首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The triphosphate of 9-(1,3-dihydroxy-2-propoxymethyl)guanine (DHPG) competitively inhibits incorporation of dGTP into DNA catalyzed by DNA polymerases specified by both type 1 and type 2 herpes simplex virus. K1 values were estimated to be 33 nM for type 1 and 46 nM for type 2-specified DNA polymerase. DHPG acted as an alternate substrate to dGTP for the virus-specified DNA polymerase. Incorporation of DHPG into DNA resulted in the slowing down of the rate of DNA synthesis. The position of DHPG incorporation was analyzed, and it was found to enter both internal and terminal linkages. DNA which contained DHPG at termini was found to competitively inhibit utilization of activated DNA as primer. DNA polymerase alpha and DNA polymerases from several phosphonoformic acid-resistant herpes simplex virus type 1 strains were examined for sensitivity to 9-(1,3-dihydroxy-2-propoxymethyl)guanine triphosphate. A lack of correlation between the in vivo sensitivities of the virus mutants and the K1 values of the DNA polymerases was noted.  相似文献   

2.
We investigated the effects of acyclovir and 9-(1,3-dihydroxy-2-propoxymethyl)guanine (DHPG) on a lymphoblastoid cell line dually infected with Epstein-Barr virus and herpes simplex virus (HSV) type 1. The numbers of Epstein-Barr virus genomes were reduced during 70 days of treatment with either drug. Both drugs suppressed HSV replication in a dose-related manner. In the continued presence of the drugs, HSV developed resistance, rapidly to acyclovir and much more slowly to 30 microM DHPG. Analysis of HSV glycoprotein C production and viral DNA showed that treatment with 100 microM DHPG eliminated HSV production, curing the cell line of HSV persistent infection.  相似文献   

3.
The effects of 9-(1,3-dihydroxy-2-propoxymethyl)guanine (DHPG), a new antiviral drug, and acyclovir (ACV) [9-(2-hydroxyethoxymethyl)guanine] on the replication of Epstein-Barr virus (EBV) were compared. Both drugs inhibited EBV DNA replication in P3HR-1 cells and superinfected Raji cells, but neither inhibited replication of the plasmid form of the EBV genome in latently infected Raji cells. However, DHPG had a more prolonged inhibitory effect than ACV. Although the effect of the drugs is prompt, the kinetics of inhibition of EBV replication indicated that a drug exposure of 14 days was needed to reduce the EBV genome copy number to the residual plasmid level (30 copies per cell). The inhibitory effect of ACV was readily reversed within 11 days after removal of the drug, in contrast to the more prolonged effect exerted by DHPG, which persisted for more than 21 days. The 50% inhibitory doses for cell growth of ACV and DHPG were estimated to be 250 and 200 microM, respectively. The viral 50% and 90% effective doses of inhibition were, respectively, 0.3 and 9 microM for ACV and 0.05 and 3 microM for DHPG. The therapeutic indices (50% inhibitory dose/50% effective dose) for ACV and DHPG were 833 and 4,000, respectively. Synthesis of EBV-associated polypeptides was also affected. In superinfected Raji cells, ACV (100 microM) and DHPG (30 microM) inhibited synthesis of polypeptides with molecular weights of 145,000 and 140,000; in addition, synthesis of polypeptides with molecular weights of 110,000 and 85,000 was markedly reduced by DHPG but not by ACV. However, after drug removal, the inhibitory effect of ACV on polypeptide synthesis was abolished in contrast to the more persistent effect of DHPG.  相似文献   

4.
5.
The metabolism and mode of action of the anti-herpes compound buciclovir [R)-9-(3,4-dihydroxybutyl)-guanine, BCV) has been studied in herpes simplex virus-infected and uninfected Vero cells. In uninfected cells, a low and constant concentration of intracellular BCV was found, while in herpes simplex virus-infected cells, an increasing concentration of BCV phosphates was found due to metabolic trapping. The major phosphorylation product was BCV triphosphate (BCVTP) which was 92% of the total amount of BCV phosphates. BCV phosphates were accumulated to the same extent in cells infected with either a herpes simplex virus type 1 or a herpes simplex virus type 2 strain while thymidine kinase-deficient mutants of herpes simplex virus type 1 were 10 times less efficient in accumulating BCV phosphates. In uninfected Vero cells, the concentration of the phosphorylated forms of BCV was less than 1% of that found in herpes simplex virus-infected cells. The BCVTP formed in herpes simplex virus-infected cells was highly stable, as 80% of the amount of BCVTP was still present even 17 h after removal of extracellular BCV. BCV was a good substrate for herpes simplex virus type 1- and type 2-induced thymidine kinases but not for the cellular cytosol or mitochondrial thymidine kinases. BCV monophosphate could be phosphorylated by cellular guanylate kinase to BCV diphosphate. BCVTP was a selective and competitive inhibitor to deoxyguanosine triphosphate of the purified herpes simplex virus type 1- and type 2-induced DNA polymerases. BCVTP could neither act as an alternative substrate in the herpes simplex virus type 2 or cellular DNA polymerase reactions, nor could [3H]BCV monophosphate be detected in DNA formed by herpes simplex virus type 2 DNA polymerase, or be detected in nucleic acids extracted from herpes simplex virus type 1-infected cells. These data indicate that BCVTP may inhibit the herpes simplex virus-induced DNA polymerase without being incorporated into DNA.  相似文献   

6.
Guanylate kinase was purified from human erythrocytes by affinity chromatography using GMP-agarose, and the four isozymes which are present were separated by chromatofocusing. The kinetic properties of each isozyme were analyzed with respect to the natural substrates GMP and dGMP, and the 5'-monophosphate derivatives of the antiviral nucleoside analogs 9-(1,3-dihydroxy-2-propoxymethyl)guanine (DHPG) and 9-(2-hydroxyethoxymethyl)guanine (ACV, Acyclovir). The analysis of substrate kinetics yielded Km values for DHPG 5'-monophosphate which were similar with all isozymes (42-54 microM), and about 3-fold higher than the Km values obtained for GMP. Km values obtained with ACV 5'-monophosphate were 10-20-fold higher than the GMP values and varied nearly 4-fold among isozymes (209-753 microM). GMP produced the highest enzyme velocities with all isozymes, followed by dGMP, DHPG 5'-monophosphate, and ACV 5'-monophosphate, in that order. Differences in maximal velocities among isozymes were generally small. DHPG 5'-monophosphate inhibited the isozymes by a simple competitive mechanism with respect to GMP. In contrast, ACV 5'-monophosphate acted as an apparent hyperbolic mixed-type inhibitor. Similar patterns of inhibition were obtained with all isozymes. It is probable that differences is the reactivity of DHPG 5'-monophosphate and ACV 5'-monophosphate with individual guanylate kinase isozymes do not contribute significantly to differences in their antiviral effects.  相似文献   

7.
The triphosphates of 9-(2-hydroxyethoxymethyl)guanine and 9-(1,3-dihydroxy-2-propoxymethyl)guanine were examined for their inhibitory effect on highly purified cellular DNA polymerase alpha and human cytomegalovirus (Towne strain)-induced DNA polymerase. These two nucleoside triphosphates competitively inhibited the incorporation of dGMP into DNA catalyzed by the DNA polymerases. The virus-induced DNA polymerase had greater binding affinity for the triphosphate of 9-(2-hydroxyethoxymethyl)guanine (Ki, 8 nM) than for the triphosphate of 9-(1,3-dihydroxy-2-propoxymethyl)guanine (Ki, 22 nM), although the nucleoside of the latter compound was strikingly more effective against human cytomegalovirus replication in cell cultures than the nucleoside of the former. The Ki values of these two nucleoside triphosphates for alpha polymerase were 96 and 146 nM, respectively, and were 7- to 12-fold higher than those for the virus-induced enzyme. These data indicated that virus-induced DNA polymerase was more sensitive to inhibition by these two nucleoside triphosphates than was the cellular alpha enzyme.  相似文献   

8.
Summary The acyclic nucleoside 9-(1,3-dihydroxy-2-propoxymethyl)guanine (DHPG) is a potent inhibitor of human cytomegalovirus in vitro and in vivo. In order to investigate the phosphorylation of DHPG to the monophosphate and identify the enzyme responsible, attempts were made to isolate DHPG kinase from calf thymus and from human cytomegalovirus-infected lung cells. From calf thymus, a mitochondrial deoxyguanosine kinase was partially purified which co-migrated with DHPG phosphorylating activity on DEAE-cellulose, and had the same mobility by electrophoresis. DHPG triphosphate and DHPG kinase were elevated in cytomegalovirus-infected cells, but not enough enzyme activity was recovered to identify the kinase. However, DHPG was found to inhibit a cytosol deoxyguanosine kinase induced in these infected cells. The role of mitochondrial and cytosol deoxyguanosine kinases is discussed relative to the anti-cytomegalovirus activity of DHPG.  相似文献   

9.
DHPG, an acyclic guanine nucleoside with the structure 9-[(1,3-dihydroxy-2-propoxy)methyl]guanine], showed potent synergism with recombinant alpha or beta interferons and modest synergism with gamma interferon in inhibiting the replication of herpes simplex virus type 2 in vitro. The most potent direct anti-herpes viral synergism was obtained by combination of DHPG and recombinant human interferon-beta-ser17; when combined, doses of each near their separate effective dose50's resulted in almost complete elimination of production of infectious virus within a single viral replication cycle. The anti-herpes viral activity of DHPG-interferon combinations was significantly greater than that obtained with acyclovir-interferon combinations.  相似文献   

10.
The carbocyclic analogues of (E)-5-(2-bromovinyl)-2'-deoxyuridine (BVDU) and (E)-5-(2-iodovinyl)-2'-deoxyuridine (IVDU), in which the sugar moiety is replaced by a cyclopentane ring and which have been designated as C-BVDU and C-IVDU, respectively, are, like their parent compounds BVDU and IVDU, potent and selective inhibitors of herpes simplex virus type 1 (HSV-1) and, to a lesser extent, herpes simplex virus type 2 (HSV-2) replication. We have now synthesized the radiolabeled C-IVDU analogue, C-[125I]IVDU, and determined its metabolism by HSV-infected and mock-infected Vero cells. C-[125I]IVDU was effectively phosphorylated by HSV-1-infected cells and, to a lesser extent, HSV-2-infected cells. C-[125I]IVDU was not phosphorylated to an appreciable extent by either mock-infected cells or cells that had been infected with a thymidine kinase-deficient mutant of HSV-1. Furthermore, C-[125I]IVDU was incorporated into both viral and cellular DNA of HSV-1-infected Vero cells. This finding represents the first demonstration of the incorporation of a cyclopentylpyrimidine into DNA.  相似文献   

11.
The ability of human alpha and beta DNA polymerases and herpes simplex virus type 2 (HSV-2) and human cytomegalovirus (HCMV) DNA polymerases to insert and extend several nucleotide analogs has been investigated using a variation of Sanger-Coulson DNA sequencing technology. The analogs included the triphosphates of two antiviral nucleosides with incomplete sugar rings: 9-(1,3-dihydroxy-2-propoxymethyl)guanine (dhpG) and 9-(2-hydroxyethoxymethyl)guanine (acyG or acyclovir), as well as dideoxy and arabinosyl nucleoside triphosphates. Three pairs of contrasting behaviors were found, each pair distinguishing the two human polymerases from the two viral ones: first, extension behavior with araNTPs; second, insertion/extension behavior with dhpGTP; and third, the relative preference for insertion of ddGTP versus acyGTP. The relative level of insertion of the nucleotide analogs by HCMV and HSV-2 DNA polymerases was dhpGTP greater than (acyGTP and araNTP) greater than ddGTP, whereas by human alpha polymerase it was araATP greater than ddGTP much greater than (acyGTP and dhpGTP) and by human beta polymerase it was (araATP and ddGTP) much greater than (acyGTP and dhpGTP). Evidence is presented for three mechanisms of inhibition by extendible nucleotides (of dhp and ara types) exhibiting frequent internalization: araATP acted as a simple pseudoterminator of alpha and beta polymerases, but was easily extended past singlet sites by Herpesviridae polymerases and only stalled at sites requiring two or more araATP insertions in a row. Herpesviridae polymerases stalled after adding dhpGMP and one additional nucleotide, suggesting that polymerase translocation problems may be a factor in polymerase inhibition by modified sugar nucleotide analogs. The amino acid sequence of the human alpha DNA polymerase, which is acyGTP resistant, was found to vary by one amino acid from the amino sequences of the Herpesviridae polymerases in a region of significant similarity and probable functional homology. Amino acid differences at that same site differentiate acyclovir-resistant HSV-1 mutants from the acyclovir-sensitive HSV-1 wild type.  相似文献   

12.
A cytotoxic effect associated with 9-(1,3-dihydroxy-2-propoxymethyl)-guanine (DHPG) was discovered while searching for spontaneous mutations in a single copy, integrated HSV-1 thymidine kinase (TK) gene in the human 143 TK- cell line. It was found that spontaneous DHPGR mutations could not be selected while other anti-TK drugs resulted in selectable mutation frequencies of 10(-4) to 10(-3). When 143 TK- cells were mixed with these HSV-1 TK+ cells and subjected to DHPG, a 90% to 100% decrease in recoverable TK- colonies was observed. In addition, the media from the HSV-1 TK+ cells metabolizing DHPG was shown to inhibit the growth of the TK- cells.  相似文献   

13.
A function(s) involved in the altered susceptibility of herpes simplex virus type 2 (HSV-2)-infected cells to specific lysis by cytotoxic T lymphocytes was mapped in the S component of HSV-2 DNA by using HSV-1 X HSV-2 intertypic recombinants (RH1G44, RS1G25, R50BG10, A7D, and C4D) and HSV-1 MP. Target cells infected with R50BG10, A7D, and C4D exhibited reduced levels of cytolysis, as did HSV-2-infected cells, whereas RH1G44 and RS1G25 recombinant-infected and HSV-1 MP-infected cells showed levels of lysis equal to that of HSV-1 KOS-infected cells. The intertypic recombinants R50BG10, RS1G25, RH1G44, and HSV-1 MP induced cross-reactive cytotoxic T lymphocytes. Coinfection of cells with HSV-1 KOS and either HSV-2 186 or R50BG10 recombinant also resulted in a decrease in the level of specific lysis by anti-HSV cytotoxic T lymphocytes.  相似文献   

14.
We examine biochemical characteristics of the herpes simplex virus (HSV) tegument protein VP22 by gel filtration, glycerol sedimentation, and chemical cross-linking experiments and use time course radiolabeling and immunoprecipitation assays to analyze its synthesis and interaction with other infected-cell proteins. VP22 was expressed as a delayed early protein with optimal synthesis requiring DNA replication. In immunoprecipitation assays, VP22 was found in association with several additional proteins including VP16 and a kinase activity likely to be that of UL13. Furthermore, in sizing chromatography experiments, VP22 was present in several higher-order complexes in infected cells. From gel filtration analysis the major form of VP22 migrated with a molecular mass of approximately 160 kDa, consistent with its presence as a tetramer, or a dimer complexed with other proteins, with a fraction of the protein migrating at larger molecular mass. In vitro-synthesized VP22 sedimented in a size range consistent with a mixture of tetramers and dimers. Short N- or C-terminal deletions resulted in migration almost exclusively as dimers, indicating that VP22, in the absence of additional virus-encoded proteins, could form higher-order assemblies, most likely tetramers, but that both N-and C-terminal determinants were required for stabilizing such assemblies. Consistent with this we found that isolated proteins encompassing either the N-terminal or C-terminal region of VP22 sedimented as dimers, and that the purified C-terminal domain could be cross-linked into dimeric structures. These results are discussed with regard to possible virus and host interactions involved in VP22 recruitment into virus particles.  相似文献   

15.
Interesting and very promising antisense properties of 2'-deoxy-2'-fluoroarabinonucleic acids ((a) Wilds, C.J.; Damha, M.J. 2'-Deoxy-2'-fluoroarabinonucleosides and oligonucleotides (2'F-ANA): synthesis and physicochemical studies. Nucl. Acids Res. 2000, 28, 3625-3635; (b) Viazovkina, E.; Mangos, M.; Elzagheid, M.I.; Damha, M.J. Current Protocols in Nucleic Acid Chemistry 2002, 4.15.1-4.15.21) (2'F-ANA) has encouraged our research group to optimize the synthetic procedures for 2'-deoxy-2'-fluoro-beta-D-arabinonucleosides (araF-N). The synthesis of araF-U, araF-T, araF-A and araF-C is straightforward, (Tann, C.H.; Brodfuehrer, P.R.; Brundidge, S.P.; Sapino, C., Jr. Howell H.G. Fluorocarbohydrates in synthesis. An efficient synthesis of 1-(2-deoxy-2-fluoro-beta-D-arabinofuranosyl)-5-iodouracil (beta-FIAU) and 1-(2-deoxy-2-fluoro-beta-D-arabinofuranosyl)thymine (beta-FMAU). J. Org. Chem. 1985, 50, 3644-3647; Howell, H.G.; Brodfuehrer, P.R.; Brundidge, S.P.; Benigni, D.A.; Sapino, C., Jr. Antiviral nucleosides. A stereospecific, total synthesis of 2'-fluoro-2'-deoxy-beta-D-arabinofuranosyl nucleosides. J. Org. Chem. 1988, 53, 85-88; Maruyama, T.; Takamatsu, S.; Kozai, S.; Satoh, Y.; Izana, K. Synthesis of 9-(2-deoxy-2-fluoro-beta-D-arabinofuranosyl)adenine bearing a selectively removable protecting group. Chem. Pharm. Bull. 1999, 47, 966-970) however, the synthesis of the guanine analogue is more complicated and affords poor to moderate yields of araF-G (4) ((a) Elzagheid, M.I.; Viazovkina, E.; Masad, M.J. Synthesis of protected 2'-deoxy-2'-fluoro-beta-D-arabinonucleosides. Synthesis of 2'-fluoroarabino nucleoside phosphoramidites and their use in the synthesis of 2'F-ANA. Current Protocols in Nucleic Acid Chemistry 2002, 1.7.1-1.7.19; (b) Tennila, T.; Azhayeva, E.; Vepsalainen, J.; Laatikainen, R.; Azhayev, A.; Mikhailopulo, I. Oligonucleotides containing 9-(2-deoxy-2-fluoro-beta-D-arabinofuranosyl)-adenine and -guanine: synthesis, hybridization and antisense properties. Nucleosides, Nucleotides and Nucl. Acids 2000, 19, 1861-1884). Here we describe an efficient synthesis of araF-G (4) that involves coupling of 2-deoxy-2-fluoro-3,5-di-O-benzoyl-alpha-D-arabinofuranosyl bromide (1) with 2-chlorohypoxanthine (2) to afford 2-chloro-beta-araF-I (3) in 52% yield. Nucleoside (3) was transformed into araF-G (4) by treatment with methanolic ammonia (150 degrees C, 6 h) in 67% yield.  相似文献   

16.
17.
The extent of phosphorylation of 9-(2-hydroxyethoxymethyl)guanine (acyclovir [ACV]) in fresh peripheral leukocytes, in Epstein-Barr virus (EBV)-infected lymphoblastoid cell lines, and in herpes simplex virus type 1-infected lymphoblastoid (P3HR-1) and monkey kidney (Vero) cells was determined by high-pressure liquid chromatography, Mono-, di-, and triphosphorylated derivatives of [8-14C]ACV were detected at low levels at various times after superinfection of Raji cells with EBV. The extent of phosphorylation appeared to be related to the concentration of ACV in the medium. Small amounts of ACV mono-, di-, and triphosphates were formed in fresh peripheral leukocyte preparations from EBV- seropositive and -seronegative donors. Comparable ACV monophosphate levels were detected in EBV-negative BJAB and the EBV-positive BJAB/GC cell lines; however, no di- or triphosphate derivatives were detected. Comparable ACV-monophosphate levels were detected in both P3HR-1 and HSV-infected P3HR-1 cell lines; however, larger amounts of ACV di- and triphosphorylated derivatives were detected in the HSV-infected P3HR-1 cells. ACV was converted to the triphosphate to a greater extent in HSV-infected Vero cells than in mock-infected Vero cells or in HSV-infected P3HR-1 cells. ACV or its phosphorylated derivatives were converted to guanine nucleotides to a greater extent in lymphoblastoid cells than in fibroblasts (Vero). In conclusion, neither the productive replication of EBV nor the presence of latent viral DNA is required for ACV monophosphate formation in B lymphoblastoid cells. ACV triphosphate, however, was detected only in cells infected productively with EBV.  相似文献   

18.
The inhibition of highly purified herpes simplex virus (HSV)-induced and host cell DNA polymerases by the triphosphate form of 9-(2-hydroxyethoxymethyl)guanine (acyclovir; acycloguanosine) was examined. Acyclovir triphosphate (acyclo-GTP) competitively inhibited the incorporation of dGMP into DNA, catalyzed by HSV DNA polymerase; apparent Km and Ki values of dGTP and acyclo-GTP were 0.15 microM and 0.003 microM, respectively. HeLa DNA polymerase alpha was also competitively inhibited; Km and Ki values of dGTP and acyclo-GTP were 1.2 microM and 0.18 microM, respectively. In contrast, HeLa DNA polymerase beta was insensitive to the analogue. The "limited" DNA synthesis observed when dGTP was omitted from HSV or alpha DNA polymerase reactions was inhibited by acyclo-GTP in a concentration-dependent manner. Prior incubation of activated DNA, acyclo-GTP, and DNA polymerase (alpha or HSV resulted in a marked decrease in the utilization of the primer-template in subsequent DNA polymerase reactions. This decreased ability of preincubated primer-templates to support DNA synthesis was dependent on acyclo-GTP, enzyme concentration, and the time of prior incubation. Acyclo-GMP-terminated DNA was found to inhibit HSV DNA polymerase-catalyzed DNA synthesis. Kinetic experiments with variable concentrations of activated DNA and fixed concentrations of acyclo-GMP-terminated DNA revealed a noncompetitive inhibition of HSV-1 DNA polymerase. The apparent Km of 3'-hydroxyl termini was 1.1 X 10(-7) M, the Kii and Kis of acyclo-GMP termini in activated DNA were 8.8 X 10(-8) M and 2.1 X 10(-9) M, respectively. Finally, 14C-labeled acyclo-GMP residues incorporated into activated DNA by HSV-1 DNA polymerase could not be excised by the polymerase-associated 3',5'-exonuclease activity.  相似文献   

19.
The effect of the nucleoside analog 9-(2-hydroxyethoxymethyl)guanine (acycloguanosine) on herpes simplex virus type 1 DNA synthesis was examined. Acycloguanosine inhibited herpesvirus DNA synthesis in virus-infected cells. The synthesis of host cell DNA was only partially inhibited in actively growing cells at acycloguanosine concentrations several hundred-fold greater than the 50% effective dose for herpes simplex virus type 1. Studies using partially purified enzymes revealed that the triphosphate of this compound inhibited the virus-induced DNA polymerases (DNA nucleotidyltransferases) to a greater degree than the DNA polymerase of the host cell, that the inhibition was dependent upon the base composition of the template, and that the triphosphate was a better substrate for the virus-induced polymerases than for the alpha cellular DNA polymerases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号