophage-like cell line, J774.1, in the presence of lipopolysaccharide (LPS), as judged by DNA nicks revealed by terminal deoxy transferase (TdT)-mediated dUTP nick end labeling (TUNEL), activation of caspase-3, and subsequent release of lactate dehydrogenase. This cytotoxicity was dependent on both LPS and SB202190, and such inhibitors of the upstream LPS-signaling cascade as polymyxin B and TPCK blocked this macrophage cell death. SB202190 suppressed the kinase activity of p38, leading to inhibition of activation of MAPKAPK2 and then the subsequent phosphorylation of hsp27 in LPS-treated macrophages both in vitro and in vivo, but an inactive analog of SB202190, SB202474, did not. There was a threshold of the time of addition of SB202190 to LPS-treated macrophages to induce apoptosis, which was before full transmission of p38 activity to a direct downstream kinase, MAPKAPK2. Besides, localization of phosphorylated hsp27 in Golgi area of the LPS-treated macrophages was suppressed by SB202190, while it was not by SB202474. These results suggest that selective inhibition of p38 MAPK activity in LPS-induced MAP kinase cascade leads to apoptosis of macrophages.  相似文献   

2.
3.
While pancreatic protein synthesis and the initiation of translation are regulated by hormones and neurotransmiters, whether the elongation process is also regulated is unknown. Stimulatory doses of cholecystokinin (CCK) (100 pM), bombesin (10 nM), and carbachol (10 microM) increased elongation rates (measured as ribosomal half-transit time) in pancreatic acini in vitro. At the same time these secretagogues reduced elongation factor 2 (eEF2) phosphorylation, the main factor known to regulate elongation, and increased the phosphorylation of the eEF2 kinase. The mTOR inhibitor rapamycin reversed the dephosphorylation of eEF2 induced by CCK, as did treatment with the p38 MAPK inhibitor SB202190, the MEK inhibitor PD98059, and the phosphatase inhibitor calyculin A. Neither rapamycin, SB202190, PD98059 nor calyculin A had an effect on CCK mediated eEF2 kinase phosphorylation. Translation elongation in pancreatic acinar cells is likely regulated by eEF2 through the mTOR, p38, and MEK pathways, and modulated through PP2A.  相似文献   

4.
5.
This study explores the signaling transduction cascade of ERK and p38 MAPK on regulating MAPK phosphatase-1 (MKP-1) and protein phosphatase 2A catalytic subunit α (PP2Acα) expression in caffeine-treated human leukemia U937 cells. Caffeine induced an increase in the intracellular Ca2 + concentration and ROS generation leading to p38 MAPK activation and ERK inactivation, respectively. Caffeine treatment elicited MKP-1 down-regulation and PP2Acα up-regulation. The transfection of constitutively active MEK1 or pretreatment with SB202190 (p38 MAPK inhibitor) abolished the caffeine effect on MKP-1 and PP2Acα expression. Caffeine repressed ERK-mediated c-Fos phosphorylation but evoked p38 MAPK-mediated CREB phosphorylation. Knockdown of c-Fos and CREB by siRNA showed that c-Fos and CREB were responsible for MKP-1 and PP2Acα expression, respectively. Promoter and chromatin immunoprecipitating assay supported the role of c-Fos and CREB in regulating MKP-1 and PP2Acα expression. Moreover, transfection of dominant negative MKP-1 cDNA led to p38 MAPK activation and PP2Acα down-regulation in U937 cells, while PP2A inhibitor attenuated caffeine-induced ERK inactivation and MKP-1 down-regulation. Taken together, our data indicate that a reciprocal relationship between ERK-mediated MKP-1 expression and p38 MAPK-mediated PP2Acα expression crucially regulates ERK and p38 MAPK phosphorylation in U937 cells.  相似文献   

6.
7.
8.
9.
p38 mitogen-activated protein kinase (MAPK) belongs to the MAPK superfamily, phosphorylating serine and/or threonine residues of the target proteins. The activation of p38 MAPK leads to cell growth, differentiation, inflammation, survival or apoptosis. In this study, we tested the effect of two highly specific and potent inhibitors of p38 MAPK (namely, SB203580 and SB202190) on human breast cancer cell line MDA-MB-231 to elucidate the controversial role of p38 MAPK on cell proliferation and/or cell migration/metastasis further. It was determined that the IC50 value of SB203580 was 85.1 µM, while that of SB202190 was 46.6 µM, suggesting that SB202190 is slightly more effective than SB203580. To verify the effect of each inhibitor on cell proliferation and cytotoxicity, the cells were treated with various doses of SB203580 and SB202190 and examined using iCELLigence system. No significant effect of 1 and 5 µM of both inhibitors were seen on cell proliferation as compared to the DMSO-treated control cells for up to 96 h. On the other hand, both SB203580 and SB202190 significantly prevented cell proliferation at a concentration of 50 µM. SB202190 was again more effective than SB203580. Afterwards, we tested the effect of each inhibitor on cell migration using wound assay. Both SB203580 and SB202190 significantly reduced cell migration in a time-dependent manner at a concentration of 50 µM. However, interestingly it was observed that a low and noncytotoxic dose of 5 µM of SB203580 and SB202190 also did cause significant cell migration inhibition at 48 h of the treatment, corroborating the fact that p38 MAPK pathway has a critical role in cell migration/metastasis. Then, we tested whether each p38 MAPK inhibitor has any effect on cell adhesion during a treatment period of 3 h using iCELLigence system. A concentration of only 50 µM of SB202190 reduced cell adhesion for about 1.5 h (p < 0.001); after that period of time, cell adhesion in 50 µM SB202190-treated cells returned to the level of the control cells. To determine the mechanism of growth and cell migration inhibitory effects of p38 MAPK inhibitors, the activation/inactivation of various proteins and enzymes was subsequently analyzed by PathScan® Intracellular Signaling Array kit. The ERK1/2 phosphorylation level was not modified by low concentrations (1 or 5 µM) of SB202190 and SB203580; while a high concentration (50 µM) of both inhibitors caused significant reductions in the ERK1/2 phosphorylation. In addition, it was determined that both p38 MAPK inhibitors caused significant increases on the Ser15 phosphorylation of mutant p53 in MDA-MB-231 under these experimental conditions; while SB202190 was more potent than SB203580.  相似文献   

10.
We recently reported that p38 MAPK regulates TNF-induced endothelial apoptosis via phosphorylation and downregulation of Bcl-xL. Here, we describe that such apoptosis includes p38 MAPK-mediated, protein phosphatase 2A (PP2A)-dependent, downregulation of the MEK-ERK pathway. Inhibition of PP2A with fostriecin or calyculin A significantly increased MEK phosphorylation, as did exposure to the p38 MAPK inhibitor SB203580. Inhibition of MEK potentiated TNF-induced caspase-3 activity and cell death, and both those events were suppressed by treatment with fostriecin or calyculin A. Immunoprecipitation experiments revealed an association between p38 MAPK, PP2A and MEK, and the results of a phosphatase assay suggested that PP2A is a downstream target of p38 MAPK. Importantly, phosphorylation of Bad at Ser-112 was found to be regulated by p38 MAPK and PP2A. In summary, the present findings indicate a novel p38 MAPK-mediated apoptosis pathway, involving activation of Bad via PP2A-dependent inhibition of the MEK-ERK pathway.  相似文献   

11.
12.
p38 Mitogen-activated protein (MAP) kinase is involved in the apoptosis of nucleated cells. Although platelets are anucleated cells, apoptotic proteins have been shown to regulate platelet lifespan. However, the involvement of p38 MAP kinase in platelet apoptosis is not yet clearly defined. Therefore, we investigated the role of p38 MAP kinase in apoptosis induced by a mimetic of BH3-only proteins, ABT-737, and in apoptosis-like events induced by such strong platelet agonists as thrombin in combination with convulxin (Thr/Cvx), both of which result in p38 MAP kinase phosphorylation and activation. A p38 inhibitor (SB202190) inhibited the apoptotic events induced by ABT-737 but did not influence those induced by Thr/Cvx. The inhibitor also reduced the phosphorylation of cytosolic phospholipase A2 (cPLA2), an established p38 substrate, induced by ABT-737 or Thr/Cvx. ABT-737, but not Thr/Cvx, induced the caspase 3-dependent cleavage and inactivation of cPLA2. Thus, p38 MAPK promotes ABT-737-induced apoptosis by inhibiting the cPLA2/arachidonate pathway. We also show that arachidonic acid (AA) itself and in combination with Thr/Cvx or ABT-737 at low concentrations prevented apoptotic events, whereas at high concentrations it enhanced such events. Our data support the hypothesis that the p38 MAPK-triggered arachidonate pathway serves as a defense mechanism against apoptosis under physiological conditions.  相似文献   

13.
Activation of the mitotic checkpoint by chemotherapeutic drugs such as taxol causes mammalian cells to arrest in mitosis and then undergo apoptosis. However, the biochemical basis of chemotherapeutic drug-induced cell death is unclear. Herein, we provide new evidence that both cell survival and cell death-signaling pathways are concomitantly activated during mitotic arrest by microtubule-interfering drugs. Treatment of HeLa cells with chemotherapeutic drugs activated both p38 mitogen-activated protein kinase (MAPK) and p21-activated kinase (PAK). p38 MAPK was necessary for chemotherapeutic drug-induced cell death because the p38 MAPK inhibitors SB203580 or SB202190 suppressed cell death. Dominant-active MKK6, a direct activator of p38 MAPK, also induced cell death by stimulating translocation of Bax from the cytosol to the mitochondria in a p38 MAPK-dependent manner. Dominant active PAK suppressed this MKK6-induced cell death. PAK seems to mediate cell survival by phosphorylating Bad, and inhibition of PAK in mitotically arrested cells reduced Bad phosphorylation and increased apoptosis. Our results suggest that therapeutic strategies that suppress PAK-mediated survival signals may improve the efficacy of current cancer chemotherapies by enhancing p38 MAPK-mediated cell death.  相似文献   

14.
15.
alpha-4 is an essential gene and is a dominant antiapoptotic factor in various tissues that is a regulatory subunit for type 2A protein phosphatases. A multiplexed phosphorylation site screen revealed that knockdown of alpha-4 by small interfering RNA (siRNA) increased p38 mitogen-activated protein kinase (MAPK) and c-Jun phosphorylation without changes in JNK or ERK. FLAG-alpha-4 coprecipitated hemagglutinin-MEK3 plus endogenous protein phosphatase 2A (PP2A) and selectively enhanced dephosphorylation of Thr193, but not Ser189, in the activation loop of MEK3. Overexpression of alpha-4 suppressed p38 MAPK activation in response to tumor necrosis factor alpha (TNF-alpha). The alpha-4 dominant-negative domain (DND) (residues 220 to 340) associated with MEK3, but not PP2A, and its overexpression sensitized cells to activation of p38 MAPK by TNF-alpha and interleukin-1beta, but not by ansiomycin or sorbitol. The response was diminished by nocodazole or by siRNA knockdown of the Opitz syndrome protein Mid1 that binds alpha-4 to microtubules. Interference by alpha-4 DND or alpha-4 siRNA increased caspase 3/7 activation in response to TNF-alpha. Growth of transformed cells in soft agar was enhanced by alpha-4 and suppressed by alpha-4 DND. The results show that alpha-4 targets PP2A activity to MEK3 to suppress p38 MAPK activation by cytokines, thereby inhibiting apoptosis and anoikis.  相似文献   

16.
Cytosolic phospholipase A(2) (cPLA(2)) plays a pivotal role in mediating agonist-induced arachidonic acid (AA) release for prostaglandin (PG) synthesis during inflammation triggered by tumor necrosis factor-α (TNF-α). However, the mechanisms underlying TNF-α-induced cPLA(2) expression and PGE(2) synthesis in human tracheal smooth muscle cells (HTSMCs) remain unknown. Here, we report that TNF-α-induced cPLA(2) protein and mRNA expression, PGE(2) production, and phosphorylation of p42/p44 MAPK, p38 MAPK, and JNK1/2, which were attenuated by pretreatment with a ROS scavenger [N-acetyl-L-cysteine, (NAC)] and the inhibitors of NADPH oxidase [apocynin (APO) and diphenyleneiodonium chloride (DPI)], MEK1/2 (U0126), p38 MAPK (SB202190), and JNK1/2 (SP600125) or transfection with siRNA of Nox2, p47(phox) , MEK1, p42, p38, or JNK2. TNF-α-induced cPLA(2) expression was also inhibited by pretreatment with a selective NF-κB inhibitor [helenalin (HLN)] or transfection with dominant negative mutants of NF-κB inducing kinase (NIK) or IκB kinase (IKK)α/β. TNF-α-induced NF-κB translocation was blocked by pretreatment with NAC, DPI, APO, or HLN, but not by U0126, SB202190, or SP600125. In addition, pretreatment with curcumin (a p300 inhibitor) or transfection with p300 siRNA blocked cPLA(2) expression and PGE(2) synthesis induced by TNF-α. We further confirmed that p300 was associated with the cPLA(2) promoter which was dynamically linked to histone H4 acetylation stimulated by TNF-α, determined by chromatin immunoprecipitation assay. Association of p300 and histone H4 to cPLA(2) promoter was inhibited by U0126, SB202190, and SP600125. These results suggested that in HTSMCs, activation of p47(phox) , MAPKs, NF-κB, and p300 is essential for TNF-α-induced cPLA(2) expression and PGE(2) release.  相似文献   

17.
Lin WN  Luo SF  Lee CW  Wang CC  Wang JS  Yang CM 《Cellular signalling》2007,19(6):1258-1267
Lipopolysaccharide (LPS) has been shown to induce the expression of adhesion molecules on airway epithelial and smooth cells and contributes to inflammatory responses. Here, the roles of mitogen-activated protein kinases (MAPKs) and nuclear factor-kappaB (NF-kappaB) pathways for LPS-induced vascular cell adhesion molecule (VCAM)-1 expression were investigated in HTSMCs. LPS-induced expression of VCAM-1 protein and mRNA in a time-dependent manner, was significantly inhibited by inhibitors of MEK1/2 (U0126), p38 (SB202190), and c-Jun-N-terminal kinase (JNK; SP600125). The involvement of p42/p44 MAPK and p38 in these responses was further confirmed by that transfection with small interference RNAs (siRNA) direct against MEK, p42, and p38 significantly attenuated LPS-induced VCAM-1 expression. Consistently, LPS-stimulated phosphorylation of p42/p44 MAPK and p38 was attenuated by pretreatment with U0126 or SB202190, and transfection with these siRNAs, respectively. In addition, LPS-induced VCAM-1 expression was significantly blocked by a specific NF-kappaB inhibitor helenalin. LPS-stimulated translocation of NF-kappaB into the nucleus and degradation of IkappaB-alpha was blocked by helenalin, U0126, SB202190, or SP600125. Moreover, the resultant enhancement of VCAM-1 expression increased the adhesion of polymorphonuclear cells to monolayer of HTSMCs which was blocked by pretreatment with helenalin, U0126, or SP600125 prior to LPS exposure. Taken together, these results suggest that in HTSMCs, activation of p42/p44 MAPK, p38, and JNK pathways, at least in part, mediated through NF-kappaB, is essential for LPS-induced VCAM-1 gene expression. These results provide new insight into the mechanisms of LPS action that bacterial toxins may promote inflammatory responses in the airway disease.  相似文献   

18.
SB202190, a widely used inhibitor of p38 MAPKα and β, was recently described to induce autophagic vacuoles and cell death in colon and ovarian cancer cells lines and, therefore, this effect was supposed to be specific for transformed cells and to open therapeutic options. Here, we demonstrate that SB202190 and the structurally related inhibitor SB203580 induce pro-autophagic gene expression and vacuole formation in various cancer and non-cancer cell lines of human, rat, mouse and hamster origin. This effect seems to induce defective autophagy leading to the accumulation of acidic vacuoles, p62 protein and lipid conjugated LC3. Using further p38 inhibitors we show that p38 MAPK inhibition is not sufficient for the autophagic response. In line with these results, expression of a SB202190-resistant mutant of p38α, which significantly increases activity of the p38 pathway under inhibitory conditions, does not block SB202190-dependent vacuole formation, indicating that lack of p38α activity is not necessary for this effect. Obviously, the induction of autophagic vacuole formation by SB203580 and SB202190 is due to off-target effects of these inhibitors on post-translational protein modifications, such as phosphorylation of the MAPKs ERK1/2 and JNK1/2, ribosomal protein S6, and PKB/Akt. Interestingly, the PI3K-inhibitor wortmannin induces transient vacuole formation indicating that the PI3K-PKB/Akt-mTOR pathway is essential for preventing autophagy and that cross-inhibition of this pathway by SB202190 could be the reason for the early part of the effect observed.  相似文献   

19.
20.
Adenosine-induced acceleration of glycolysis in hearts stressed by transient ischemia is accompanied by suppression of glycogen synthesis and by increases in activity of adenosine 5'-monophosphate-activated protein kinase (AMPK). Because p38 mitogen-activated protein kinase (MAPK) may regulate glucose metabolism and may be activated downstream of AMPK, this study determined the effects of the p38 MAPK inhibitors SB202190 and SB203580 on adenosine-induced alterations in glucose utilization and AMPK activity. Studies were performed in working rat hearts perfused aerobically following stressing by transient ischemia (2 x 10-min ischemia followed by 5-min reperfusion). Phosphorylation of AMPK and p38 MAPK each were increased fourfold by adenosine, and these effects were inhibited by either SB202190 or SB203580. Neither of these inhibitors directly affected AMPK activity. Attenuation of the adenosine-induced increase in AMPK and p38 MAPK phosphorylation by SB202190 and SB203580 occurred independently of any change in tissue ATP-to-AMP ratio and did not alter glucose uptake, but it was accompanied by an increase in glycogen synthesis and glycogen content and by inhibition of glycolysis and proton production. There was a significant inverse correlation between the rate of glycogen synthesis and AMPK activity and between AMPK activity and glycogen content. These data demonstrate that AMPK is likely downstream of p38 MAPK in mediating the effects of adenosine on glucose utilization in hearts stressed by transient ischemia. The ability of p38 MAPK inhibitors to relieve the inhibition of glycogen synthesis and to inhibit glycolysis and proton production suggests that these agents may restore adenosine-induced cardioprotection in stressed hearts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号