首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
The long terminal repeat from a thymotropic mouse mammary tumor virus variant, DMBA-LV, was used to drive the expression of two reporter genes, murine c-myc and human CD4, in transgenic mice. Expression was observed specifically in thymic immature cells. Expression of c-myc in these cells induced oligoclonal CD4+ CD8+ T-cell thymomas. Expression of human CD4 was restricted to thymic progenitor CD4- CD8- and CD4+ CD8+ T cells and was shut off in mature CD4+ CD8- and CD4- CD8+ T cells, known to be derived from the progenitor double-positive T cells. These results suggest the existence of similar and common factors in CD4+ CD8- and CD4- CD8+ T cells and support a model of differentiation of CD4+ CD8+ T cells through common signal(s) involved in turning off the expression of the CD4 or CD8 gene.  相似文献   

3.
HIV-1-specific CD4(+) T cells are qualitatively dysfunctional in the majority of HIV-1-infected individuals and are thus unable to effectively control viral replication. The current study extensively details the maturational phenotype of memory CD4(+) T cells directed against HIV-1 and CMV. We find that HIV-1-specific CD4(+) T cells are skewed to an early central memory phenotype, whereas CMV-specific CD4(+) T cells generally display a late effector memory phenotype. These differences hold true for both IFN-gamma- and IL-2-producing virus-specific CD4(+) T cells, are present during all disease stages, and persist even after highly active antiretroviral therapy (HAART). In addition, after HAART, HIV-1-specific CD4(+) T cells are enriched for CD27(+)CD28(-)-expressing cells, a rare phenotype, reflecting an early intermediate stage of differentiation. We found no correlation between differentiation phenotype of HIV-1-specific CD4(+) T cells and HIV-1 plasma viral load or HIV-1 disease progression. Surprisingly, HIV-1 viral load affected the maturational phenotype of CMV-specific CD4(+) T cells toward an earlier, less-differentiated state. In summary, our data indicate that the maturational state of HIV-1-specific CD4(+) T cells cannot be a sole explanation for loss of containment of HIV-1. However, HIV-1 replication can affect the phenotype of CD4(+) T cells of other specificities, which might adversely affect their ability to control those pathogens. The role for HIV-1-specific CD4(+) T cells expressing CD27(+)CD28(-) after HAART remains to be determined.  相似文献   

4.
In vivo studies have shown that regulatory CD4(+) T cells regulate conventional CD4(+) T cell responses to self- and environmental Ags. However, it remains unclear whether regulatory CD4(+) T cells control CD8(+) T cell responses to self, directly, or indirectly by decreasing available CD4(+) T cell help. We have developed an experimental mouse model in which suppressive and helper T cells cannot mediate their functions. The mouse chimeras generated were not viable and rapidly developed multiple organ autoimmunity. These features were correlated with strong CD8(+) T cell activation and accumulation in both lymphoid and nonlymphoid organs. In vivo Ab treatment and secondary transfer experiments demonstrated that regulatory CD4(+) T cells play an important direct role in the prevention of peripheral CD8(+) T cell-mediated autoimmunity.  相似文献   

5.
Virus-specific CD4 T cells are endowed with multiple functions, such as cytokine production, CD40 ligand (CD40L) expression (associated with the costimulation of CD8 and B cells), and degranulation (associated with cytotoxic potential). Here, we used antiviral CD4 T cells present in human blood to evaluate the relationship between cytokine production and other functions of CD4 T cells. Antiviral CD4 T cells specific for a virus causing persistent infection, cytomegalovirus (CMV), and two viruses causing nonpersistent infections, influenza virus and the smallpox vaccine virus (vaccinia virus), were studied. CD4 T cells specific for each of the viruses produced all seven possible combinations of the cytokines gamma interferon (IFN-gamma), interleukin-2, and tumor necrosis factor alpha. Cells producing three or two cytokines (triple producers and double producers) represented nearly 50% of the total response to each of the viruses. Triple producers expressed the highest levels of cytokines per cell, and single producers expressed the lowest. Following stimulation, higher frequencies of triple producers than single producers expressed CD40L. Only CMV-specific CD4 T cells underwent degranulation. However, higher frequencies of CMV-specific triple producers than single producers showed this functional characteristic. In contrast to the functional phenotypes, the memory phenotypes of triple producers and IFN-gamma single producers did not differ. These results demonstrate a strong positive association between the cytokine coproduction capacity of a virus-specific CD4 T cell and its other functional characteristics and suggest that vaccines should aim to elicit T cells that coproduce more than one cytokine.  相似文献   

6.
In humans, the pathways of memory and effector T cell differentiation remain poorly defined. We have dissected the functional properties of ex vivo effector-memory (EM) CD45RA-CCR7- T lymphocytes present within the circulating CD8+ T cell pool of healthy individuals. Our studies show that EM T cells are heterogeneous and are subdivided based on differential CD27 and CD28 expression into four subsets. EM(1) (CD27+CD28+) and EM(4) (CD27-CD28+) T cells express low levels of effector mediators such as granzyme B and perforin and high levels of CD127/IL-7Ralpha. EM(1) cells also have a relatively short replicative history and display strong ex vivo telomerase activity. Therefore, these cells are closely related to central-memory (CD45RA-CCR7+) cells. In contrast, EM(2) (CD27+CD28-) and EM(3) (CD27-CD28-) cells express mediators characteristic of effector cells, whereby EM(3) cells display stronger ex vivo cytolytic activity and have experienced larger numbers of cell divisions, thus resembling differentiated effector (CD45RA+CCR7-) cells. These data indicate that progressive up-regulation of cytolytic activity and stepwise loss of CCR7, CD28, and CD27 both characterize CD8+ T cell differentiation. Finally, memory CD8+ T cells not only include central-memory cells but also EM(1) cells, which differ in CCR7 expression and may therefore confer memory functions in lymphoid and peripheral tissues, respectively.  相似文献   

7.
Due to their potent immunostimulatory capacity, dendritic cells (DC) have become the centerpiece of many vaccine regimens. Immature DC (DCimm) capture, process, and present Ags to CD4(+) lymphocytes, which reciprocally activate DCimm through CD40, and the resulting mature DC (DCmat) loose phagocytic capacity, but acquire the ability to efficiently stimulate CD8(+) lymphocytes. Recombinant vaccinia viruses (rVV) provide a rapid, easy, and efficient method to introduce Ags into DC, but we observed that rVV infection of DCimm results in blockade of DC maturation in response to all activation signals, including CD40L, monocyte-conditioned medium, LPS, TNF-alpha, and poly(I:C), and failure to induce a CD8(+) response. By contrast, DCmat can be infected with rVV and induce a CD8(+) response, but, having lost phagocytic activity, fail to process the Ag via the exogenous class II pathway. To overcome these limitations, we used the CMV protein pp65 as a model Ag and designed a gene containing the lysosomal-associated membrane protein 1 targeting sequence (Sig-pp65-LAMP1) to target pp65 to the class II compartment. DCmat infected with rVV-Sig-pp65-LAMP1 induced proliferation of pp65-specific CD4(+) clones and efficiently induced a pp65-specific CD4(+) response, suggesting that after DC maturation the intracellular processing machinery for class II remains intact for at least 16 h. Moreover, infection of DCmat with rVV-Sig-pp65-LAMP1 resulted in at least equivalent presentation to CD8(+) cells as infection with rVV-pp65. These results demonstrate that despite rVV interference with DCimm maturation, a single targeting vector can deliver Ags to DCmat for the effective simultaneous stimulation of both CD4(+) and CD8(+) cells.  相似文献   

8.
To better characterize the cellular source of lymphotactin (XCL1), we compared XCL1 expression in different lymphocyte subsets by real-time PCR. XCL1 was constitutively expressed in both PBMC and CD4(+) cells, but its expression was almost 2 log higher in CD8(+) cells. In vitro activation was associated with a substantial increase in XCL1 expression in both PBMC and CD8(+) cells, but not in CD4(+) lymphocytes. The preferential expression of XCL1 in CD8(+) cells was confirmed by measuring XCL1 production in culture supernatants, and a good correlation was found between figures obtained by real-time PCR and XCL1 contents. XCL1 expression was mostly confined to a CD3(+)CD8(+) subset not expressing CD5, where XCL1 expression equaled that shown by gammadelta(+) T cells. Compared with the CD5(+) counterpart, CD3(+)CD8(+)CD5(-) cells, which did not express CD5 following in vitro activation, showed preferential expression of the alphaalpha form of CD8 and a lower expression of molecules associated with a noncommitted/naive phenotype, such as CD62L. CD3(+)CD8(+)CD5(-) cells also expressed higher levels of the XCL1 receptor; in addition, although not differing from CD3(+)CD8(+)CD5(+) cells in terms of the expression of most alpha- and beta-chemokines, they showed higher expression of CCL3/macrophage inflammatory protein-1alpha. These data show that TCR alphabeta-expressing lymphocytes that lack CD5 expression are a major XCL1 source, and that the contribution to its synthesis by different TCR alphabeta-expressing T cell subsets, namely CD4(+) lymphocytes, is negligible. In addition, they point to the CD3(+)CD8(+)CD5(-) population as a particular T cell subset within the CD8(+) compartment, whose functional properties deserve further attention.  相似文献   

9.
Triggering of the CD3:TCR complex by optimal concentrations of anti-CD3, anti-TCR beta-chain, and allogeneic stimulator cells induced dramatically higher levels (fivefold for anti-CD3, greater than 10-fold for anti-TCR beta-chain, 84-fold for alloantigen) of IL-2 production in spleen CD4+8- T cells than their thymic counterparts, despite comparable levels of CD3 and TCR beta-chain expression. The nature of the reduced IL-2 production was examined by analysis of anti-CD3-induced IL-2 production at the single cell level. The frequency of IL-2-producing cells in spleen CD4+8- T cells (40.0%) was approximately threefold that of thymus CD4+8- T cells (14.5%). Furthermore, the average IL-2 levels among positive IL-2 producers was also approximately threefold higher in spleen CD4+8- T cells than their thymic counterparts. Adoptive transfer of purified Thy-1.2+ CD4+8- T cells into Thy-1.1-congenic hosts provided a physiologic and histocompatible system that enabled identification of transferred donor (Thy-1.2+) among a sea of host (Thy-1.2-) CD4+ T cells, whose immune function with respect to IL-2 inducibility was examined after isolation by electronic cell sorting. Donor CD4+ T cells thus isolated from host spleen shortly (1 day) after i.v. transfer of thymus CD4+8- T cells were similar to freshly isolated thymus CD4+8- T cells in that they both produced little IL-2 in response to anti-CD3. However, by day 3 post-transfer, IL-2 production by donor CD4+8- T cells had more than doubled and by day 8, they produced IL-2 levels comparable to those of host spleen CD4+8- T cells. A similar acquisition of high level IL-2 inducibility in thymus CD4+8- T cells upon i.v. transfer into Thy-1.1-congenic hosts was also observed using allogeneic cells as the stimulus of IL-2 production. When thymus CD4+8- T cells were intra-thymically transferred into Thy-1.1-congenic hosts, those donor cells that emigrated to the periphery became high IL-2 producers in a time-dependent manner, whereas those that remained inside the thymus showed no signs of up-regulation in IL-2 inducibility. Intrathymic transfer of CD4-8- thymocytes revealed that the most recent thymic emigrant CD4+8- T cells contained few IL-2-producing cells and were not functionally mature with respect to high level IL-2 inducibility.  相似文献   

10.
Migration pathways of B cell and CD4+ and CD8+ T cell subsets of murine thoracic duct lymphocytes (TDL) were mapped. Per weight, the spleen accumulated more TDL than any other organ, regardless of lymphocyte subset. Spleen autoradiographs showed early accumulations of TDL in marginal zone and red pulp. Many TDL exited the red pulp within 1 hr via splenic veins. The remaining TDL entered the white pulp, not directly from the adjacent marginal zone but via distal periarterial lymphatic sheaths (dPALS). From dPALS, T cells migrated proximally along the central artery into proximal sheaths (pPALS) and exited the white pulp via deep lymphatic vessels. B cells left dPALS to enter lymphatic nodules (NOD), then also exited via deep lymphatics. T cells homed to lymph nodes more efficiently than B cells. Lymphocytes entered nodes via high-endothelial venules (HEV). CD4+ TDL reached higher absolute concentrations in diffuse cortex than did CD8+ T cells. However, CD8+ TDL moved more quickly through diffuse cortex than did CD4+ TDL. B cells migrated from HEV into NOD. Both T and B TDL exited via cortical and medullary sinuses and efferent lymphatics. A migration pathway across medullary cords is described. All TDL subsets homed equally well to Peyer's patches. T TDL migrated from HEV into paranodular zones while B cells moved from HEV into NOD. All TDL exited via lymphatics. Few TDL entered zones beneath dome epithelium. All subsets were observed within indentations in presumptive M cells of the dome epithelium.  相似文献   

11.
We have reported the existence of biochemical and conformational differences in the alphabeta T cell receptor (TCR) complex between CD4(+) and CD8(+) CD3gamma-deficient (gamma(-)) mature T cells. In the present study, we have furthered our understanding and extended the observations to primary T lymphocytes from normal (gamma(+)) individuals. Surface TCR.CD3 components from CD4(+) gamma(-) T cells, other than CD3gamma, were detectable and similar in size to CD4(+) gamma(+) controls. Their native TCR.CD3 complex was also similar to CD4(+) gamma(+) controls, except for an alphabeta(deltaepsilon)(2)zeta(2) instead of an alphabetagammaepsilondeltaepsilonzeta(2) stoichiometry. In contrast, the surface TCRalpha, TCRbeta, and CD3delta chains of CD8(+) gamma(-) T cells did not possess their usual sizes. Using confocal immunofluorescence, TCRalpha was hardly detectable in CD8(+) gamma(-) T cells. Blue native gels (BN-PAGE) demonstrated the existence of a heterogeneous population of TCR.CD3 in these cells. Using primary peripheral blood T lymphocytes from normal (gamma(+)) donors, we performed a broad epitopic scan. In contrast to all other TCR.CD3-specific monoclonal antibodies, RW2-8C8 stained CD8(+) better than it did CD4(+) T cells, and the difference was dependent on glycosylation of the TCR.CD3 complex but independent of T cell activation or differentiation. RW2-8C8 staining of CD8(+) T cells was shown to be more dependent on lipid raft integrity than that of CD4(+) T cells. Finally, immunoprecipitation studies on purified primary CD4(+) and CD8(+) T cells revealed the existence of TCR glycosylation differences between the two. Collectively, these results are consistent with the existence of conformational or topological lineage-specific differences in the TCR.CD3 from CD4(+) and CD8(+) wild type T cells. The differences may be relevant for cis interactions during antigen recognition and signal transduction.  相似文献   

12.
The orphan steroid receptor, Nur77, is thought to be a central participant in events leading to TCR-mediated clonal deletion of immature thymocytes. Interestingly, although both immature and mature murine T cell populations rapidly up-regulate Nur77 after TCR stimulation, immature CD4+CD8+ thymocytes respond by undergoing apoptosis, whereas their mature descendants respond by dividing. To understand these developmental differences in susceptibility to the proapoptotic potential of Nur77, we compared its regulation and compartmentalization and show that mature, but not immature, T cells hyperphosphorylate Nur77 in response to TCR signals. Nur77 resides in the nucleus of immature CD4+CD8+ thymocytes throughout the course of its expression and is not found in either the organellar or cytoplasmic fractions. However, hyperphosphorylation of Nur77 in mature T cells, which is mediated by both the MAPK and PI3K/Akt pathways, shifts its localization from the nucleus to the cytoplasm. The failure of immature CD4+CD8+ thymocytes to hyperphosphorylate Nur77 in response to TCR stimulation may be due in part to decreased Akt activity at this developmental stage.  相似文献   

13.
Every person harbors a population of potentially self-reactive lymphocytes controlled by tightly balanced tolerance mechanisms. Failures in this balance evoke immune activation and autoimmunity. In this study, we investigated the contribution of self-reactive CD8(+) T lymphocytes to chronic pulmonary inflammation and a possible role for naturally occurring CD4(+)CD25(+)Foxp3(+) regulatory T cells (nTregs) in counterbalancing this process. Using a transgenic murine model for autoimmune-mediated lung disease, we demonstrated that despite pulmonary inflammation, lung-specific CD8(+) T cells can reside quiescently in close proximity to self-antigen. Whereas self-reactive CD8(+) T cells in the inflamed lung and lung-draining lymph nodes downregulated the expression of effector molecules, those located in the spleen appeared to be partly Ag-experienced and displayed a memory-like phenotype. Because ex vivo-reisolated self-reactive CD8(+) T cells were very well capable of responding to the Ag in vitro, we investigated a possible contribution of nTregs to the immune control over autoaggressive CD8(+) T cells in the lung. Notably, CD8(+) T cell tolerance established in the lung depends only partially on the function of nTregs, because self-reactive CD8(+) T cells underwent only biased activation and did not acquire effector function after nTreg depletion. However, although transient ablation of nTregs did not expand the population of self-reactive CD8(+) T cells or exacerbate the disease, it provoked rapid accumulation of activated CD103(+)CD62L(lo) Tregs in bronchial lymph nodes, a finding suggesting an adaptive phenotypic switch in the nTreg population that acts in concert with other yet-undefined mechanisms to prevent the detrimental activation of self-reactive CD8(+) T cells.  相似文献   

14.
A subset of CD44hiCD8+ T cells in some, but not all mice, can be induced to rapidly secrete IFNγ during infection with Listeria monocytogenes. This response is dependent on the presence of both IL-12 and IL-18 and does not require engagement of the T cell receptor. In this study, we demonstrate that human CD8+ T cells also vary widely in their ability to secrete IFNγ within 15 h of either Listeria infection or cytokine stimulation. The magnitude of the rapid IFNγ response correlated more closely with the intrinsic responsiveness of the T cells to cytokine stimulation rather than the amount of IL-12 produced. CD8+ T cells from 2 out of 16 blood donors (12.5%) failed to generate a significant IFNγ response. These results demonstrate that bystander activation of CD8+ T cells varies among individuals and validate further study of the differential responses observed using BALB/c vs. C57BL/6 mice.  相似文献   

15.
Summary Studies were undertaken to test the susceptibility of individual T cell subpopulations to retroviral-mediated gene transduction. Gene transfer into human tumor-infiltrating lymphocytes (TIL) or peripheral blood mononuclear cells (PBMC) was carried out by transduction with an amphotropic murine retroviral vector (LNL6 or N2) containing the bacterialneo R gene. The presence of theneo R gene in the TIL population was demonstrated by Southern blot analysis, detection of the enzymatic activity of the gene product and by the ability of transduced TIL to proliferate in high concentrations of G418, a neomycin analog that is toxic to eukaryotic cells. The presence of theneo R gene in TIL did not alter their proliferation or interleukin-2 dependence compared to nontransduced TIL. The differential susceptibility of CD4+ and CD8+ lymphoid cells to the retro-virus-mediated gene transfer was then tested. Transduction of heterogeneous TIL cultures containing both CD4+ and CD8+ cells resulted in gene insertion into both T cell subsets with no preferential transduction frequency into either CD4+ or CD8+ cells. In other experiments highly purified CD4+ and CD8+ T cell subpopulations from either TIL or PBMC could be successfully transduced with theneo R gene as demonstrated by Southern blot analysis and detection of the gene product neophosphotransferase activity. No such activity or vector DNA could be detected in controls of nontransduced cells. In these highly purified cell subsets the distinctive T cell phenotypic markers were continually expressed after transduction, G418 selection and long-term growth. Clinical trials have begun in patients with advanced cancer using heterogeneous populations of CD4+ and CD8+ gene-modified TIL. Current address: Bone Marrow Transplantation, Hadassah University Hospital, 91120 Jerusalem, Israel  相似文献   

16.
One of the BB rat diabetes (diabetes mellitus (DM)) susceptibility genes is an Ian5 mutation resulting in premature apoptosis of naive T cells. Impaired differentiation of regulatory T cells has been suggested as one possible mechanism through which this mutation contributes to antipancreatic autoimmunity. Using Ian5 congenic inbred rats (wild-type (non-lyp BB) and mutated (BB)), we assessed the development of BB regulatory CD8(-)4(+)25(+)T cells and their role in the pathogenesis of DM. BB rats have normal numbers of functional CD8(-)4(+)25(+)Foxp3(+) thymocytes. The proportion of CD25(+) cells among CD8(-)4(+) recent thymic emigrants is also normal while it is increased among more mature CD8(-)4(+) T cells. However, BB CD8(-)4(+)25(+)Foxp3(+) thymocytes fail to undergo homeostatic expansion and survive upon transfer to nude BB rats while Foxp3 expression is reduced in mature CD8(-)4(+)25(+) T cells suggesting that these cells are mostly activated cells. Consistent with this interpretation, peripheral BB CD8(-)4(+)25(+) T cells do not suppress anti-TCR-mediated activation of non-lyp BB CD8(-)4(+)25(-) T cells but rather stimulate it. Furthermore, adoptive transfer of unfractionated T cells from diabetic BB donors induces DM in 71% of the recipients while no DM occurred when donor T cells are depleted of CD8(-)4(+)25(+) cells. Adoptive transfer of 10(6) regulatory non-lyp BB CD8(-)4(+)25(+) T cells to young BB rats protects the recipients from DM. Taken together, these results demonstrate that the BB rat Ian5 mutation alters the survival and function of regulatory CD8(-)4(+)25(+) T cells at the post-thymic level, resulting in clonal expansion of diabetogenic T cells among peripheral CD8(-)4(+)25(+) cells.  相似文献   

17.
Professional APC, notably dendritic cells (DC), are necessary for stimulation and expansion of naive T cells. By means of murine models, the interaction between CD40 on DC and its ligand CD154 has been recognized as an important element for conditioning of DC to prime and expand CTL. We translated these findings into the human system, scrutinizing the ability of DC to initiate clonal expansion of single T cells. DC generated under completely autologous conditions from peripheral blood monocytes were cocultured at a rate of 0.3 cell/well with melanoma-infiltrating T cells; this procedure guaranteed that either a CD4+ or a CD8+ cell interacted with the DC, thus avoiding the contact of more than one T cell to the DC. In the absence of further stimulation, this cloning protocol yielded almost exclusively CD4+ T cell clones that predominantly exhibited a Th2 phenotype. However, cross-linking of CD40 on DC resulted in the induction of IFN-gamma-producing Th1 CD4+ T cell clones. In addition, CD40-activated DC were capable of expanding CD8+ CTL clones. The ratio of CD4 to CD8 T cell clones corresponded to the ratio present in the initial tumor-infiltrating lymphocyte preparation. The CTL clones efficiently lysed autologous tumor cells whereas autologous fibroblasts or MHC-mismatched melanoma cells were not killed. Our findings support the critical role of CD40/CD154 interactions for the induction of cellular immune responses.  相似文献   

18.
19.
Foxp3(+)CD25(+)CD4(+) regulatory T cells (Treg) mediate immunological self-tolerance and suppress immune responses. A subset of dendritic cells (DCs) in the intestine is specialized to induce Treg in a TGF-beta- and retinoic acid-dependent manner to allow for oral tolerance. In this study we compare two major DC subsets from mouse spleen. We find that CD8(+) DEC-205/CD205(+) DCs, but not the major fraction of CD8(-) DC inhibitory receptor-2 (DCIR2)(+) DCs, induce functional Foxp3(+) Treg from Foxp3(-) precursors in the presence of low doses of Ag but without added TGF-beta. CD8(+)CD205(+) DCs preferentially express TGF-beta, and the induction of Treg by these DCs in vitro is blocked by neutralizing Ab to TGF-beta. In contrast, CD8(-)DCIR2(+) DCs better induce Foxp3(+) Treg when exogenous TGF-beta is supplied. In vivo, CD8(+)CD205(+) DCs likewise preferentially induce Treg from adoptively transferred, Ag-specific DO11.10 RAG(-/-) Foxp3(-)CD4(+) T cells, whereas the CD8(-)DCIR2(+) DCs better stimulate natural Foxp3(+) Treg. These results indicate that a subset of DCs in spleen, a systemic lymphoid organ, is specialized to differentiate peripheral Foxp3(+) Treg, in part through the endogenous formation of TGF-beta. Targeting of Ag to these DCs might be useful for inducing Ag-specific Foxp3(+) Treg for treatment of autoimmune diseases, transplant rejection, and allergy.  相似文献   

20.
The differentiation of CD4(+) or CD8(+) T cells following priming of naive cells is central in the establishment of the immune response against pathogens or tumors. However, our understanding of this complex process and the significance of the multiple subsets of differentiation remains controversial. Gene expression profiling has opened new directions of investigation in immunobiology. Nonetheless, the need for substantial amount of biological material often limits its application range. In this study, we have developed procedures to perform microarray analysis on amplified cDNA from low numbers of cells, including primary T lymphocytes, and applied this technology to the study of CD4 and CD8 lineage differentiation. Gene expression profiling was performed on samples of 1000 cells from 10 different subpopulations, defining the major stages of post-thymic CD4(+) or CD8(+) T cell differentiation. Surprisingly, our data revealed that while CD4(+) and CD8(+) T cell gene expression programs diverge at early stages of differentiation, they become increasingly similar as cells reach a late differentiation stage. This suggests that functional heterogeneity between Ag experienced CD4(+) and CD8(+) T cells is more likely to be located early during post-thymic differentiation, and that late stages of differentiation may represent a common end in the development of T-lymphocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号