首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Doses of 1 Gy or more of X-irradiation killed all B spermatogonia present in the testis, and during the first 3 weeks after irradiation, virtually no new B spermatogonia were formed. The number of Apale spermatogonia decreased during the first cycle of the seminiferous epithelium while the number of Adark spermatogonia only began to decrease during the second cycle after irradiation. In this study, the duration of the cycle of the seminiferous epithelium in the rhesus monkey was estimated to be 10.5 days (SE = 0.2 days). This was determined following the depletion of germinal cells in the seminiferous epithelium during the first 3 weeks after irradiation. The duration of each of the 12 stages of the cycle was also determined. Our observations of the progress of germinal cell depletion revealed that after a dose of X-irradiation sufficient to kill all B spermatogonia, all spermatocytes disappeared from the testis within about 17 days, and all spermatids within about 31 days.  相似文献   

2.
Repopulation of the seminiferous epithelium became evident from Day 75 postirradiation onward after doses of 0.5, 1.0, and 2.0 Gy of X rays. Cell counts in cross sections of seminiferous tubules revealed that during this repopulation the numbers of Apale (Ap) spermatogonia, Adark (Ad) spermatogonia, and B spermatogonia increased simultaneously. After 0.5 Gy the number of spermatogonia increased from approximately 10% of the control level at Day 44 to 90% at Day 200. After 1.0 and 2.0 Gy the numbers of spermatogonia increased from less than 5% at Day 44 to 70% at Days 200 and 370. The number of Ad and B spermatogonia, which are considered to be resting and differentiating spermatogonia, respectively, already had increased when the number of proliferating Ap spermatogonia was still very low. This early inactivation and differentiation of a large part of the population of Ap spermatogonia slows down repopulation of the seminiferous epithelium of the primates. By studying repopulating colonies in whole mounts of seminiferous tubules various types of colonies were found. In colonies consisting of only A spermatogonia, 40% of the A spermatogonia were found to be of the Ad type, which indicates that even before the colony had differentiated, 40% of the A spermatogonia were inactivated into Ad. Differentiating colonies were also found in which one or two generations of germ cells were missing. In some of those colonies it was found that the Ap spermatogonia did not form any B spermatogonia during one or two cycles of the seminiferous epithelium, while in other colonies all Ap spermatogonia present had differentiated into B spermatogonia. This indicates that the differentiation of Ap into B spermatogonia is a stochastic process. When after irradiation the density of the spermatogonia in the epithelium was very low, it could be seen that the populations of Ap and Ad spermatogonia are composed of clones of single, paired, and aligned spermatogonia, which are very similar to the clones of undifferentiated spermatogonia in non-primates.  相似文献   

3.
We investigated stem cell renewal and differentiation in 10- and 15-days-old spermatogonial clones developing in mouse seminiferous epithelium after an extremely large cell loss, inflicted by high doses of the alkylating agent Myleran. The spermatogonial clones arise from cells that resemble the Ais spermatogonia but have a larger nuclear diameter. In spite of their mitotic activity these 'repopulating stem cells' lie mainly isolated or in pairs. This explained by migration and differentiation. Migration appeared to occur at random in all directions along the basement membrane of the seminiferous tubule. After one or more divisions of the stem cells, a second type of cell appears, which is called the 'differentiating spermatogomium'. The time elapsing before this type of cell appears, depends on the dose of Myleran: the larger the dose the later differentiation starts. A relation could be demonstrated between the stage of the cycle of the seminiferous epithelium and the start of differentiation. Differentiating cells were found isolated or in groups of two, four, eight or sixteen cells. Hence we concluded that at least up to their fourth division differentiating cells divide synchronously without degenerations. Three types of division of repopulating stem cells were distinguished, producing (1) two repopulating stem cells, (2) one repopulating stem cell and one cell starting spermatogonial differentiation, or (3) two differentiating cells. Type 1 divisions were found most frequently.  相似文献   

4.
Summary Four different types of spermatogonia were identified in the seminiferous tubules of the Japanese quail: a dark type A (Ad), 2 pale A type (Ap1 and Ap2), and a type B. A model is proposed describing the process of spermatogonial development in the quail. The Ad spermatogonia are considered to be the stem cells. Each divides to produce a new Ad spermatogonium and a Ap1 spermatogonium during Stage IX of the cycle of the seminiferous epithelium. An Ap1 spermatogonium produces two Ap2 spermatogonia during Stage II of the cycle, Ap2 spermatogonia produce four type B spermatogonia during Stage VI of the cycle, and type B spermatogonia produce eight primary spermatocytes during Stage III of the cycle. Consequently, 32 spermatids can result from each division of an Ad spermatogonium. Spermatogonial development in the quail differs from the process described in mammals in that there are fewer mitotic divisions and they are all synchronized with the cycle of the seminiferous epithelium. It is suggested that the fewer mitotic divisions explain why a smaller area of the seminiferous tubule is occupied by a cellular association in the quail than in mammals like the rat, ram and bull. The duration of spermatogenesis from the division of the Ad spermatogonia to sperm release from the seminiferous epithelium was estimated to be 12.77 days.  相似文献   

5.
We investigated stem cell renewal and differentiation in 10- and 15-days-old spermatogonial clones developing in mouse seminiferous epithelium after an extremely large cell loss, inflicted by high doses of the alkylating agent Myleran. The spermatogonial clones arise from cells that resemble the Ais spermatogonia but have a larger nuclear diameter. In spite of their mitotic activity these ‘re-populating stem cells’ lie mainly isolated or in pairs. This is explained by migration and differentiation. Migration appeared to occur at random in all directions along the basement membrane of the seminiferous tubule. After one or more divisions of the stem cells, a second type of cell appears, which is called the ‘differentiating spermatogonium’. The time elapsing before this type of cell appears, depends on the dose of Myleran: the larger the dose the later differentiation starts. A relation could be demonstrated between the stage of the cycle of the seminiferous epithelium and the start of differentiation. Differentiating cells were found isolated or in groups of two, four, eight or sixteen cells. Hence we concluded that at least up to their fourth division differentiating cells divide synchronously without degenerations. Three types of division of repopulating stem cells were distinguished, producing (1) two repopulating stem cells, (2) one repopulating stem cell and one cell starting spermatogonial differentiation, or (3) two differentiating cells. Type 1 divisions were found most frequently.  相似文献   

6.
Renewal of spermatogonia in the monkey (Macaca fascicularis)   总被引:1,自引:0,他引:1  
Populations of different types of spermatogonia and their mitotic activity were analyzed in the monkey Macaca fascicularis: 3 adults aged 5-6 yr and 3 young aged 2-3 mo. Two young and two adult monkeys received injections of 3H-thymidine for radioautographic study of the relationships between Type A spermatogonia: dark Type A (Ad), pale Type A (Ap) and transition Type A (At). In the adult the number of Ad and At spermatogonia did not change significantly throughout the seminiferous epithelium cycle. The number of Ap spermatogonia doubled at Stage VII, and half divided at Stage IX to give rise to B1 spermatogonia. The durations of the seminiferous epithelium cycle and spermatogenesis were estimated as 10.5 days and 42 days respectively. In the young and adult monkeys, some Ap spermatogonia and a lesser number of At spermatogonia were labeled one h after injection of precursor. At longer intervals after injection, the number of labeled At spermatogonia increased significantly, and some Ad as well as Ap spermatogonia were also labeled. These results indicate that Ap spermatogonia are renewal stem cells, and Ad spermatogonia are reserve stem cells. The differences in labeling after isotope exposure suggest that Ap cells may give rise successively to At and Ad cells.  相似文献   

7.
Kinetics of spermatogonia as well as localization in niches have been described in rodents, but rarely in large animals or in species of economical interest. In this regard, and envisioning the possibility of spermatogonial transplantation from donkeys (Equus asinus) to mules (Equus mulus mulus), many variables that may contribute for an enhanced understanding of the spermatogonial biology in donkeys were investigated. Testes from five adult donkeys were routinely processed for high-resolution light microscopy. Donkey seminiferous epithelium can be divided in XII stages based on the development of the acrosomal system. In addition, spermatogonial morphology and morphometric analysis were performed allowing the characterization of two groups of spermatogonia: undifferentiated (Aund) and differentiating (A1, A2, A3, B1 and B2). Aund spermatogonia were present along all XII stages of the seminiferous epithelium cycle of this species, whereas differentiating spermatogonia were only at specific stages. Number of differentiating spermatogonia gradually increased as the cycle progressed, despite the apparent rigid regulation of the balance between mitosis and apoptosis throughout the spermatogenic process. Understanding of spermatogonial biology and kinetics in donkeys, revealed that type Aund spermatogonia are located in specific microenvironments, the spermatogonial niches. The present results enhance understanding of spermatogonial biology in donkeys providing information about subtypes, morphology, number and mitosis/apoptosis along the seminiferous epithelium cycle.  相似文献   

8.
It is important to understand the proliferative activity of the different structures of the male reproductive apparatus in livestock species, such as Sus domesticus, to ensure reproductive efficiency. The main aims of this study were (a) to evaluate the proliferative activity of the spermatogonia in the different stages of the seminiferous cycle and (b) to study the cell proliferation in the epididymal epithelium in each region, identifying the different cells involved. For this, the testes and epididymis of three healthy, sexually mature Sus domesticus boars were used. The organs were processed for light microscopy, and immunohistochemical techniques were used to detect proliferating cell nuclear antigen. The cells immunostaining positively and negatively for proliferating cell nuclear antigen were counted and several parameters and indexes were calculated to evaluate the proliferation in both epithelia, taking into account the stage of the seminiferous epithelium cycle, and, in the case of the epididymal epithelium, the different regions and cells are the same. Finally, a contrast analysis of equality between pairs of means was carried out followed by a least significant differences test, in which differences were considered significant at P < 0.05. In the seminiferous epithelium, the greatest total number of spermatogonia and proliferating spermatogonia was observed in the postmeiotic stages (mainly VII and VIII). The proliferation index of the spermatogonia increased from the meiotic to postmeiotic stages. As regards the epididymal epithelium, the total proliferation index was higher in the caput. In each region, the clear and principal cells showed the highest proliferation index with respect to the total number of cells counted, whereas the proliferation index of each cell with respect to the same type was higher in the clear cells, followed by the narrow and principal cells. In conclusion, the proliferative activity of spermatogonia in the seminiferous epithelium of Sus domesticus is stage-dependent, and mainly occurs in the postmeiotic stages. In the epididymal epithelium, proliferative activity takes place in several cell types and is dependent on the anatomical region of the epididymis. We think that these results may be of importance for understanding the pathologic or reproductive processes in which cell proliferation is involved in the male reproductive system.  相似文献   

9.
The nature of the spermatogenic arrest in cryptorchid C57Bl mice and in jsd/jsd and Sl17H/Sl17H mutant mice was identified by studying whole mounts of seminiferous tubules. In all three types of mice, virtually only A spermatogonia were found, topographically arranged in clones of 1 to 16 (rarely more) cells. These clonal sizes are typical for undifferentiated spermatogonia. The proportion of these cells lying in chains of more than 2 cells (50-70%) was comparable to that seen in epithelial stages VII-VIII in the normal epithelium. It is concluded that in all three types of mice, spermatogenesis is arrested at the point where the undifferentiated A spermatogonia, specifically A(al) spermatogonia, differentiate into the first generation of the differentiating-type spermatogonia, the A1 spermatogonia. The remaining A spermatogonia were proliferating, but no accumulation of spermatogonia was present, as spermatogonial apoptosis also took place. Spermatogonial clones of all sizes were seen to undergo apoptosis, but there were relatively many large apoptotic clones, indicating that the clones became more vulnerable when they became larger. In contrast to what is seen in the normal epithelium, odd-numbered clones, not composed of 2(n) cells, were present, as well as clumps of 2 or more spermatogonial nuclei in the same cytoplasm, in all three types of mice. This indicates a lack of integrity of spermatogonial clones, also observed in other situations with a relative paucity of cells on the basal membrane. It is concluded that the differentiation of the undifferentiated spermatogonia, affected in all three types of mice as well as in vitamin A-deficient animals, is a rather vulnerable point in the spermatogenic developmental pathway.  相似文献   

10.
The radiosensitivity of spermatogonial stem cells to X rays was determined in the various stages of the cycle of the seminiferous epithelium of the CBA mouse. The numbers of undifferentiated spermatogonia present 10 days after graded doses of X rays (0.5-8.0 Gy) were taken as a measure of stem cell survival. Dose-response relationships were generated for each stage of the epithelial cycle by counting spermatogonial numbers and also by using the repopulation index method. Spermatogonial stem cells were found to be most sensitive to X rays during quiescence (stages IV-VII) and most resistant during active proliferation (stages IX-II). The D0 for X rays varied from 1.0 Gy for quiescent spermatogonial stem cells to 2.4 Gy for actively proliferating stem cells. In most epithelial stages the dose-response curves showed no shoulder in the low-dose region.  相似文献   

11.
THE SPERMATOGONIAL STEM CELL POPULATION IN ADULT RATS   总被引:2,自引:0,他引:2  
Radioautographed whole mounted seminiferous tubules from adult rat testes were used to analyse undifferentiated type A spermatogonia at various intervals up to 81 hr following a single injection of 3H-TdR. the data obtained led to the identification of the spermatogonial stem cell and to the formulation of a new model for spermatogonial renewal and differentiation. Undifferentiated type A cells were morphologically alike, but were topographically classified as (1) isolated or (2) paired and aligned. Although labeled isolated A cells were scattered over most stages of the seminiferous epithelium, their proliferative activity varied with the stage; their labeling index was 20-30% in stages I and II, but less than 1% in stages VII and VIII. By tracing the labeled divisions of isolated A spermatogonia in time, it was seen that some daughter cells became separated from one another to form two new isolated cells, while others remained together as paired A spermatogonia. Analysis of two successive waves of labeled mitoses revealed that most paired A spermatogonia continued to proliferate forming four aligned A cells, many of which divided again to produce a chain of eight and so on. the greatest incidence of labeling among paired and aligned A spermatogonia occurred in stages XIII-III. In stage I, where the labeling index was 50%, the calculated proliferative fraction was 1 for these spermatogonia. Between stages II and V, they began to leave mitotic cycle, and during stage V this entire cohort morphologically transformed into A1 spermatogonia. Labeled metaphase curves for undifferentiated A spermatogonia were distinct from any of the curves previously constructed for the six classes of differentiating spermatogonia, especially because of particularly long S and G2 phases in the former. the cell cycle time of paired and aligned A cells was 55 hr, compared to an average of 42 hr for differentiating types A2 to B.  相似文献   

12.
In unirradiated testes large differences were found in the total number of spermatogonia among different monkeys, but the number of spermatogonia in the right and the left testes of the same monkey appeared to be rather similar. During the first 11 days after irradiation with 0.5 to 4.0 Gy of X rays the number of Apale spermatogonia (Ap) decreased to about 13% of the control level, while the number of Adark spermatogonia (Ad) did not change significantly. A significant decrease in the number of Ad spermatogonia was seen at Day 14 together with a significant increase in the number of Ap spermatogonia. It was concluded that the resting Ad spermatogonia are activated into proliferating Ap spermatogonia. After Day 16 the number of both Ap and Ad spermatogonia decreased to low levels. Apparently the new Ap spermatogonia were formed by lethally irradiated Ad spermatogonia and degenerated while attempting to divide. The activation of the Ad spermatogonia was found to take place throughout the cycle of the seminiferous epithelium. Serum FSH, LH, and testosterone levels were measured before and after irradiation. Serum FSH levels already had increased during the first week after irradiation to 160% of the control level. Serum LH levels increased between 18 and 25 days after irradiation. Serum testosterone levels did not change at all. The results found in the rhesus monkey are in line with those found in humans, but due to the presence of Ad spermatogonia they differ from those obtained in non-primates.  相似文献   

13.
Techniques of quantitative stereology have been utilized to determine the relative volume occupied by the Sertoli cells and germ cells in two particular stages (I and VII) of the cycle of the seminiferous epithelium. Sertoli cell volume ranged from 24% in stage I of the cycle to 32% in stage VII. Early germ cells occupied 3.4% in stage I (spermatogonia) and 8.7% in stage VII (spermatogonia and preleptotene spermatocytes). Pachytene spermatocytes occupied 15% (Stage I) and 24% (stage VII) of the total volume of the seminiferous epithelium. In stage I the two generations of spermatids comprised 58% of the total epithelium by volume, whereas in stage VII, after spermiation, the acrosome phase spermatids occupied 35% of the total seminiferous epithelial volume.  相似文献   

14.
The distribution of type A spermatogonia was studied using drawings of cross-sectioned tubules at various stages of the spermatogenic cycle of perfusion-fixed, epoxy-embedded mouse testis. Spermatogonia were classified as either positioned opposite the interstitium or opposite the region where two tubules make contact or in a defined, intermediate region at which the two tubules diverged. At stage V, the population of type A spermatogonia, comprised of A(s) through A(al) cells, is randomly positioned around the periphery of the seminiferous tubule. The A(s) through A(al) population becomes nonrandomly distributed beginning at stage VI, being located primarily in regions where the tubule opposes the interstitium, and remains nonrandom through stage III of the next cycle. The A(1) spermatogonia of stage VII, derived from most A(pr) and A(al) spermatogonia, and the A(2) spermatogonia of stage IX, derived from the A(1) spermatogonia, are also nonrandomly positioned opposing the interstitium. However, the A(3) population of stage XI becomes randomly distributed around the tubule. To our knowledge, these are the first data to show that the more primitive spermatogonial types (A(s) to A(al)) move to specific sites within the seminiferous tubule. Division of the regularly spaced, more primitive spermatogonia (A(s) to A(al)) leads to the spread of their progeny (A(1) to A(4)) laterally along the base of the seminiferous tubule. The lateral spread from more or less evenly spaced foci ensures that spermatogenesis is conducted uniformly around the entire tubule. The data also suggest that the position of a seminiferous tubule in the mouse is stabilized in relationship to other seminiferous tubules.  相似文献   

15.
Two intraperitoneal injections with an interval of 4 h between them, of rat testicular extract into adult male mice causes a decrease in the production of A spermatogonia in the compartment of undifferentiated A (As, Apr and Aal) spermatogonia. A significant decrease in the total number of A spermatogonia in stages VII and VIII of the cycle of the seminiferous epithelium was found at 2, 4 and especially 5, 7 and 8 days after treatment. Extracts of rat liver and rat spleen were without effect. In addition, an extract of rat testis containing very few spermatogonia had no effect. It was concluded that the active substance in the extract is synthesized and/or specifically accumulated in the spermatogonial compartment of the testis. Thus the active substance is tissue-specific but not species-specific, since extracts of both rat and bull testes were effective after injection into mice. It is inferred from the data that the effect of injection of testicular extracts is unlikely to be due to cytotoxicity, hormonal changes in the tubular environment or to an immunologic reaction, but is probably due to a spermatogonial chalone. This chalone partially inhibits proliferation of early type A spermatogonia in the normal mouse testis.  相似文献   

16.
NuMA is a well-characterized organizer of the mitotic spindle, which is believed to play a structural role in interphase nucleus. We studied the expression of NuMA in rat seminiferous epithelium in detail. Different stages of the cycle of the seminiferous epithelium were identified using transillumination. Corresponding areas were microdissected and analysed using immunofluorescence, immunohistochemistry, or immunoblotting. NuMA was expressed in Sertoli cells, proliferating type A and B spermatogonia, and early spermatids but it was absent in late spermatids and mature spermatozoa. Interestingly, NuMA-positive primary spermatocytes lost their nuclear NuMA at the beginning of long-lasting prophase of the first meiotic division. A strong expression was again observed at the end of the prophase and finally, a redistribution of NuMA into pole regions of the meiotic spindle was observed in first and second meiotic divisions. In immunoblotting, a single 250-kDa protein present in all stages of the rat seminiferous epithelial cycle was detected. Our results show that NuMA is not essential for the organization of nuclear structure in all cell types and suggest that its presence is more likely connected to the proliferation phase of the cells. They also suggest that NuMA may play an important role in meiotic cell division.  相似文献   

17.
目的阐明性成熟前食蟹猴生精细胞的发育进程。方法分别采集性成熟前不同年龄(0岁、0.5岁、1岁、1.5岁、2岁、2.5岁、3岁、3.5岁、4岁)食蟹猴睾丸,制作石蜡切片,进行HE染色和PAS/H染色。根据生精细胞的染色特性,分析性成熟前食蟹猴生精细胞的发育进程,并对食蟹猴精原干细胞进行初步鉴定。结果 HE染色结果显示,1岁及以下食蟹猴生精上皮上生精细胞仅有精原干细胞(包括Ad、At及Ap型精原细胞),1.5岁食蟹猴生精上皮上开始出现B型精原细胞,3岁食蟹猴生精上皮上出现精母细胞,4岁食蟹猴生精上皮上出现从精原干细胞到精子的所有生殖细胞。PAS/H染色结果显示,1~2.5岁食蟹猴Ad型精原细胞胞质呈PAS阳性,At型精原细胞胞质呈PAS弱阳性,Ap型精原细胞胞质呈PAS阴性;其他生精细胞及支持细胞胞质呈阴性;0.5岁及以下,3岁及以上食蟹猴生精细胞的胞质PAS/H染色特性与前者存在差异。结论本文详细阐述了性成熟前食蟹猴生精细胞随年龄增长的渐次性发育模式,并建立了性成熟前食蟹猴精原干细胞原位鉴定的一种新方法,这些研究结果为食蟹猴精原干细胞的其他相关研究奠定了基础。  相似文献   

18.
The effect of vitamin A deficiency and vitamin A replacement on spermatogenesis was studied in mice. Breeding pairs of Cpb-N mice were given a vitamin A-deficient diet for at least 4 wk. The born male mice received the same diet and developed signs of vitamin A deficiency at the age of 14-16 wk. At that time, only Sertoli cells and A spermatogonia were present in the seminiferous epithelium. These spermatogonia were topographically arranged as single and paired cells and as clones of 4, 8 and more cells. A few mitoses of single, paired, and clones of 4 A spermatogonia were found, which were randomly distributed over the seminiferous epithelium. When vitamin A-deficient mice were treated with retinol-acetate combined with a normal vitamin A-containing diet, spermatogenesis restarted again synchronously. Only a few successive stages of the cycle of the seminiferous epithelium were present up to at least 43 days after vitamin A replacement. After 20 days, 98.3% of the seminiferous tubules were synchronized, showing pachytene spermatocytes as the most advanced cell type, mostly being in epithelium stages IX-XII. After 35 and 43 days, spermatogenesis was complete in 99.6% of the tubular cross sections, and most tubular cross sections were in stages IV-VII of the cycle of the seminiferous epithelium. The degree of synchronization was comparable or even higher than found in rats. The rate of development of the spermatogenic cells between 8 and 43 days after vitamin A replacement seemed to be similar to that in normal mice. Assuming that the rate of development of the spermatogenic cells is also normal during the first 8 days after vitamin A replacement, it can be deduced that the preleptotene spermatocytes, present after 8 days, were A spermatogonia in the beginning of stage VIII at the moment of vitamin A replacement. These results indicate that the mouse can be used as a model to study epithelial stage-dependent processes in the testis.  相似文献   

19.
The spermatogonia and early spermatocytes of 13 samples of rat seminiferous epithelium (about 0-05 mm2 each) were mapped from electron micrographs of serial sections. Clones of cells, connected by cytoplasmic bridges (syncytia of 2-100 cells), in various stages of spermatogenic development were identified. Maps of 7 separate areas are illustrated. It is concluded that, contrary to the models of spermatogonial proliferation based on light-microscope observations, regions of seminiferous epithelium which are identical in terms of spermatid and spermatocyte criteria have, in fact, quantitative and qualitative differences in their spermatogonial population. The data are interpreted that for a given epithelial area there is a periodic build-up of spermatogonia which then produce several successive quanta of spermatocytes and when the spermatogonia are depleted the process repeats. That cell numbers less than double following a mitotic cycle has generally been attributed to systematic degeneration. Evidence from electron microscopy indicates, however, that at the mitotic peaks not all the syncytia undergo division but that some remain arrested. Similarly, within a dividing syncytium a few cells do not divide while they advance developmentally with the syncytium as a whole. The observed large size of spermatocyte syncytia further argues against systematic degeneration with its attendant fragmentation of syncytia.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号