首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Epstein-Barr virus infection has been epidemiologically associated with the development of multiple autoimmune diseases, particularly systemic lupus erythematosus and multiple sclerosis. Currently, there is no known mechanism that can account for these associations. The germinal-center (GC) model of EBV infection and persistence proposes that EBV gains access to the memory B cell compartment via GC reactions by driving infected cells to differentiate using the virus-encoded LMP1 and LMP2a proteins, which act as functional homologues of CD40 and the B cell receptor, respectively. The ability of LMP2a, when expressed in mice, to allow escape of autoreactive B cells suggests that it could perform a similar role in infected GC B cells, permitting the survival of potentially pathogenic autoreactive B cells. To test this hypothesis, we cloned and expressed antibodies from EBV+ and EBV memory B cells present during acute infection and profiled their self- and polyreactivity. We find that EBV does persist within self- and polyreactive B cells but find no evidence that it favors the survival of pathogenic autoreactive B cells. On the contrary, EBV+ memory B cells express lower levels of self-reactive and especially polyreactive antibodies than their uninfected counterparts do. Our work suggests that EBV has only a modest effect on the GC process, which allows it to access and persist within a subtly unique niche of the memory compartment characterized by relatively low levels of self- and polyreactivity. We suggest that this might reflect an active process where EBV and its human host have coevolved so as to minimize the virus''s potential to contribute to autoimmune disease.  相似文献   

2.
Although Epstein-Barr virus (EBV) usually establishes an asymptomatic lifelong infection, it is also implicated in the development of germinal center (GC) B-cell-derived malignancies, including Hodgkin's lymphoma (HL). Following primary infection, EBV remains latent in the memory B-cell population, where host-driven methylation of viral DNA contributes to the repression of viral gene expression. However, it is still unclear how EBV harnesses the cell's methylation machinery in B cells, how this contributes to viral persistence, and what impact this has on the methylation of cellular genes. We show that EBV infection of GC B cells is followed by upregulation of the DNA methyltransferase DNMT3A and downregulation of DNMT3B and DNMT1. We show that the EBV latent membrane protein 1 (LMP1) oncogene downregulates DNMT1 and that DNMT3A binds to the viral promoter Wp. Genome-wide promoter arrays performed with these cells showed that EBV-associated methylation changes in cellular genes were not randomly distributed across the genome but clustered at chromosomal locations, consistent with an instructive pattern of methylation, and were in part determined by promoter CpG content. Both DNMT3B and DNMT1 were downregulated and DNMT3A was upregulated in HL cell lines, recapitulating the pattern of expression observed following EBV infection of GC B cells. We also found, by using gene expression profiling, that genes differentially expressed following EBV infection of GC B cells were significantly enriched for those reported to be differentially expressed in HL. These observations suggest that EBV-infected GC B cells are a useful model for studying virus-associated changes contributing to the pathogenesis of HL.  相似文献   

3.
Epstein-Barr virus (EBV) uses nasal mucosa-associated lymphoid tissue (NALT) as a portal of entry to establish life-long persistence in memory B cells. We previously showed that naïve and memory B cells from NALT are equally susceptible to EBV infection. Here we show that memory B cells from NALT are significantly more susceptible to EBV infection than those from remote lymphatic organs. We identify β1 integrin, which is expressed the most by naïve B cells of distinct lymphoid origin and by memory B cells from NALT, as a mediator of increased susceptibility to infection by EBV. Furthermore, we show that BMRF-2-β1 integrin interaction and the downstream signal transduction pathway are critical for postbinding events. An increase of β1 integrin expression in peripheral blood memory B cells provoked by CD40 stimulation plus B-cell receptor cross-linking increased the susceptibility of non-NALT memory B cells to EBV infection. Thus, EBV seems to utilize the increased activation status of memory B cells residing in the NALT to establish and ensure persistence.Epstein-Barr virus (EBV) is a ubiquitous human gammaherpesvirus that is transmitted via saliva and infects more than 90% of the world''s population (21). Much of EBV''s medical importance relates to its association with B-cell malignancies, including Burkitt''s lymphoma, Hodgkin''s lymphoma, and posttransplant lymphoproliferative disease (21). The oncogenic potential of EBV is clearly illustrated by its unique capability to transform B cells in vitro (21).In the current paradigm, EBV infects naïve B cells in tonsils in vivo (32). EBV is present mainly as a latent virus; upon infection, EBV expresses distinct patterns of its latency genes depending upon distinct B-cell differentiation stages, varying from expression of all 10 known EBV latency genes in naïve B cells to the complete absence of EBV mRNA expression in resting memory B cells. This has led to the model that EBV, by virtue of expression of its latency genes, provides cell survival signals in naïve B cells (32). In particular, recent data suggest that EBV expedites the antigen-driven somatic hypermutation and selection of B cells taking place in germinal centers (GC) (26). Chaganti et al. challenged the current paradigm by showing for patients with primary EBV infection that EBV avoids GC transit and directly infects memory B cells (6). This report is consistent with in vitro experiments showing that EBV is able to infect memory B cells (9, 10), in addition to the well-accepted susceptibility of naïve and GC B cells to EBV.Irrespective of which B-cell subset is the primary target of EBV, its propagation within the host is linked to proliferation of infected B cells, which deliver latent EBV to daughter cells, or, more rarely, to switching of EBV to lytic infection (21). The latter process can eventually be triggered by the differentiation of infected memory B cells into plasma cells and results in the release of virions that may subsequently infect new B cells (17). Importantly, transmission of EBV to naïve hosts is thought to occur via droplets loaded with virions (21). Thus, lytic replication of EBV takes place best in nasal mucosa-associated lymphoid tissue (NALT), which will release EBV into the saliva, generating infectious droplets. Therefore, the NALT is the point of EBV transmission, i.e., the portal of entry of EBV as well as a shedding organ for further transmission (21).The attachment of EBV to B cells is mediated by the direct interaction of EBV glycoprotein gp350/220 with cellular CD21, initiating receptor-mediated endocytosis. After binding to CD21, EBV gp42 can interact with host HLA class II molecules, leading to a conformational change in the viral glycoproteins and triggering fusion with the host cell membrane (12, 28). Nevertheless, experimental data suggest that CD21 and HLA class II molecules are dispensable for the infection of B cells (14). Notably, in polarized oropharyngeal epithelial cells, which lack CD21, interactions between β1 integrin and the EBV glycoprotein BMRF-2 via its Arg-Gly-Asp (RGD) motif are critical for infection (34, 38, 39). The role of β1 integrin in mediating EBV infection of memory B cells from NALT or non-NALT is unknown.We recently demonstrated that tonsillar memory B cells are much more susceptible to EBV infection than those from the peripheral blood, originating from various lymphoid tissues (9). Thus, tonsillar memory B cells seem to express properties which render them more susceptible to EBV infection than their counterparts of other lymphatic origin.Here we hypothesized that memory B cells from the NALT exhibit specific properties rendering them highly susceptible to EBV infection. Indeed, in this work, we found that memory B cells from the NALT are distinguishable from memory B cells of other lymphoid tissue by their β1 integrin expression levels, and thus their activation status, and that this higher expression level is a critical factor in their greater susceptibility to EBV infection.  相似文献   

4.
Epstein-Barr virus (EBV) uses tonsils as the portal of entry to establish persistent infection. EBV is found in various B-cell subsets in tonsils but exclusively in memory B cells in peripheral blood. The in vitro susceptibilities of B-cell subsets to EBV infection have been studied solely qualitatively. In this work, we examined quantitatively the in vitro susceptibilities of various B-cell subsets from different tissue origins to EBV infection. First, we established a centrifugation-based inoculation protocol (spinoculation) that resulted in a significantly increased proportion of infected cells compared to that obtained by conventional inoculation, enabling a detailed susceptibility analysis. Importantly, B-cell infection occurred via the known EBV receptors and infected cells showed EBV mRNA expression patterns similar to those observed after conventional inoculation, validating our approach. Tonsillar na?ve and memory B cells were infected ex vivo at similar frequencies. In contrast, memory B cells from blood, which represent B cells from various lymphoid tissues, were infected at lower frequencies than their na?ve counterparts. Immunoglobulin A (IgA)-positive or IgG-positive tonsillar memory B cells were significantly more susceptible to EBV infection than IgM-positive counterparts. Memory B cells were transformed with lower efficiency than na?ve B cells. This result was paralleled by lower proliferation rates. In summary, these data suggest that EBV exploits the B-cell differentiation status and tissue origin to establish persistent infection.  相似文献   

5.
Peripheral blood memory B cells latently infected with EBV bear somatic mutations and are typically isotype switched consistent with being classical Ag-selected memory B cells. In this work, we performed a comparative analysis of the expressed Ig genes between large sets of EBV-infected and uninfected peripheral blood B cells, isolated from the same infectious mononucleosis patients, to determine whether differences exist that could reveal the influence of EBV on the production and maintenance of these cells. We observed that EBV(+) cells on average accumulated more somatic hypermutations than EBV(-) cells. In addition, they had more replacement mutations and a higher replacement-silent ratio of mutations in their CDRs. We also found that EBV occupies a skewed niche within the memory compartment, due to its exclusion from the CD27(+)IgD(+)IgM(+) subset, but this skewing does not affect the overall structure of the compartment. These results indicate that EBV impacts the mutation and selection process of infected cells but that once they enter memory they cannot be distinguished from uninfected cells by host homeostasis mechanisms.  相似文献   

6.
In vitro, Epstein-Barr virus (EBV) will infect any resting B cell, driving it out of the resting state to become an activated proliferating lymphoblast. Paradoxically, EBV persists in vivo in a quiescent state in resting memory B cells that circulate in the peripheral blood. How does the virus get there, and with such specificity for the memory compartment? An explanation comes from the idea that two genes encoded by the virus--LMP1 and LMP2A--allow EBV to exploit the normal pathways of B-cell differentiation so that the EBV-infected B blast can become a resting memory cell.  相似文献   

7.
Epstein-Barr virus (EBV) is a ubiquitous human herpesvirus that persists in the body for life after primary infection. The primary site of EBV persistence is the memory B lymphocyte, but whether the virus initially infects na?ve or memory B cells is still disputed. We have analyzed EBV infection in nine cases of X-linked hyper-immunoglobulin M (hyper-IgM) syndrome who, due to a mutation in CD40 ligand gene, do not have a classical, class-switched memory B-cell population (IgD(-) CD27(+)). We found evidence of EBV infection in 67% of cases, which is similar to the infection rate found in the general United Kingdom population (60 to 70% for the relevant age range). We detected EBV DNA in peripheral blood B cells and showed in one case that the infection was restricted to the small population of nonclassical, germinal center-independent memory B cells (IgD(+) CD27(+)). Detection of EBV small RNAs, latent membrane protein 2, and EBV nuclear antigen 3C expression in peripheral blood suggests full latent viral gene expression in this population. Analysis of EBV DNA in serial samples showed variability over time, suggesting cycles of infection and loss. Our results demonstrate that short-term EBV persistence can occur in the absence of a germinal center reaction and a classical memory B-cell population.  相似文献   

8.
Endemic Burkitt''s lymphoma (eBL) arises from the germinal center (GC). It is a common tumor of young children in tropical Africa and its occurrence is closely linked geographically with the incidence of P. falciparum malaria. This association was noted more than 50 years ago. Since then we have learned that eBL contains the oncogenic herpes virus Epstein-Barr virus (EBV) and a defining translocation that activates the c-myc oncogene. However the link to malaria has never been explained. Here we provide evidence for a mechanism arising in the GC to explain this association. Accumulated evidence suggests that eBL arises in the GC when deregulated expression of AID (Activation-induced cytidine deaminase) causes a c-myc translocation in a cell latently infected with Epstein-Barr virus (EBV). Here we show that P. falciparum targets GC B cells via multiple pathways to increase the risk of eBL. 1. It causes deregulated expression of AID, thereby increasing the risk of a c-myc translocation. 2. It increases the number of B cells transiting the GC. 3. It dramatically increases the frequency of these cells that are infected with EBV and therefore protected from c-myc induced apoptosis. We propose that these activities combine synergistically to dramatically increase the incidence of eBL in individuals infected with malaria.  相似文献   

9.
Selection of B cells subjected to hypermutation in germinal centres (GC) during T cell-dependent (TD) antibody responses yields memory cells and long-lived plasma cells that produce high affinity antibodies biased to foreign antigens rather than self-antigens. GC also form in T-independent (TI) responses to polysaccharide antigens but failed selection results in GC involution and memory cells are not generated. To date there are no markers that allow phenotypic distinction of T-dependent and TI germinal centre B cells. We compared the global gene expression of GC B cells purified from mice immunized with either TD or TI antigens and identified eighty genes that are differentially expressed in TD GC. Significantly, the largest cluster comprises genes involved in growth and guidance of neuron axons such as Plexin B2, Basp1, Nelf, Shh, Sc4mol and Sult4alpha. This is consistent with formation of long neurite (axon and dendrite)-like structures by mouse and human GC B cells, which may facilitate T:B cell interactions within GC, affinity maturation and B cell memory formation. Expression of BASP1 and PLEXIN B2 protein is very low or undetectable in resting and TI GC B cells, but markedly upregulated in GC B cells induced in the presence of T cell help. Finally we show some of the axon growth genes upregulated in TD-GC B cells including Basp1, Shh, Sult4alpha, Sc4mol are also preferentially expressed in post-GC B cell neoplasms.  相似文献   

10.
The Epstein-Barr virus (EBV) is transmitted from host-to-host via saliva and is associated with epithelial malignancies including nasopharyngeal carcinoma (NPC) and some forms of gastric carcinoma (GC). Nevertheless, EBV does not transform epithelial cells in vitro where it is rapidly lost from infected primary epithelial cells or epithelial tumor cells. Long-term infection by EBV, however, can be established in hTERT-immortalized nasopharyngeal epithelial cells. Here, we hypothesized that increased telomerase activity in epithelial cells enhances their susceptibility to infection by EBV. Using HONE-1, AGS and HEK293 cells we generated epithelial model cell lines with increased or suppressed telomerase activity by stable ectopic expression of hTERT or of a catalytically inactive, dominant negative hTERT mutant. Infection experiments with recombinant prototypic EBV (rB95.8), recombinant NPC EBV (rM81) with increased epithelial cell tropism compared to B95.8, or recombinant B95.8 EBV with BZLF1-knockout that is not able to undergo lytic replication, revealed that infection frequencies positively correlate with telomerase activity in AGS cells but also partly depend on the cellular background. AGS cells with increased telomerase activity showed increased expression mainly of latent EBV genes, suggesting that increased telomerase activity directly acts on the EBV infection of epithelial cells by facilitating latent EBV gene expression early upon virus inoculation. Thus, our results indicate that infection of epithelial cells by EBV is a very selective process involving, among others, telomerase activity and cellular background to allow for optimized host-to-host transmission via saliva.  相似文献   

11.
Epstein-Barr virus (EBV) establishes a latent infection in B cells in the blood, and the latent EBV load in healthy individuals is generally stable over time, maintaining a “set point.” It is unknown if the EBV load changes after long-term antiviral therapy in healthy individuals. We treated volunteers with either valacyclovir (valaciclovir) or no antiviral therapy for 1 year and measured the amount of EBV DNA in B cells every 3 months with a novel, highly sensitive assay. The number of EBV-infected B cells decreased in subjects receiving valacyclovir (half-life of 11 months; P = 0.02) but not in controls (half-life of 31 years; P = 0.86). The difference in the slopes of the lines for the number of EBV-infected B cells over time for the valacyclovir group versus the control group approached significance (P = 0.054). In contrast, the number of EBV DNA copies per B cell remained unchanged in both groups (P = 0.62 and P = 0.92 for the control and valacyclovir groups, respectively). Valacyclovir reduces the frequency of EBV-infected B cells when administered over a long period and, in theory, might allow eradication of EBV from the body if reinfection does not occur.Primary infection with Epstein-Barr virus (EBV) is frequently asymptomatic in infants and children, but infection of adolescents and young adults can result in infectious mononucleosis. EBV is associated with several malignancies, including Burkitt''s lymphoma, nasopharyngeal carcinoma, Hodgkin''s disease, and lymphoproliferative disease, in immunocompromised and immunocompetent persons (6, 20).In healthy EBV-seropositive persons, about 1 to 10 in 105 peripheral B cells are infected with EBV (14). The virus establishes latency in memory B cells. The level of the latent EBV load in healthy individuals remains stable over time, maintaining a “set point” for each individual (19). It is uncertain how this “set point” is maintained, but the latent EBV load is thought to reflect a balance between removal of EBV-infected cells due to the half-life of memory B cells and reinfection of new memory B cells during virus reactivation. The EBV genome replicates when B cells latently infected with EBV divide using the host DNA polymerase, which is not sensitive to the action of acyclovir. However, when the virus reactivates in latently infected B cells, EBV replicates using the viral DNA polymerase, which is inhibited by the phosphorylated form of acyclovir. Therefore, blocking production of new virus with acyclovir should decrease the latent EBV load at a rate equivalent to the half-life of memory B cells. Patients with zoster who were treated with oral acyclovir for 28 days showed no reduction in the EBV load in the blood, despite complete inhibition of EBV shedding in the saliva (23). These results suggested that antiviral therapy for longer than 28 days is necessary to detect a reduction in the EBV load in the blood.In this study, we administered either valacyclovir (valaciclovir) (which is absorbed more effectively than acyclovir and metabolized to acyclovir) or no antiviral to healthy volunteers for 12 months and measured the level of EBV DNA in the blood every 3 months.  相似文献   

12.
Epstein Barr virus (EBV) exhibits a distinct tropism for both B cells and epithelial cells. The virus persists as a latent infection of memory B cells in healthy individuals, but a role for infection of normal epithelial is also likely. Infection of B cells is initiated by the interaction of the major EBV glycoprotein gp350 with CD21 on the B cell surface. Fusion is triggered by the interaction of the EBV glycoprotein, gp42 with HLA class II, and is thereafter mediated by the core fusion complex, gH/gL/gp42. In contrast, direct infection of CD21-negative epithelial cells is inefficient, but efficient infection can be achieved by a process called transfer infection. In this study, we characterise the molecular interactions involved in the three stages of transfer infection of epithelial cells: (i) CD21-mediated co-capping of EBV and integrins on B cells, and activation of the adhesion molecules, (ii) conjugate formation between EBV-loaded B cells and epithelial cells via the capped adhesion molecules, and (iii) interaction of EBV glycoproteins with epithelial cells, with subsequent fusion and uptake of virions. Infection of epithelial cells required the EBV gH and gL glycoproteins, but not gp42. Using an in vitro model of normal polarized epithelia, we demonstrated that polarization of the EBV receptor(s) and adhesion molecules restricted transfer infection to the basolateral surface. Furthermore, the adhesions between EBV-loaded B cells and the basolateral surface of epithelial cells included CD11b on the B cell interacting with heparan sulphate moieties of CD44v3 and LEEP-CAM on epithelial cells. Consequently, transfer infection was efficiently mediated via CD11b-positive memory B cells but not by CD11b–negative naïve B cells. Together, these findings have important implications for understanding the mechanisms of EBV infection of normal and pre-malignant epithelial cells in vivo.  相似文献   

13.
Epstein-Barr virus (EBV) is associated with human cancers such as nasopharyngeal carcinoma, Burkitt’s lymphoma, Hodgkin’s disease, and gastric carcinoma (GC). EBV is associated with about 10% of all GC cases globally. EBV-associated GC has distinct features from EBV-negative GC. However, it is still unclear if EBV infection has any effect on GC chemoresistance. Cell proliferation assay, cell cycle analysis, and active caspase Western blot revealed that the EBV-positive GC cell line (AGS-EBV) showed chemoresistance to docetaxel compared to the EBV-negative GC cell line (AGS). Docetaxel treatment increased expression of Bax similarly in AGS and AGS-EBV cell lines. However, Bcl-2 induction was markedly higher in AGS-EBV cells, after docetaxel treatment. Although docetaxel increased the expression of p53 to a similar extent in both cell lines, induction of p21 in AGS-EBV cells was lower than in AGS cells. Furthermore, expression of survivin was higher in AGS-EBV cells than in AGS cells following docetaxel treatment as well as at basal state. EBVlytic gene expression was induced by docetaxel treatment in AGS-EBV cells. The results suggest that EBV infection and lytic induction confers chemoresistance to GC, possibly by regulating cellular and EBV latent and lytic gene expression.  相似文献   

14.
Germinal center (GC) B cells are highly susceptible to apoptosis. The cellular mechanism regulating this sensitivity, however, has not yet been fully delineated. To investigate whether follicular dendritic cells (FDC) are capable of regulating the susceptibility to apoptosis of GC B cells, we constructed a GC model in vitro: emperipolesis of tonsillar B cells by FDC. We then analyzed the expressions of apoptosis-related proteins (Bcl-2 and Fas) on the cells by three-color flow cytometry. B cells nonentrapped by FDC decreased rapidly in number owing to early apoptosis in vitro, whereas entrapped B cells were rescued for at least 18 h and showed peculiar regulation of Fas and Bcl-2. GC founder cells (CD38+, IgD+; GCFC) and GC B cells (CD38+, IgD-) showed approximately a twofold increased expression of Fas; in contrast, mantle zone B cells (CD38-, IgD+) and memory B cells (CD38-, IgD-) showed no changes. Bcl-2 expression in mantle zone and memory B cells was reduced by approximately one-half; however, GCFC and GC B cells continued to express little Bcl-2 and this did not change. Our findings strongly suggest that FDC play a part in the modulation of the susceptibility to apoptosis on B cells within GC.  相似文献   

15.
EBV persistence involves strict selection of latently infected B cells   总被引:10,自引:0,他引:10  
EBV is found preferentially in IgD- B cells in the peripheral blood. This has led to the proposal that the recirculating memory B cell pool is the site of long-lived persistent infection. In this paper we have used CD27, a newly identified specific marker for memory B cells, to test this hypothesis. We show that EBV is tightly restricted in its expression. Less than 1 in 1000 of the infected cells in the peripheral blood are naive (IgD+, CD27-) and <1 in 250 are IgD+ memory cells. Furthermore, EBV was undetectable in the self-renewing peripheral CD5+ or B1 cells, a subset that has not been through a germinal center. No such restriction was observed in tonsillar B cells. Therefore, the virus has access to a range of B cell subsets in the lymph nodes but is tightly restricted to a specific long-lived compartment of B cells, the IgD-, CD27+, and CD5- memory B cells, in the periphery. We suggest that access to this compartment is essential to allow the growth-promoting latent genes to be switched off to create a site of persistent infection that is neither pathogenic nor a target for immunosurveillance.  相似文献   

16.
Innate immunity has recently gained renewed interest in its ability to regulate adaptive immunity. Among the innate immune signals, CpG DNA has revealed its potential as a vaccine adjuvant. However, the cellular mechanism for the effect of CpG DNA on the humoral immune response is not well understood. Here, we investigated the effects of CpG DNA on human B cell differentiation using highly purified B cell subsets: naive, germinal center (GC), and memory B cells. In the in vitro culture system that mimics the primary or secondary immune response in vivo, CpG DNA markedly augmented the proliferation and generation of plasma cells from naive and memory B cells. CpG DNA dramatically increased plasma cell generation from GC B cells. However, CpG DNA did not have effect on memory B cell generation from GC B cells. These results suggest that CpG DNA potentiates the B cell adaptive immune response by enhancing terminal differentiation, but does not affect the generation of memory B cells.  相似文献   

17.
Human C5a is a potent chemoattractant for granulocytes, monocytes, and dendritic cells. In mice C5a has been shown to be chemotactic for germinal center (GC) B cells. To date, no information is available on the effects of C5a on human B cell locomotion. Here we demonstrate that rC5a increases polarization and migration of human tonsillar B cells. The locomotory response was due to both chemokinetic and chemotactic activities of rC5a. Moreover, memory and, at a lesser extent, naive B cell fractions from purified tonsillar populations displayed rC5a-enhanced migratory properties, whereas GC cells did not. Flow cytometry revealed C5aR (CD88) on approximately 40% memory and 10% naive cells, respectively, whereas GC cells were negative. Immunohistochemistry showed that a few CD88+ cells were of the B cell lineage and localized in tonsillar subepithelial areas, where the majority of memory B cells settle. Pretreatment of memory B cells with the CD88 mAb abolished their migratory responsiveness to rC5a. Finally, the C5 gene was found to be expressed in naive, GC, and memory B lymphocytes at both the mRNA and the protein level. This study delineates a novel role for C5a as a regulator of the trafficking of human memory and naive B lymphocytes and supports the hypothesis that the B cells themselves may serve as source of C5 in secondary lymphoid tissues.  相似文献   

18.
Human IgM+CD27+ B cells: memory B cells or "memory" B cells?   总被引:1,自引:0,他引:1  
Memory B cells are generated in germinal centers (GC) and contribute to serological immunity by rapidly differentiating into plasma cells. Human memory B cells can be identified by the expression of CD27. These cells exhibit more rapid responses than naive (CD27-) B cells following stimulation in vitro, consistent with the heightened kinetics of secondary responses in vivo. CD27+ B cells express mutated Ig V region genes; however a significant proportion continue to express IgM, suggesting the existence of IgM+ memory B cells. The observation that mutated IgM+CD27+ B cells are generated in humans who cannot form GC led to the conclusions that these cells are generated independently of GC and thus are not memory cells and that they mediate responses to T cell-independent Ag. Although some studies support the idea that IgM+CD27+ B cells participate in T cell-independent responses, many others do not. In this review we will provide alternate interpretations of the biology of IgM+CD27+ B cells and propose that they are indeed memory cells.  相似文献   

19.
Although malaria and Epstein-Barr (EBV) infection are recognized cofactors in the genesis of endemic Burkitt lymphoma (BL), their relative contribution is not understood. BL, the most common paediatric cancer in equatorial Africa, is a high-grade B cell lymphoma characterized by c-myc translocation. EBV is a ubiquitous B lymphotropic virus that persists in a latent state after primary infection, and in Africa, most children have sero-converted by 3 y of age. Malaria infection profoundly affects the B cell compartment, inducing polyclonal activation and hyper-gammaglobulinemia. We recently identified the cystein-rich inter-domain region 1alpha (CIDR1alpha) of the Plasmodium falciparum membrane protein 1 as a polyclonal B cell activator that preferentially activates the memory compartment, where EBV is known to persist. Here, we have addressed the mechanisms of interaction between CIDR1alpha and EBV in the context of B cells. We show that CIDR1alpha binds to the EBV-positive B cell line Akata and increases the number of cells switching to the viral lytic cycle as measured by green fluorescent protein (GFP) expression driven by a lytic promoter. The virus production in CIDR1alpha-exposed cultures was directly proportional to the number of GFP-positive Akata cells (lytic EBV) and to the increased expression of the EBV lytic promoter BZLF1. Furthermore, CIDR1alpha stimulated the production of EBV in peripheral blood mononuclear cells derived from healthy donors and children with BL. Our results suggest that P. falciparum antigens such as CIDR1alpha can directly induce EBV reactivation during malaria infection that may increase the risk of BL development for children living in malaria-endemic areas. To our knowledge, this is the first report to show that a microbial protein can drive a latently infected B cell into EBV replication.  相似文献   

20.
In this paper we demonstrate that during acute infection with Epstein-Barr virus (EBV), the peripheral blood fills up with latently infected, resting memory B cells to the point where up to 50% of all the memory cells may carry EBV. Despite this massive invasion of the memory compartment, the virus remains tightly restricted to memory cells, such that, in one donor, fewer than 1 in 10(4) infected cells were found in the naive compartment. We conclude that, even during acute infection, EBV persistence is tightly regulated. This result confirms the prediction that during the early phase of infection, before cellular immunity is effective, there is nothing to prevent amplification of the viral cycle of infection, differentiation, and reactivation, causing the peripheral memory compartment to fill up with latently infected cells. Subsequently, there is a rapid decline in infected cells for the first few weeks that approximates the decay in the cytotoxic-T-cell responses to viral replicative antigens. This phase is followed by a slower decline that, even by 1 year, had not reached a steady state. Therefore, EBV may approach but never reach a stable equilibrium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号