首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tim8 and Tim13 of yeast belong to a family of evolutionary conserved zinc finger proteins that are organized in hetero-oligomeric complexes in the mitochondrial intermembrane space. Mutations in DDP1 (deafness dystonia peptide 1), the human homolog of Tim8, are associated with the Mohr-Tranebjaerg syndrome, a progressive neurodegenerative disorder. We show that DDP1 acts with human Tim13 in a complex in the intermembrane space. The DDP1.hTim13 complex is in direct contact with translocation intermediates of human Tim23 in mammalian mitochondria. The human DDP1.hTim13 complex complements the function of the TIM8.13 complex in yeast and facilitates import of yeast and human Tim23. Thus, the pathomechanism underlying the Mohr-Tranebjaerg syndrome may involve an impaired biogenesis of the human TIM23 complex causing severe pleiotropic mitochondrial dysfunction.  相似文献   

2.
The gene responsible for the human genetic neurodegenerative disorder DFN-1/MTS encodes a small protein known as deafness/dystonia peptide (DDP). It bears a strong resemblance to a recently characterized set of zinc-binding yeast proteins (Tim8p, Tim9p, Tim10p, Tim12p, and Tim13p) that are implicated in the import of a class of transmembrane carrier proteins from the cytoplasm to the mitochondrial inner membrane. We describe here the human complement of DDP/Tim-like proteins and establish the likely orthologous relationships between sequences from human, yeast, and other organisms. We also describe the expression patterns and chromosomal locations of their genes, which are candidate loci for autosomal recessive neurodegenerative disorders.  相似文献   

3.
Tim8 and Tim13 are non-essential, conserved proteins of the mitochondrial intermembrane space, which are organized in a hetero-oligomeric complex. They are structurally related to Tim9 and Tim10, essential components of the import machinery for mitochondrial carrier proteins. Here we show that the TIM8-13 complex interacts with translocation intermediates of Tim23, which are partially translocated across the outer membrane but not with fully imported or assembled Tim23. The TIM8-13 complex binds to the N-terminal or intermediate domain of Tim23. It traps the incoming precursor in the intermembrane space thereby preventing retrograde translocation. The TIM8-13 complex is strictly required for import of Tim23 under conditions when a low membrane potential exists in the mitochondria. The human homologue of Tim8 is encoded by the DDP1 (deafness/dystonia peptide 1) gene, which is associated with the Mohr-Tranebjaerg syndrome (MTS), a progressive neurodegenerative disorder leading to deafness. It is demonstrated that import of human Tim23 is dependent on a high membrane potential. A mechanism to explain the pathology of MTS is discussed.  相似文献   

4.
Mohr-Tranebjaerg syndrome is a progressive, neurodegenerative disorder caused by loss-of-function mutations in the DDP1/TIMM8A gene. DDP1 belongs to a family of evolutionary conserved proteins that are organized in hetero-oligomeric complexes in the mitochondrial intermembrane space. They mediate the import and insertion of hydrophobic membrane proteins into the mitochondrial inner membrane. All of them share a conserved Cys(4) metal binding site proposed to be required for the formation of zinc fingers. So far, the only missense mutation known to cause a full-blown clinical phenotype is a C66W exchange directly affecting this Cys(4) motif. Here, we show that the mutant human protein is efficiently imported into mitochondria and sorted into the intermembrane space. In contrast to wild-type DDP1, it does not complement the function of its yeast homologue Tim8. The C66W mutation impairs binding of Zn(2+) ions via the Cys(4) motif. As a consequence, the mutated DDP1 is incorrectly folded and loses its ability to assemble into a hetero-hexameric 70-kDa complex with its cognate partner protein human Tim13. Thus, an assembly defect of DDP1 is the molecular basis of Mohr-Tranebjaerg syndrome in patients carrying the C66W mutation.  相似文献   

5.
The Tim23 protein is the key component of the mitochondrial import machinery. It locates to the inner mitochondrial membrane and its own import is dependent on the DDP1/TIM13 complex. Mutations in human DDP1 cause the Mohr-Tranebjaerg syndrome (MTS/DFN-1; OMIM #304700), which is one of the two known human diseases of the mitochondrial protein import machinery. We created a Tim23 knockout mouse from a gene trap embryonic stem cell clone. Homozygous Tim23 mice were not viable. Heterozygous F1 mutants showed a 50% reduction of Tim23 protein in Western blot, a neurological phenotype and a markedly reduced life span. Haploinsufficiency of the Tim23 mutation underlines the critical role of the mitochondrial import machinery for maintaining mitochondrial function.  相似文献   

6.
7.
Proteins targeted to the mitochondrial matrix are translocated through the outer and the inner mitochondrial membranes by two protein complexes, the translocase of the outer membrane (TOM) and one of the translocases of the inner membrane (TIM23). The protein Tim23, the core component of TIM23, consists of an N‐terminal, soluble domain in the intermembrane space (IMS) and a C‐terminal domain that forms the import pore across the inner membrane. Before translocation proceeds, precursor proteins are recognized by the N‐terminal domain of Tim23, Tim23N (residues 1–96). By using NMR spectroscopy, we show that Tim23N is a monomeric protein belonging to the family of intrinsically disordered proteins. Titrations of Tim23N with two presequences revealed a distinct binding region of Tim23N formed by residues 71–84. In a charge‐hydropathy plot containing all soluble domains of TOM and TIM23, Tim23N was found to be the only domain with more than 40 residues in the IMS that is predicted to be intrinsically disordered, suggesting that Tim23N might function as hub in the mitochondrial import machinery protein network.  相似文献   

8.
Strub A  Röttgers K  Voos W 《The EMBO journal》2002,21(11):2626-2635
Ssc1, a molecular chaperone of the Hsp70 family, drives preprotein import into the mitochondrial matrix by a specific interaction with the translocase component Tim44. Two other mitochondrial Hsp70s, Ssc3 (Ecm10) and Ssq1, show high sequence homology to Ssc1 but fail to replace Ssc1 in vivo, possibly due to their inability to interact with Tim44. We analyzed the structural basis of the Tim44 interaction by the construction of chimeric Hsp70 proteins. The ATPase domains of all three mitochondrial Hsp70s were shown to bind to Tim44, supporting the active motor model for the Hsp70 mechanism during preprotein translocation. The peptide-binding domain of Ssc1 sustained binding of Tim44, while the peptide-binding domains of Ssc3 and Ssq1 exerted a negative effect on the interaction of the ATPase domains with Tim44. A mutation in the peptide-binding domain of Ssc1 resulted in a similar negative effect not only on the ATPase domain of Ssc1, but also of Ssq1 and Ssc3. Hence, the determination of a crucial Hsp70 function via the peptide-binding domain suggests a new regulatory principle for Hsp70 domain cooperation.  相似文献   

9.
The mitochondrial inner and outer membranes are composed of a variety of integral membrane proteins, assembled into the membranes posttranslationally. The small translocase of the inner mitochondrial membranes (TIMs) are a group of approximately 10 kDa proteins that function as chaperones to ferry the imported proteins across the mitochondrial intermembrane space to the outer and inner membranes. In yeast, there are 5 small TIM proteins: Tim8, Tim9, Tim10, Tim12, and Tim13, with equivalent proteins reported in humans. Using hidden Markov models, we find that many eukaryotes have proteins equivalent to the Tim8 and Tim13 and the Tim9 and Tim10 subunits. Some eukaryotes provide "snapshots" of evolution, with a single protein showing the features of both Tim8 and Tim13, suggesting that a single progenitor gene has given rise to each of the small TIMs through duplication and modification. We show that no "Tim12" family of proteins exist, but rather that variant forms of the cognate small TIMs have been recently duplicated and modified to provide new functions: the yeast Tim12 is a modified form of Tim10, whereas in humans and some protists variant forms of Tim9, Tim8, and Tim13 are found instead. Sequence motif analysis reveals acidic residues conserved in the Tim10 substrate-binding tentacles, whereas more hydrophobic residues are found in the equivalent substrate-binding region of Tim13. The substrate-binding region of Tim10 and Tim13 represent structurally independent domains: when the acidic domain from Tim10 is attached to Tim13, the Tim8-Tim13(10) complex becomes essential and the Tim9-Tim10 complex becomes dispensable. The conserved features in the Tim10 and Tim13 subunits provide distinct binding surfaces to accommodate the broad range of substrate proteins delivered to the mitochondrial inner and outer membranes.  相似文献   

10.
The TIM17:23 complex on the mitochondrial inner membrane is responsible for import of the majority of mitochondrial proteins in plants. In Arabidopsis, Tim17 and Tim23 belong to a large gene family consisting of 16 members termed the Preprotein and Amino acid transporters (PRAT). Recently, two members of this protein family, Tim23-2 and the Complex I subunit B14.7, have been shown to assemble into both Complex I of the respiratory chain and the TIM17:23 complex (Wang et al., 2012), adding to other examples of links between respiratory and protein import complexes. These associations provide a mechanism to coordinate mitochondrial activity and biogenesis.  相似文献   

11.
Tim23p is imported via the TIM (translocase of inner membrane)22 pathway for mitochondrial inner membrane proteins. In contrast to precursors with an NH2-terminal targeting presequence that are imported in a linear NH2-terminal manner, we show that Tim23p crosses the outer membrane as a loop before inserting into the inner membrane. The Tim8p-Tim13p complex facilitates translocation across the intermembrane space by binding to the membrane spanning domains as shown by Tim23p peptide scans with the purified Tim8p-Tim13p complex and crosslinking studies with Tim23p fusion constructs. The interaction between Tim23p and the Tim8p-Tim13p complex is not dependent on zinc, and the purified Tim8p-Tim13p complex does not coordinate zinc in the conserved twin CX3C motif. Instead, the cysteine residues seemingly form intramolecular disulfide linkages. Given that proteins of the mitochondrial carrier family also pass through the TOM (translocase of outer membrane) complex as a loop, our study suggests that this translocation mechanism may be conserved. Thus, polytopic inner membrane proteins, which lack an NH2-terminal targeting sequence, pass through the TOM complex as a loop followed by binding of the small Tim proteins to the hydrophobic membrane spanning domains.  相似文献   

12.
Translocase of IM (inner membrane; Tim)9 and Tim10 are essential homologue proteins of the mitochondrial intermembrane space (IMS) and form a stable hexameric Tim9–Tim10 complex there. Redox-switch of the four conserved cysteine residues plays a key role during the biogenesis of these proteins and, in turn, the Tim proteins play a vital chaperone-like role during import of mitochondrial membrane proteins. However, the functional mechanism of the small Tim chaperones is far from solved and it is unclear whether the individual proteins play specific roles or the complex functions as a single unit. In the present study, we examined the requirement and role for the individual disulfide bonds of Tim9 on cell viability, complex formation and stability using yeast genetic, biochemical and biophysical methods. Loss of the Tim9 inner disulfide bond led to a temperature-sensitive phenotype and degradation of both Tim9 and Tim10. The growth phenotype could be suppressed by deletion of the mitochondrial i-AAA (ATPases associated with diverse cellular activities) protease Yme1, and this correlates strongly with stabilization of the Tim10 protein regardless of Tim9 levels. Formation of both disulfide bonds is not essential for Tim9 function, but it can facilitate the formation and improve the stability of the hexameric Tim9–Tim10 complex. Furthermore, our results suggest that the primary function of Tim9 is to protect Tim10 from degradation by Yme1 via assembly into the Tim9–Tim10 complex. We propose that Tim10, rather than the hexameric Tim9–Tim10 complex, is the functional form of these proteins.  相似文献   

13.
Import of proteins into mitochondria occurs by coordinated actions of preprotein translocases in the outer and inner membranes. Tim9 and Tim10 are translocase components of the intermembrane space, related to deafness-dystonia peptide 1 (DDP1). They coassemble into a hexamer, TIM9.10, which captures and chaperones precursors of inner membrane metabolite carriers as they exit the TOM channel in the outer membrane. The crystal structure of TIM9.10 reveals a previously undescribed alpha-propeller topology in which helical "blades" radiate from a narrow central pore lined with polar residues. The propeller blades are reminiscent of "tentacles" in chaperones Skp and prefoldin. In each TIM9.10 subunit, a signature "twin CX3C" motif forms two intramolecular disulfides. There is no obvious binding pocket for precursors, which we suggest employ the chaperone-like tentacles of TIM9.10 as surrogate lipid contacts. The first reported crystal structure of a mitochondrial translocase assembly provides insights into selectivity and regulation of precursor import.  相似文献   

14.
The mitochondrial inner membrane contains two separate translocons: one required for the translocation of matrix-targeted proteins (the Tim23p-Tim17p complex) and one for the insertion of polytopic proteins into the mitochondrial inner membrane (the Tim54p-Tim22p complex). To identify new members of the Tim54p-Tim22p complex, we screened for high-copy suppressors of the temperature-sensitive tim54-1 mutant. We identified a new gene, TIM18, that encodes an integral protein of the inner membrane. The following genetic and biochemical observations suggest that the Tim18 protein is part of the Tim54p-Tim22p complex in the inner membrane: multiple copies of TIM18 suppress the tim54-1 growth defect; the tim18::HIS3 disruption is synthetically lethal with tim54-1; Tim54p and Tim22p can be coimmune precipitated with the Tim18 protein; and Tim18p, along with Tim54p and Tim22p, is detected in an approximately 300-kDa complex after blue native electrophoresis. We propose that Tim18p is a new component of the Tim54p-Tim22p machinery that facilitates insertion of polytopic proteins into the mitochondrial inner membrane.  相似文献   

15.
The mitochondrial intermembrane space contains a family of small Tim proteins that function as essential chaperones for protein import. The soluble Tim9-Tim10 complex transfers hydrophobic precursor proteins through the aqueous intermembrane space to the carrier translocase of the inner membrane (TIM22 complex). Tim12, a peripheral membrane subunit of the TIM22 complex, is thought to recruit a portion of Tim9-Tim10 to the inner membrane. It is not known, however, how Tim12 is assembled. We have identified a new intermediate in the biogenesis pathway of Tim12. A soluble form of Tim12 first assembles with Tim9 and Tim10 to form a Tim12-core complex. Tim12-core then docks onto the membrane-integrated subunits of the TIM22 complex to form the holo-translocase. Thus, the function of Tim12 in linking soluble and membrane-integrated subunits of the import machinery involves a sequential assembly mechanism of the translocase through a soluble intermediate complex of the three essential small Tim proteins.  相似文献   

16.
Tim9 and Tim10 belong to the small Tim family of mitochondrial ATP-independent chaperones. They are organised in a specific hetero-oligomeric complex (TIM10) that escorts polytopic proteins into the mitochondrial inner membrane. The contributions of the individual subunits to the assembly and function of the TIM10 complex remain poorly understood. Here, we show that substrate recognition and assembly of the complex are mediated by distinct domains of the subunits. These are unrelated to the characteristic "twin CX3C" motif that is present in all small Tims and ensures proper folding of the unassembled subunits. Specifically, we show that substrate recognition is achieved by the Tim10 subunit, whilst Tim9 serves a more structural role. The N-terminal domain of Tim10 is a substrate sensor whilst its C-terminal part is essential for complex formation. By contrast, both N and C-terminal domains of Tim9 are involved in the stability of the complex.  相似文献   

17.
Mitochondrial protein traffic requires coordinated operation of protein translocator complexes in the mitochondrial membrane. The TIM23 complex translocates and inserts proteins into the mitochondrial inner membrane. Here we analyze the intermembrane space (IMS) domains of Tim23 and Tim50, which are essential subunits of the TIM23 complex, in these functions. We find that interactions of Tim23 and Tim50 in the IMS facilitate transfer of precursor proteins from the TOM40 complex, a general protein translocator in the outer membrane, to the TIM23 complex. Tim23–Tim50 interactions also facilitate a late step of protein translocation across the inner membrane by promoting motor functions of mitochondrial Hsp70 in the matrix. Therefore, the Tim23–Tim50 pair coordinates the actions of the TOM40 and TIM23 complexes together with motor proteins for mitochondrial protein import.  相似文献   

18.
Most mitochondrial proteins are synthesized in the cytosol, imported into mitochondria, and sorted to one of the four mitochondrial subcompartments. Here we identified a new inner membrane protein, Tim40, that mediates sorting of small Tim proteins to the intermembrane space. Tim40 is essential for yeast cell growth, and its function in vivo requires six conserved Cys residues but not anchoring of the protein to the inner membrane by its N-terminal hydrophobic segment. Depletion of Tim40 impairs the import of small Tim proteins into mitochondria both in vivo and in vitro. In wild-type mitochondria, Tim40 forms a translocation intermediate with small Tim proteins prior to their assembly in the intermembrane space in vitro. These results suggest the essential role of Tim40 in sorting/assembly of small Tim proteins.  相似文献   

19.
Mitochondria import the vast majority of their proteins from the cytosol. The mitochondrial import motor of the TIM23 translocase drives the translocation of precursor proteins across the outer and inner membrane in an ATP-dependent reaction. Tim44 at the inner face of the translocation pore recruits the chaperone mtHsp70, which binds the incoming precursor protein. This reaction is assisted by the cochaperones Tim14 and Mge1. We have identified a novel essential cochaperone, Tim16. It is related to J-domain proteins and forms a stable subcomplex with the J protein Tim14. Depletion of Tim16 has a marked effect on protein import into the mitochondrial matrix, impairs the interaction of Tim14 with the TIM23 complex and leads to severe structural changes of the import motor. In conclusion, Tim16 is a constituent of the TIM23 preprotein translocase, where it exerts crucial functions in the import motor.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号