首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
An acyl coenzyme A:cholesterol acyltransferase activity which directly incorporates palmitoyl coenzyme A into cholesterol esters using endogenous cholesterol as substrate was demonstrated in microsomal preparations from neonatal chick brain. The enzyme showed, at pH 7.4, about 2-fold greater activity than that observed at pH 5.6. Nearly 10-times higher esterifying activity was found in brain microsomes using palmitoyl coenzyme A than that with palmitic acid. The acyltransferase activity was clearly different from the other cholesterol-esterifying enzymes previously found in brain, which incorporated free fatty acids into cholesterol esters and did not require ATP or coenzyme A as cofactors. Chick brain microsomes also incorporated palmitoyl coenzyme A into phospholipids and triacylglycerols. However, most of the radioactivity from this substrate was found in the fatty acid fraction, due to the presence of an acyl coenzyme A hydrolase activity in the enzyme preparations. Therefore, the formation of palmitate was tested during all the experiments. The brain acyltransferase assay conditions were optimized with respect to protein concentration, incubation time and palmitoyl coenzyme A concentration. Microsomal activity was independent of the presence of dithiothreitol in the incubation medium and microsomes can be stored at −40°C for several weeks without losing activity. Addition of fatty acid-free bovine serum albumin to brain microsomal preparations produced a considerable increase in the acyltransferase activity, while acyl coenzyme A hydrolase was clearly inhibited. Results obtained show the existence in neonatal chick brain of an acyl coenzyme A:cholesterol acyltransferase activity similar to that found in a variety of tissues from different species but not previously reported in brain.  相似文献   

2.
Endogenous cholesterol esterification in chick liver microsomes was catalyzed by acyl-CoA:cholesterol acyltransferase using palmitoyl-CoA as substrate. An acyl-CoA hydrolase activity was also found in our microsomal preparations. Acyltransferase activity was stable after microsomes storage at -40 degrees C for 6 weeks and increased linearly with the preincubation time between 0 and 45 min. In our assay conditions, cholesteryl ester formation was linear up to 0.3 mg of microsomal protein in the reaction vial and 10 min of incubation. Maximal activity was found in reactions carried out in the presence of 1-2 mM dithiothreitol and 1.2 mg of bovine serum albumin, while acyl-CoA hydrolase was clearly inhibited by increasing albumin amounts.  相似文献   

3.
The effect of phospholipid fatty acyl composition on the activity of acylcoenzyme A:cholesterol acyltransferase was investigated in rat liver microsomes. Specific phosphatidylcholine replacements were produced by incubating the microsomes with liposomes and bovine liver phospholipid-exchange protein. Although the fatty acid composition of the microsomes was modified appreciably, there was no change in the microsomal phospholipid or cholesterol content. As compared to microsomes enriched for 2 h with dioleoylphosphatidylcholine, those enriched with dipalmitoylphosphatidylcholine exhibited 30-45% less acyl-CoA:cholesterol acyltransferase activity. Enrichment with 1-palmitoyl-2-linoleoylphosphatidylcholine increased acyl-CoA:cholesterol acyltransferase activity by 20%. By contrast, dilinoleoylphosphatidylcholine abolished microsomal acyl-CoA:cholesterol acyltransferase activity almost completely. Addition of cofactors that stimulated microsomal lipid peroxidation inhibited acyl-CoA:cholesterol acyltransferase activity by only 10%, however, and did not increase the inhibition produced by submaximal amounts of dilinoleoylphosphatidylcholine. Certain of the phosphatidylcholine replacements produced changes in palmitoyl-CoA hydrolase, NADPH-dependent lipid peroxidase, glucose-6-phosphatase and UDPglucuronyl transferase activities, but they did not closely correlate with the alterations in acyl-CoA:cholesterol acyltransferase activity. Electron spin resonance measurements with the 5-nitroxystearate probe indicated that microsomal lipid ordering was reduced to a roughly similar extent by dioleoyl- or by dilinoleoylphosphatidylcholine enrichment. Since these enrichments produce widely different effects on acyl-CoA:cholesterol acyltransferase activity, changes in bulk membrane lipid fluidity cannot be the only factor responsible for phospholipid fatty acid compositional effect on acyl-CoA:cholesterol acyltransferase. The present results are more consistent with a modulation resulting from either changes in the lipid microenvironment of acyl-CoA:cholesterol acyltransferase or a direct interaction between specific phosphatidylcholine fatty acyl groups and acyl-CoA:cholesterol acyltransferase.  相似文献   

4.
Acyl-CoA:cholesterol acyltransferase activity in bovine adrenal cortical microsomes was increased by preincubation of microsomes in vitro in the presence of MgCl2. The acyltransferase activity in the microsomes could be inhibited by further incubation in the presence of ATP/MgCl2. These effects appear to complement the known ATP-dependent activation of adrenal cytosolic cholesterol ester hydrolase, which is consistent with the role of the hydrolase in supplying cholesterol for steroidogenesis. These effects are, however, opposite to those recently demonstrated for the rat liver and intestine. Acyl-CoA:cholesterol acyltransferase activity in rat liver can be increased by the addition of cholesterol, as substrate, or by 25-hydroxycholesterol. Such activation was not observed in adrenal microsomal preparations, further suggesting that the mechanisms of regulation of cholesterol esterification differs between these tissues.  相似文献   

5.
Lysophosphatidylcholine acyltransferase, which catalyzes the acylation of lysophosphatidylcholine with fatty acid coenzyme A to form phosphatidylcholine, was assayed in gall-bladder mucosa. In guinea pig gall-bladder the activity parallels that of the microsomal enzyme, glucose-6-phosphatase with 3--4-fold enrichment of the activity in the microsomes. Studies with saturated and unsaturated substrates demonstrated highest activity when oleoyl coenzyme A and palmitoyl lysophosphatidylcholine were used and the lowest activity when palmitoyl coenzyme A and palmitoyl lysophosphatidylcholine were used. This activity was demonstrated in the dog, rabbit, cat, calf and human gall-bladder mucosa; however, a wide variation in the amount was observed. Lysophospholipase, which catalyzes the hydrolysis of lysophosphatidylcholine to glycerophosphorylcholine and fatty acid, was also demonstrated in gall-bladder mucosa.  相似文献   

6.
The saturation of the fat contained in the diet has been observed to affect the acylcoenzyme A:cholesterol acyltransferase (ACAT) activity of rat liver microsomes. ACAT activity in microsomes (Mp) prepared from livers of rats fed a polyunsaturated fat-enriched diet containing 14% sunflower seed oil was 70-90% higher than in microsomes (Ms) prepared from livers of rats fed a saturated fat-enriched diet containing 14% coconut oil. This difference was observed within 20 days after the diets were begun, the earliest time tested, and persisted throughout the 70-day experimental period. The difference was noted at all [1-14C]palmitoyl CoA concentrations tested, 2.5-33 micronM, and at temperatures between 18 and 40 degrees C. Arrhenius plots revealed a single transition in enzyme activity, occurring at 29 degrees C in both microsomal preparations. Likewise, the activation energy above this transition was the same in Mp and Ms, 12.5 KCal/mol. Addition of albumin to the incubation medium increased the ACAT activity of both microsome preparations, but the difference between Mp and Ms persisted. Mp was enriched in polyenoic fatty acids, primarily 18:2 and 20:4, while Ms was enriched in monoenoic acids. Although the 20:4 increase in Mp occurred in all phosphoglycerides, it was especially pronounced in the serine and inositol phosphoglyceride fraction. There were no differences in the phospholipid or cholesterol content, phospholipid head group composition, or protein composition of the two microsomal preparations. The possibility is discussed that the changes in ACAT activity result from the differences in fatty acid composition of the microsomes. Other microsomal enzymes exhibited varying responses to these dietary fatty acid modifications. Palmitoyl CoA hydrolase and NADPH cytochrome c reductase activities were unchanged. UDP glucuronyl transferase activity was 50% higher in Mp, but glucose-6-phosphatase and NADH cytochrome b5 reductase activities were 25% higher in Ms. Therefore, dietary fat modifications do not produce a uniform effect on the activity of microsomal enzymes.  相似文献   

7.
T S Reddy  N G Bazan 《FEBS letters》1985,182(1):111-114
The effect of cationic amphiphilic drugs (CAD) on the synthesis of thiol esters of coenzyme A with long-chain fatty acids was studied in microsomes of rat brain in vitro. The results indicate that propranolol, tetracaine and to a lesser extent, chloroquine, inhibit enzyme activity. Procaine and lidocaine did not inhibit enzyme activity in concentrations up to 0.8 mM. This inhibition seems to be directed primarily to the synthesis of polyunsaturated fatty acyl coenzyme A. The results also suggest that this inhibition may be due to the action of CAD on the microsomal membrane and not to an interaction of these drugs with the fatty acid substrates.  相似文献   

8.
Control of fatty acid distribution in phosphatidylcholine of spinach leaves   总被引:2,自引:0,他引:2  
The acylation of lysophosphatidylcholine by enzyme preparations from spinach leaves was studied. The acylation reaction was followed by the incorporation of (14)C-labeled fatty acids from the respective coenzyme A derivatives into phosphatidylcholine. The subcellular fraction with the highest specific activity was the microsomal fraction. Contaminating thioesterase activity which was encountered was inhibited by treatment with sodium dodecyl sulfate. The acyltransferase activity was only mildly inhibited by sulfhydryl reagents. Labeled fatty acid was primarily incorporated into phosphatidylcholine. When saturated and unsaturated fatty acyl CoA derivatives were used, the saturated derivatives were incorporated primarily into the 1-position of the glycerol moiety, and the unsaturated fatty acids went primarily to the 2-position. This pattern of incorporation agrees with the fatty acid distribution in vivo.  相似文献   

9.
The acyltransferases that catalyze the synthesis of phosphatidic acid from labelled sn-[14C]glycero-3-phosphate and fatty acyl carnitine or coenzyme A derivatives have been shown to be present in both isolated mitochondria and microsomes from rat liver. The major reaction product was phosphatidic acid in both subcellular fractions. A small quantity of lysophosphatidic acid and neutral lipids were produced as by-products. Divalent cations had significant effects on both mitochondrial and microsomal fractions in stimulating acylation using palmitoyl CoA, but not when palmitoyl carnitine was used as the acyl donor. Palmitoyl CoA and palmitoyl carnitine could be used for acylation by both mitochondria and microsomes. Mitochondria were more permeable to palmitoyl carnitine and readily used it as the substrate for acylation. On the other hand, microsomes yielded a better rate with palmitoyl CoA and the rate of acylation from palmitoyl carnitine in microsomes was correlated with the degree of mitochondrial contamination. The enzymes were partially purified from Triton X-100 extracts of subcellular fractions. Based on the differences of substrate utilization, products formed, divalent cation effects, molecular weights, and polarity, the mitochondrial and microsomal acyltransferases appeared to be different enzymes.  相似文献   

10.
Abstract: The biosynthesis of triglyceride from 1,2-diglyceride and long-chain acyl coenzyme A (CoA) was studied in developing rat brain. Diglyceride acyltransferase activity was highest in a microsomal fraction, had a neutral pH optimum, and was stimulated by MgCl2. Palmitoyl CoA and oleoyl CoA served equally well as acyl donors. The enzyme catalyzed the acylation of both endogenous diglyceride and several naturally occurring and synthetic exogenous diglycerides. In addition, short-chain primary and secondary alcohols were found to be acylated under these conditions. A second acylation system, active at low pH, was found to catalyze esterification of ethanol and cholesterol, but not diglyceride, with free fatty acid. These results demonstrate that brain has the capacity to acylate a wide variety of physiological and nonphysiological hydroxyl compounds.  相似文献   

11.
Microsomal acyl CoA:cholesterol acyltransferase (ACAT) is stimulated in vitro and/or in intact cells by proteins that bind and transfer both substrates, cholesterol, and fatty acyl CoA. To resolve the role of fatty acyl CoA binding independent of cholesterol binding/transfer, a protein that exclusively binds fatty acyl CoA (acyl CoA binding protein, ACBP) was compared. ACBP contains an endoplasmic reticulum retention motif and significantly colocalized with acyl-CoA cholesteryl acyltransferase 2 (ACAT2) and endoplasmic reticulum markers in L-cell fibroblasts and hepatoma cells, respectively. In the presence of exogenous cholesterol, ACAT was stimulated in the order: ACBP > sterol carrier protein-2 (SCP-2) > liver fatty acid binding protein (L-FABP). Stimulation was in the same order as the relative affinities of the proteins for fatty acyl CoA. In contrast, in the absence of exogenous cholesterol, these proteins inhibited microsomal ACAT, but in the same order: ACBP > SCP-2 > L-FABP. The extracellular protein BSA stimulated microsomal ACAT regardless of the presence or absence of exogenous cholesterol. Thus, ACBP was the most potent intracellular fatty acyl CoA binding protein in differentially modulating the activity of microsomal ACAT to form cholesteryl esters independent of cholesterol binding/transfer ability.  相似文献   

12.
New acyl coenzyme A: alcohol acyltransferase activity was found in the cell-free extract of Neurospora sp. ATCC 46892 which produces ethyl hexanoate abundantly in its culture broth. This enzyme catalyzed the esterification between ethanol and «-hexanoyl coenzyme A. It also acted on /i-butyryl coenzyme A, but not on acetyl coenzyme A. It was detected mostly in the cytoplasm. The activity was accelerated by high concentrations of sodium chloride, and unsaturated fatty acid did not inhibit it. This enzyme played a major role in biosynthesis of ethyl esters which were formed with ethanol and higher acyl coenzyme As. This is the first report of an alcohol acyltransferase which does not have alcohol acetyltransferase activity.  相似文献   

13.
We provide biochemical evidence that enzymes involved in the synthesis of triacylglycerol, namely acyl coenzyme A:diacylglycerol acyltransferase (DGAT) and acyl coenzyme A:monoacylglycerol acyltransferase (MGAT), are capable of carrying out the acyl coenzyme A:retinol acyltransferase (ARAT) reaction. Among them, DGAT1 appears to have the highest specific activity. The apparent K(m) values of recombinant DGAT1/ARAT for retinol and palmitoyl coenzyme A were determined to be 25.9+/-2.1 microM and 13.9+/-0.3 microM, respectively, both of which are similar to the values previously determined for ARAT in native tissues. A novel selective DGAT1 inhibitor, XP620, inhibits recombinant DGAT1/ARAT at the retinol recognition site. In the differentiated Caco-2 cell membranes, XP620 inhibits approximately 85% of the Caco-2/ARAT activity indicating that DGAT1/ARAT may be the major source of ARAT activity in these cells. Of the two most abundant fatty acyl retinyl esters present in the intact differentiated Caco-2 cells, XP620 selectively inhibits retinyl-oleate formation without influencing the retinyl-palmitate formation. Using this inhibitor, we estimate that approximately 64% of total retinyl ester formation occurs via DGAT1/ARAT. These studies suggest that DGAT1/ARAT is the major enzyme involved in retinyl ester synthesis in Caco-2 cells.  相似文献   

14.
Abstract: Cell-free preparations of rat sciatic nerve were found to catalyze the reduction of fatty acid to alcohol in the presence of NADPH as reducing cofactor. The reductase was membrane-bound and associated primarily with the microsomal fraction. When fatty acid was the substrate, ATP, coenzyme A (CoA), and Mg2+ were required, indicating the formation of acyl CoA prior to reduction. When acyl CoA was used as substrate, the presence of albumin was required to inhibit acyl CoA hydro-lase activity. Fatty acid reductase activity was highest with palmitic and stearic acids, and somewhat lower with lauric and myristic acids. It was inhibited by sulfhydryl reagents, indicating the participation of thiol groups in the reduction. Only traces of long-chain aldehyde could be detected or trapped as semicarbazone. Fatty acid reductase activity in rat sciatic nerve was highest between the second and tenth days after birth and decreased substantially thereafter. Microsomal preparations of sciatic nerve from 10-day-old rats exhibited about four times higher fatty acid reductase activity than brain or spinal cord microsomes from the same animals. Wallerian degeneration and regeneration of adult rat sciatic nerve resulted in enhanced fatty acid reductase activity, which reached a maximum at about 12 days after crush injury.  相似文献   

15.
Glycerol 3-phosphate acylation was studied in type II cells isolated from adult rat lung. The process was found to be largely microsomal. In the microsomes phosphatidic acid is the main product of glycerol 3-phosphate acylation. Glycerol-3-phosphate acyltransferase is rate limiting in the phosphatidic acid formation by the microsomes. Type II cell microsomes incorporate palmitoyl and oleoyl residues into phosphatidic acid at an equal rate if palmitoyl-CoA and oleoyl-CoA are added separately. However, if palmitoyl-CoA and oleoyl-CoA are added as an equimolar mixture the unsaturated fatty acyl moiety is incorporated much faster. Under the latter conditions monoenoic species constitute the most abundant products of glycerol 3-phosphate acylation. The microsomes incorporate both palmitoyl and oleoyl residues readily into both the 1- and 2-position of phosphatidic acid, even when palmitoyl-CoA and oleoyl-CoA are added together. Assuming that both phosphatidic acid phosphatase and cholinephosphotransferase do not discriminate against substrates with an unsaturated acyl moiety at the 1-position and a saturated acyl moiety at the 2-position, the last two observations indicate that a considerable percentage of phosphatidylcholine molecules synthesized de novo may have a saturated fatty acid at the 2-position and an unsaturated fatty acid at the 1-position, and that remodeling at the 1-position may be important for the formation of surfactant dipalmitoylphosphatidylcholine. They also indicate that type II cell microsomes are capable of synthesizing the dipalmitoyl species of phosphatidic acid. However, since there is a preference for the acylation of glycerol 3-phosphate with unsaturated fatty acyl residues, the percentage of dipalmitoyl species in the synthesized phosphatidic acid, and thereby the percentage of dipalmitoyl species in the phosphatidylcholine synthesized de novo, will probably depend on the relative availability of the various acyl-CoA species.  相似文献   

16.
Although the acylation of 1-alkenylglycerophosphocholine in mammalian heart is well documented, the acylation of 1-alkenylglycerophosphoethanolamine in the heart was not reported. In this study, the presence of acyl CoA: 1-alkenylglycerophosphoethanolamine acyltransferase in the guinea pig heart microsomes was demonstrated. 1-Alkenylglycerophosphoethanolamine acyltransferase displayed a high degree of specificity towards acyl-CoA. The order of reactivity with acyl-CoA was found to be: linoleoyl much greater than arachidonyl greater than palmitoyl greater than stearoyl = oleoyl. 1-Acylglycerophosphoethanolamine acyltransferase in the microsomes also exhibited specificity towards acyl-CoA in the following manner: linoleoyl greater than arachidonyl much greater than palmitoyl greater than oleoyl greater than stearoyl. However, such specificity appeared to be dependent on acyl-CoA concentration. The acyl-CoA specificities of both enzymes did not correlate with the C-2 acyl distribution observed in the corresponding microsomal phospholipids. Our results suggest that in addition to the acyl specificity of the acyltransferases, intracellular concentrations of acyl-CoAs may also have an important role in determining the observed acyl patterns of the phospholipids. Based on the acyl specificities, pH profiles, and their responses to heat inactivation and thiol reagents, we conclude that 1-alkenylglycerophosphoethanolamine acyltransferase and 1-acylglycerophosphoethanolamine acyltransferase in guinea-pig heart microsomes are not the same enzyme.  相似文献   

17.
The pattern of chick liver and brain 3-hydroxy-3-methylglutaryl-CoA reductase and its relationship with changes in microsomal membrane fluidity was studied during embryonic and postnatal development. A peak of brain activity was found at 19 days of embryonic development, while liver activity only increased after hatching. A significant increase in cholesterol content of brain microsomes occurred at about 14 days of incubation, decreasing afterwards. No significant variations were observed in liver microsomes during the same period. A similar profile was found in the phospholipid content of both brain and liver microsomes. The cholesterol/lipidic phosphorus molar ratio of brain and liver microsomes did not exhibit significant changes throughout embryonic and postnatal development. These results demonstrate that membrane-mediated control does not regulate the evolution of reductase activity during this developmental period.  相似文献   

18.
Hepatic monoacylglycerol acyltransferase is expressed during the perinatal period in rats and guinea pigs and appears to be related temporally to the availability of fatty acids and to the development of hepatic steatosis. In order to determine when monoacylglycerol acyltransferase activity is expressed in an avian species, its ontogeny was investigated in chick liver total particulate preparations. In livers from 11- to 21-day-old chick embryos, monoacylglycerol acyltransferase specific activity was 34.5 +/- 8.1 nmol/min per mg of total particulate protein. The specific activity decreased 93% to 2.6 +/- 1.3 nmol/min per mg by the 6th day after hatching. The specific activities of fatty acid CoA ligase, diacylglycerol acyltransferase, and microsomal and mitochondrial glycerol-P acyltransferases changed comparatively little during this time period. In the embryos, the monoacylglycerol acyltransferase activity per liver rose 28-fold between the 11th and 21st day, corresponding exactly to the increase in liver total particulate protein during this time. Monoacylglycerol acyltransferase activity in other tissues was 25- to 115-fold lower than observed in liver. Optimal activity was measured using 25 microM palmitoyl-CoA and 50 microM sn-2-monooleoylglycerol. The activity with the 1- and 2-monooleoylglycerol ethers and 1-monooleoylglycerol was very low. In contrast to microsomes from rat liver, about 70% of the product with the 1- and 2-monooleoylglycerol ethers was triradylglycerol, suggesting that the diacylglycerol acyltransferase from chick liver can acylate acyl, alkylglycerols. The activity with sn-2-monooleoylglycerol amide was 12.5% of that observed with the corresponding 2-monooleoylglycerol suggesting that the ester bond is important; the 1-monooleoylglycerol amide was not a substrate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
MK-733 (simvastatin), a potent 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor, was found to inhibit the absorption of cholesterol from the gastrointestinal tract in cholesterol-fed rabbits (Ishida et al. (1988) Biochim. Biophys. Acta 963, 35-41). To clarify the mechanism of action, the effects of MK-733 on acyl coenzyme A:cholesterol acyltransferase (ACAT) and cholesterol esterase activities, which are thought to participate in the absorption of cholesterol, were examined. Dietary administration (0.03% in a 1% cholesterol diet for 7 days, approx. 10 mg/kg) of MK-733 to cholesterol-fed rabbits was found to inhibit the increase in serum total cholesterol levels, and caused a 70% reduction in ACAT activity in microsomes of intestinal mucosa relative to those observed in concurrent control rabbits. MK-733 did not affect cholesterol esterase activity in the cytosol of the intestinal mucosa. The inhibitory effect of MK-733 on cholesterol absorption in cholesterol-fed rabbits is though to be related to a reduction in microsomal ACAT activity in the intestinal mucosa.  相似文献   

20.
The conversion of 1-[14C]acyl-sn-glycero-3-phosphoserine into molecular species of [14C]phosphatidylserine was studied using rat liver homogenate and microsomal preparations in the absence of added fatty acyl moieties. In liver homogenates, 81% of the newly-formed phosphatidylserines were tetraenoic (arachidonoyl) species while saturated, monoenoic, dienoic, trienoic, pentaenoic, and hexaenoic (docosahexaenoyl) species each represented 2-5% of the total. A similar pattern of molecular species was produced in liver microsomes. The selectivity of the microsomal acyl-CoA:1-acyl-sn-glycero-3-phosphoserine acyltransferase towards different acyl-CoA derivatives was also investigated. The relative suitability of the various acyl-CoA esters as substrates was found to be of the following order:20:4 = 18:2 greater than 18:1 greater than 16:0 = 18:0. These results with endogenous acyl donors suggest that the acylation of 1-acyl-sn-glycero-3-phosphoserine may partly account for the enrichment of liver phosphatidylserine in arachidonic acid but does not appear to be primarily responsible for the preponderance of docosahexaenoic acid in this phospholipid. The fatty acid specificity of the acyl-CoA: 1-acyl-sn-glycero-3-phosphoserine acyltransferase may contribute to the preferential formation of arachidonoyl phosphatidylserine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号