首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transport of 45Ca2+ into vesicules of hog myometrium plasmolemma under dissipation conditions of opposite-directed transmembrane gradient of protons (delta pH) was investigated. When studying some time regularities of the process, H+ dissipation was determined to have little effect on the initial velocity Vo (18 and 25 nmol Ca2+/1 mg of protein per 1 min at delta pH = 0 and delta pH = 1.5, respectively) and the time of semiaccumulation of cation (1.1 and 2.1 min). Estimation of Ca2+ accumulation concentrational dependence in the vesicules in Vo (30 s) revealed that Ca2+ input into vesicules was limited by binding the cation with carboxyl residues of Ca2+ channel external part. This effect is a consequence of the absence of Ca(2+)-transport systems in the vesicules on the background of quick filling of the intervesicular space by the cation as well as discrimination of Ca2+ sorption process by the vesicules inner surface under operating in the Vo regime. The value K0.5 = 0.5 microM for Ca2+ obtained conforms to physiological meaning of the imagined Kd, Ca2+ binding with four glutamate residues of Ca2+ channel external part. Dissipation of the artificial delta pH = 1.5 on the vesicular membrane leads to increasing the affinity for Ca2+ (to 0.1 microM at constant value of Vmax (40 nmol Ca2+/1 mg of protein per 1 min). We have also demonstrated irreversibility of the process tested and substrate specificity. The results obtained permit to suppose that delta pH dissipation provides for some conformational changes of the channel structure resulting in increasing Ca2+ affinity for the transporting system as well as increases the membrane permeability for the cation. The latter means the interrelation of two most important signal molecules such as Ca2+ and H+ in the cell is capable to occur on the level on Ca2+ separate channels.  相似文献   

2.
It is established that Ca2+ transport from the predominantly inverted vesicles of pig myometrium sarcolemma depends on the value of the membrane potential which is created on vesicles by the K+-valinomycin system. It is shown that variations in the membrane potential from -60 to +30 mV cause acceleration of the calcium transport from the vesicles, the maximal transport being observed at delta psi from 0 up to +30 mV. The endogenic and exogenic cAMP-dependent phosphorylation of plasma membrane proteins inhibits the passive transport of calcium at all the membrane potential values studied. A degree of potential-dependent Ca2+ transport inhibition correlates with the value of cAMP-dependent phosphorylation of sarcolemma proteins.  相似文献   

3.
Effects of polyamines on mitochondrial Ca(2+) transport   总被引:2,自引:0,他引:2  
Mammalian mitochondria are able to enhance Ca(2+) accumulation in the presence of polyamines by activating the saturable systems of Ca(2+) inward transport and buffering extramitochondrial Ca(2+) concentrations to levels similar to those in the cytosol of resting cells. This effect renders them responsive to regulate free Ca(2+) concentrations in the physioloical range. The mechanism involved is due to a rise in the affinity of the Ca(2+) transport system, induced by polyamines, most probably exhibiting allosteric behaviour. The regulatory site of this mechanism is the so-called S(1) binding site of polyamines, which operates in physiological conditions and is located in the energy well between the two peaks present in the energy profile of mitochondrial spermine transport. Spermine is bidirectionally transported across teh inner membrane by cycling, in which influx and efflux are driven by electrical and pH gradients, respectively. Most probably, polyamine affects the Ca(2+) transport system when it acts from the outside-that is, in the direction of its uniporter channel, in order to reach the S(1) site. Important physiological functions are related to activation of Ca(2+) transport systems by polyamines and their interactions with the S(1) site. These functions include a rise in the metabolic rate for energy supply and modulation of mitochondrial permeability transition induction, with consequent effects on the triggering of the apoptotic pathway.  相似文献   

4.
In this report, we study Ca2+ transport in permeabilized Candida parapsilosis spheroplasts prepared by a new technique using lyticase. An intracellular non-mitochondrial Ca2+ uptake pathway, insensitive to orthovanadate and sensitive to the V-H(+)-ATPase inhibitor bafilomycin A(1), nigericin and carbonyl cyanide p-trifluoromethoxyphenylhydrazone was characterized. Acidification of the compartment in which Ca2+ accumulated was followed using the fluorescent dye acridine orange. Acidification was stimulated by the Ca2+ chelator EGTA and inhibited by Ca2+. These results, when added to the observation that Ca2+ induces alkalization of a cellular compartment, provide evidence for the presence of a Ca2+/nH(+) antiporter in the acid compartment membrane. Interestingly, like in acidocalcisomes of trypanosomatids, the antioxidant 3,5-dibutyl-4-hydroxytoluene inhibits the V-H(+)-ATPase. In addition, the antifungal agent ketoconazole promoted a fast alkalization of the acidic compartment. Ketoconazole effects were dose-dependent and occurred in a concentration range close to that attained in the plasma of patients treated with this drug.  相似文献   

5.
6.
Purified plasma membrane vesicles from GH3 rat anterior pituitary cells exhibit a Mg2+-ATP-dependent Ca2+ transport activity. Concentrative uptake of Ca2+ is abolished by exclusion of either Mg2+ or ATP or by inclusion of the Ca2+ ionophore A23187. Furthermore, addition of A23187 to vesicles which have reached a steady state of ATP-supported Ca2+ accumulation rapidly and completely discharges accumulated cation. Ca2+ uptake is unaffected by treatment of vesicles with oligomycin, the uncoupler CCCP, or valinomycin and is greatly reduced in non-plasma membrane fractions. Likewise, Ca2+ accumulation is not stimulated by oxalate, consistent with the plasma membrane origin of this transport system. (Na+, K+)-ATPase participation in the Ca2+ transport process (i.e. via coupled Na+/Ca2+ exchange) was eliminated by omitting Na+ and including ouabain in the reaction medium. Ca2+ transport activity in GH3 vesicles has a similar pH dependence as that seen in a number of other plasma membrane systems and is inhibited by orthovanadate in the micromolar range. Inhibition is enhanced if the membranes are preincubated with vanadate for a short time. A kinetic analysis of transport indicates that the apparent Km for free Ca2+ and ATP are 0.7 and 125 microM, respectively. The average Vmax is 3.6 nmol of Ca2+/min/mg of protein at 37 degrees C. Addition of exogenous calmodulin or calmodulin antagonists had no significant effect on these kinetic properties. GH3 plasma membranes also contain a Na+/Ca2+ exchange system. The apparent Km for Ca2+ is almost 10-fold higher in this system than that for ATP-driven Ca2+ uptake. When both processes are compared under similar conditions, the Vmax of the exchanger is approximately 2-3 times that of ATP-dependent Ca2+ accumulation. Similar results are obtained when purified plasma membranes from bovine anterior pituitary glands were investigated. It is suggested that both Na+/Ca2+ exchange and the (Ca2+ + Mg2+)-ATPase are important in controlling intracellular levels of Ca2+ in anterior pituitary cells.  相似文献   

7.
We have demonstrated that calcium-dependent potassium transport in erythrocytes requires the participation of a cytoplasmic protein. Activation of calcium-dependent potassium transport causes an increase in the membrane-bound levels of this protein which is dependent on the calcium concentration and which is highly correlated (r = 0.791, p less than 0.0001) with the loss of potassium. Reconstitution of this transport pathway in sonicated erythrocyte membrane vesicles was achieved only in vesicles containing the cytoplasmic protein indicating a causal relationship in this transport system. The protein is found in high levels within the cytoplasm of erythrocytes (5.6 mg/ml red blood cells) and yet less than 1% of the protein located in the cytoplasm is required to bind to the membrane in order to initiate the potassium efflux. The analysis of rat organ homogenates demonstrated that this protein is located in most tissues with particular enrichment in adrenal glands, brain, lung, and blood. These results demonstrate that there is a cytoplasmic protein, herein named calpromotin, which is a necessary and sufficient cytoplasmic component of calcium-dependent potassium transport in erythrocytes and perhaps other tissues.  相似文献   

8.
We have reported that a population of chromaffin cell mitochondria takes up large amounts of Ca(2+) during cell stimulation. The present study focuses on the pathways for mitochondrial Ca(2+) efflux. Treatment with protonophores before cell stimulation abolished mitochondrial Ca(2+) uptake and increased the cytosolic [Ca(2+)] ([Ca(2+)](c)) peak induced by the stimulus. Instead, when protonophores were added after cell stimulation, they did not modify [Ca(2+)](c) kinetics and inhibited Ca(2+) release from Ca(2+)-loaded mitochondria. This effect was due to inhibition of mitochondrial Na(+)/Ca(2+) exchange, because blocking this system with CGP37157 produced no further effect. Increasing extramitochondrial [Ca(2+)](c) triggered fast Ca(2+) release from these depolarized Ca(2+)-loaded mitochondria, both in intact or permeabilized cells. These effects of protonophores were mimicked by valinomycin, but not by nigericin. The observed mitochondrial Ca(2+)-induced Ca(2+) release response was insensitive to cyclosporin A and CGP37157 but fully blocked by ruthenium red, suggesting that it may be mediated by reversal of the Ca(2+) uniporter. This novel kind of mitochondrial Ca(2+)-induced Ca(2+) release might contribute to Ca(2+) clearance from mitochondria that become depolarized during Ca(2+) overload.  相似文献   

9.
The cytoplasmic Ca(2+) signals that participate in nearly all aspects of plant growth and development encode information as binary switches or information-rich signatures. They are the result of influx (thermodynamically passive) and efflux (thermodynamically active) activities mediated by membrane transport proteins. On the influx side, confirming the molecular identities of Ca(2+)-permeable channels is still a major research topic. Cyclic nucleotide-gated channels and glutamate receptor-like channels are candidates well supported by evidence. On the efflux side, CAX antiporters and P-type ATPase pumps are the principal molecular entities. Both of these active transporters load Ca(2+) into specific compartments and have the potential to reduce the magnitude and duration of a Ca(2+) transient. Recent studies indicate calmodulin-activated Ca(2+) pumps in endomembrane systems can dampen the magnitude and duration of a Ca(2+) transient that could otherwise grow into a Ca(2+) cell death signature. An important challenge following molecular characterization of the influx and efflux pathways is to understand how they are coordinately regulated to produce a Ca(2+) switch or encode specific information into a Ca(2+) signature.  相似文献   

10.
Ca(2+)-induced inactivation of L-type Ca(2+) is differentially mediated by two C-terminal motifs of the alpha(1C) subunit, L (1572-1587) and K (1599-1651) implicated for calmodulin binding. We found that motif L is composed of a highly selective Ca(2+) sensor and an adjacent Ca(2+)-independent tethering site for calmodulin. The Ca(2+) sensor contributes to higher Ca(2+) sensitivity of the motif L complex with calmodulin. Since only combined mutation of both sites removes Ca(2+)-dependent current decay, the two-site modulation by Ca(2+) and calmodulin may underlie Ca(2+)-induced inactivation of the channel.  相似文献   

11.
A natural complex of avermectins, aversectin C, and a component of this complex, avermectin A1, were shown to change the conductivity of Ca(2+)-dependent chloride channels of plasmalemma of Chara corallina cells by acting only from the outer side of the cellular membrane. Low concentrations of aversectin C and avermectin A1 increased the chloride current: K1/2 = 3.5 x 10(-5) mg/ml for the whole complex and K1/2 = 2.1 x 10(-3) mg/ml for A1. Relatively high concentrations of the compounds suppressed the chloride current: K1/2 = 2.2 x 10(-3) mg/ml for aversectin C and K1/2 = 4.2 x 10(-6) mg/ml for A1. The Hill coefficients for the interaction of avermectin A1 with the corresponding targets for stimulation and suppression of the chloride current were 2.8 and 2.5 respectively. Bicuculine, a non-specific inhibitor of the GABA alpha-receptors, did not influence stimulation of chloride currents caused by action of low concentrations of avermectins, but at the same time blocked suppression of the chloride currents associated with the action of high doses of avermectins. Avermectins A2, B1 (abamectin), B2 and 22,23-dihydroavermectin B1 (vermectin) in the concentration range studied, did not affect the chloride currents of Chara corallina cells.  相似文献   

12.
Tip-growing organisms maintain an apparently essential tip-high gradient of cytoplasmic Ca(2+). In the oomycete Saprolegnia ferax, in pollen tubes and root hairs, the gradient is produced by a tip-localized Ca(2+) influx from the external medium. Such a gradient is normally dispensable for Neurospora crassa hyphae, which may maintain their Ca(2+) gradient by some form of internal recycling. We localized Ca(2+) in N. crassa hyphae at the ultrastructural level using two techniques (a) electron spectroscopic imaging of freeze-dried hyphae and (b) pyroantimoniate precipitation. The results of both methods support the presence of Ca(2+) in the wall vesicles and Golgi body equivalents, providing a plausible mechanism for the generation and maintenance of the gradient by Ca(2+) shuttling in vesicles to the apex, without exogenous Ca(2+) influx. Ca(2+) sequestration into the vesicles seems to be dependent on Ca(2+)-ATPases since cyclopiazonic acid, a specific inhibitor of Ca(2+) pumps, eliminated all Ca(2+) deposits from the vesicles of N. crassa.  相似文献   

13.
The results here show for the first time that pH and monovalent cations can regulate cytosolic free Ca(2+) in E. coli through Ca(2+) influx and efflux, monitored using aequorin. At pH 7.5 the resting cytosolic free Ca(2+) was 0.2-0.5 microM. In the presence of external Ca(2+) (1 mM) at alkaline pH this rose to 4 microM, being reduced to 0.9 microM at acid pH. Removal of external Ca(2+) caused an immediate decrease in cytosolic free Ca(2+) at 50-100 nM s(-1). Efflux rates were the same at pH 5.5, 7.5 and 9.5. Thus, ChaA, a putative Ca(2+)/H(+)exchanger, appeared not to be a major Ca(2+)-efflux pathway. In the absence of added Na(+), but with 1 mM external Ca(2+), cytosolic free Ca(2+) rose to approximately 10 microM. The addition of Na(+)(half maximum 60 mM) largely blocked this increase and immediately stimulated Ca(2+) efflux. However, this effect was not specific, since K(+) also stimulated efflux. In contrast, an increase in osmotic pressure by addition of sucrose did not significantly stimulate Ca(2+) efflux. The results were consistent with H(+) and monovalent cations competing with Ca(2+) for a non-selective ion influx channel. Ca(2+) entry and efflux in chaA and yrbG knockouts were not significantly different from wild type, confirming that neither ChaA nor YrbG appear to play a major role in regulating cytosolic Ca(2+) in Escherichia coli. The number of Ca(2+) ions calculated to move per cell per second ranged from <1 to 100, depending on conditions. Yet a single eukaryote Ca(2+) channel, conductance 100 pS, should conduct >6 million ions per second. This raises fundamental questions about the nature and regulation of Ca(2+) transport in bacteria, and other small living systems such as mitochondria, requiring a new mathematical approach to describe such ion movements. The results have important significance in the adaptation of E. coli to different ionic environments such as the gut, fresh water and in sea water near sewage effluents.  相似文献   

14.
Many diseases such as cardiac arrhythmia, diabetes, and chronic alcoholism are associated with a marked decrease of plasma and parenchymal Mg(2+), and Mg(2+) administration is routinely used therapeutically. This study uses isolated rat hepatocytes to ascertain if and under which conditions increases in extracellular Mg(2+) result in an increase in intracellular Mg(2+). In the absence of stimulation, changing extracellular Mg(2+) had no effect on total cellular Mg(2+) content. By contrast, carbachol or vasopressin administration promoted an accumulation of Mg(2+) that increased cellular Mg(2+) content by 13.2 and 11.8%, respectively, and stimulated Mg(2+) uptake was unaffected by the absence of extracellular Ca(2+). Mg(2+) efflux resulting from stimulation of alpha- or beta-adrenergic receptors operated with a Mg(2+):Ca(2+) exchange ratio of 1. These data indicate that cellular Mg(2+) uptake can occur rapidly and in large amounts, through a process distinct from Mg(2+) release, but operating only upon specific hormonal stimulation.  相似文献   

15.
Confocal laser scanning microscopy and fluo 4 were used to visualize local and whole cell Ca(2+) transients within individual smooth muscle cells (SMC) of intact, pressurized rat mesenteric small arteries during activation of alpha1-adrenoceptors. A method was developed to record the Ca(2+) transients within individual SMC during the changes in arterial diameter. Three distinct types of "Ca(2+) signals" were influenced by adrenergic activation (agonist: phenylephrine). First, asynchronous Ca(2+) transients were elicited by low levels of adrenergic stimulation. These propagated from a point of origin and then filled the cell. Second, synchronous, spatially uniform Ca(2+) transients, not reported previously, occurred at higher levels of adrenergic stimulation and continued for long periods during oscillatory vasomotion. Finally, Ca(2+) sparks slowly decreased in frequency of occurrence during exposure to adrenergic agonists. Thus adrenergic activation causes a decrease in the frequency of Ca(2+) sparks and an increase in the frequency of asynchronous wavelike Ca(2+) transients, both of which should tend to decrease arterial diameter. Oscillatory vasomotion is associated with spatially uniform synchronous oscillations of cellular [Ca(2+)] and may have a different mechanism than the asynchronous, propagating Ca(2+) transients.  相似文献   

16.
There is substantial evidence that nonsteroidal anti-inflammatory drugs (NSAIDs) affect cellular processes regulated by Ca(2+) ions, including the metabolic responses of the liver to Ca(2+)-dependent hormones. The aim of the present study was to determine whether the effects of naproxen are mediated by a direct action on cellular Ca(2+) fluxes. The effects of naproxen on 45Ca(2+) fluxes in mitochondria, microsomes and inside-out plasma membrane vesicles were examined. Naproxen strongly impaired the mitochondrial capacity to retain 45Ca(2+) and inhibited also ATP-dependent 45Ca(2+) uptake by microsomes. Naproxen did not modify 45Ca(2+) uptake by inside-out plasma membrane vesicles, but it inhibited the hexokinase/glucose-induced Ca(2+) efflux from preloaded vesicles. Additional assays performed in isolated mitochondria revealed that naproxen causes mitochondrial uncoupling and swelling in the presence of Ca(2+) ions. These effects were prevented by EGTA, ruthenium red and cyclosporin A, indicating that naproxen acts synergistically with Ca(2+) ions by promoting the mitochondrial permeability transition. The experimental results suggest that naproxen may impair the metabolic responses to Ca(2+)-dependent hormones acting by at least two mechanisms: (1) by interfering with the supply of external Ca(2+) through a direct action on the plasma membrane Ca(2+) influx, and (2) by affecting the refilling of the agonist-sensitive internal stores, including endoplasmic reticulum and mitochondria.  相似文献   

17.
18.
Expression of heterologous SERCA1a ATPase in Cos-1 cells was optimized to yield levels that account for 10-15% of the microsomal protein, as revealed by protein staining on electrophoretic gels. This high level of expression significantly improved our characterization of mutants, including direct measurements of Ca(2+) binding by the ATPase in the absence of ATP, and measurements of various enzyme functions in the presence of ATP or P(i). Mutational analysis distinguished two groups of amino acids within the transmembrane domain: The first group includes Glu771 (M5), Thr799 (M6), Asp800 (M6), and Glu908 (M8), whose individual mutations totally inhibit binding of the two Ca(2+) required for activation of one ATPase molecule. The second group includes Glu309 (M4) and Asn796 (M6), whose individual or combined mutations inhibit binding of only one and the same Ca(2+). The effects of mutations of these amino acids were interpreted in the light of recent information on the ATPase high-resolution structure, explaining the mechanism of Ca(2+) binding and catalytic activation in terms of two cooperative sites. The Glu771, Thr799, and Asp800 side chains contribute prominently to site 1, together with less prominent contributions by Asn768 and Glu908. The Glu309, Asn796, and Asp800 side chains, as well as the Ala305 (and possibly Val304 and Ile307) carbonyl oxygen, contribute to site 2. Sequential binding begins with Ca(2+) occupancy of site 1, followed by transition to a conformation (E') sensitive to Ca(2+) inhibition of enzyme phosphorylation by P(i), but still unable to utilize ATP. The E' conformation accepts the second Ca(2+) on site 2, producing then a conformation (E' ') which is able to utilize ATP. Mutations of residues (Asp813 and Asp818) in the M6/M7 loop reduce Ca(2+) affinity and catalytic turnover, suggesting a strong influence of this loop on the correct positioning of the M6 helix. Mutation of Asp351 (at the catalytic site within the cytosolic domain) produces total inhibition of ATP utilization and enzyme phosphorylation by P(i), without a significant effect on Ca(2+) binding.  相似文献   

19.
The (Ca2+ + Mg2+)-ATPase was purified from skeletal muscle sarcoplasmic reticulum and reconstituted into sealed phospholipid vesicles by solution in cholate and deoxycholate followed by detergent removal on a column of Sephadex G-50. The level of Ca2+ accumulated by these vesicles, either in the presence or absence of phosphate within the vesicles, increased with increasing content of phosphatidylethanolamine in the phospholipid mixture used for the reconstitution. The levels of Ca2+ accumulated in the absence of phosphate were very low for vesicles reconstituted with egg yolk phosphatidylcholine alone at pH 7.4, but increased markedly with decreasing pH to 6.0. Uptake was also relatively low for vesicles reconstituted with dimyristoleoyl- or dinervonylphosphatidylcholine, and addition of cholesterol had little effect. The level of Ca2+ accumulated increased with increasing external K+ concentration, and was also increased by the ionophores FCCP and valinomycin. Vesicle sizes changed little with changing phosphatidylethanolamine content, and the sidedness of insertion of the ATPase was close to random at all phosphatidylethanolamine contents. It is suggested that the effect of phosphatidylethanolamine on the level of Ca2+ accumulation follows from an effect on the rate of Ca2+ efflux mediated by the ATPase.  相似文献   

20.
The Ca(2+) binding sites of the Ca(2+)-ATPase of skeletal muscle sarcoplasmic reticulum (SR) have been identified as two high-affinity sites orientated towards the cytoplasm, two sites of low affinity facing the lumen, and a transient occluded species that is isolated from both membrane surfaces. Binding and release studies, using (45)Ca(2+), have invoked models with sequential binding and release from high- and low-affinity sites in a channel-like structure. We have characterised turnover conditions in isolated SR vesicles with oxalate in a Ca(2+)-limited state, [Ca(2)](lim), where both high- and low-affinity sites are vacant in the absence of chelators (Biochim. Biophys. Acta 1418 (1999) 48-60). Thapsigargin (TG), a high-affinity specific inhibitor of the Ca(2+)-ATPase, released a fraction of total Ca(2+) at [Ca(2+)](lim) that accumulated during active transport. Maximal Ca(2+) release was at 2:1 TG/ATPase. Ionophore, A23187, and Triton X-100 released the rest of Ca(2+) resistant to TG. The amount of Ca(2+) released depended on the incubation time at [Ca(2+)](lim), being 3.0 nmol/mg at 20 s and 0.42 nmol/mg at 1000 s. Rate constants for release declined from 0. 13 to 0.03 s(-1). The rapidly released early fraction declined with time and k=0.13 min(-1). Release was not due to reversal of the pump cycle since ADP had no effect; neither was release impaired with substrates acetyl phosphate or GTP. A phase of reuptake of Ca(2+) followed release, being greater with shorter delay (up to 200 s) following active transport. Reuptake was minimal with GTP, with delays more than 300 s, and was abolished by vanadate and at higher [TG], >5 microM. Ruthenium red had no effect on efflux, indicating that ryanodine-sensitive efflux channels in terminal cisternal membranes are not involved in the Ca(2+) release mechanism. It is concluded that the Ca(2+) released by TG is from the occluded Ca(2+) fraction. The Ca(2+) occlusion sites appear to be independent of both high-affinity cytoplasmic and low-affinity lumenal sites, supporting a multisite 'in line' sequential binding mechanism for Ca(2+) transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号