首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The intracellular location of the adenovirus type 5 E1B 55-kilodalton (kDa) protein, particularly the question of whether it is associated with nuclear pore complexes, was examined. Fractionation of adenovirus type 5-infected HeLa cell nuclei by an established procedure (N. Dwyer and G. Blobel, J. Cell. Biol. 70:581-591, 1976) yielded one population of E1B 55-kDa protein molecules released by digestion of nuclei with RNase A and a second population recovered in the pore complex-lamina fraction. Free and E1B 55-kDa protein-bound forms of the E4 34-kDa protein (P. Sarnow, C. A. Sullivan, and A. J. Levine, Virology 120:387-394, 1982) were largely recovered in the pore complex-lamina fraction. Nevertheless, the association of E1B 55-kDa protein molecules with this nuclear envelope fraction did not depend on interaction of the E1B 55-kDa protein with the E4 34-kDa protein. Comparison of the immunofluorescence patterns observed with antibodies recognizing the E1B 55-kDa protein or cellular pore complex proteins and of the behavior of these viral and cellular proteins during in situ fractionation suggests that the E1B 55-kDa protein does not become intimately or stably associated with pore complexes in adenovirus-infected cells.  相似文献   

2.
3.
Infection of human embryonic kidney cells with adenovirus type 12 results in the induction of damage at specific (17q21-22, 1p36, 1q21, and 1q42-43) and random sites in the cellular chromosomes. A previous study by Durnam et al. (D. M. Durnam, P. P. Smith, J. C. Menninger, and J. K. McDougall, Cancer Cells 4:349-354, 1986) indicated that the expression of viral early region 1 (E1) is sufficient for the induction of damage at band 17q21-22. In the present report we used an adenovirus type 12-adenovirus type 5 recombinant with E1A hybrid sequences as well as viruses with mutations in the adenovirus type 12 E1B genes to map adenovirus type 12 E1 functions involved in the induction of genetic damage. Our results show that the expression of the E1A proteins is not sufficient for this effect. On the other hand, mutations within the E1B 55-kilodalton protein but not the E1B 19-kilodalton protein affect the ability of the virus to induce both specific and random chromosomal damage.  相似文献   

4.
Previous studies have indicated that the adenovirus type 5 E1B 55-kDa protein facilitates viral DNA synthesis in normal human foreskin fibroblasts (HFFs) but not in primary epithelial cells. To investigate this apparent difference further, viral DNA accumulation was examined in primary human fibroblasts and epithelial cells infected by the mutant AdEasyE1Δ2347, which carries the Hr6 frameshift mutation that prevents production of the E1B 55-kDa protein, in an E1-containing derivative of AdEasy. Impaired viral DNA synthesis was observed in normal HFFs but not in normal human bronchial epithelial cells infected by this mutant. However, acceleration of progression through the early phase, which is significantly slower in HFFs than in epithelial cells, eliminated the dependence of efficient viral DNA synthesis in HFFs on the E1B 55-kDa protein. These observations suggest that timely synthesis of the E1B 55-kDa protein protects normal cells against a host defense that inhibits adenoviral genome replication. One such defense is mediated by the Mre11-Rad50-Nbs1 complex. Nevertheless, examination of the localization of Mre11 and viral proteins by immunofluorescence suggested that this complex is inactivated similarly in AdEasyE1Δ2347 mutant-infected and AdEasyE1-infected HFFs.  相似文献   

5.
The adenovirus type 5 (Ad5) early 1B (E1B) 55-kDa (E1B-55kDa)-E4orf6 protein complex has been implicated in the selective modulation of nucleocytoplasmic mRNA transport at late times after infection. Using a combined immunoprecipitation-immunoblotting assay, we mapped the domains in E1B-55kDa required for the interaction with the E4orf6 protein in lytically infected A549 cells. Several domains in the 496-residue 55-kDa polypeptide contributed to a stable association with the E4orf6 protein in E1B mutant virus-infected cells. Linker insertion mutations at amino acids 180 and 224 caused reduced binding of the E4orf6 protein, whereas linker insertion mutations at amino acid 143 and in the central domain of E1B-55kDa eliminated the binding of the E4orf6 protein. Earlier work showing that the central domain of E1B-55kDa is required for binding to p53 and the recent observation that the E4orf6 protein also interacts with the tumor suppressor protein led us to suspect that p53 might play a role in the E1B-E4 protein interaction. However, coimmunoprecipitation assays with extracts prepared from infected p53-negative H1299 cells established that p53 is not needed for the E1B-E4 protein interaction in adenovirus-infected cells. Using two different protein-protein interaction assays, we also mapped the region in the E4orf6 protein required for E1B-55kDa interaction to the amino-terminal 55 amino acid residues. Interestingly, both binding assays established that the same region in the E4orf6/7 protein can potentially interact with E1B-55kDa. Our results demonstrate that two distinct segments in the 55-kDa protein encoding the transformation and late lytic functions independently interact with p53 and the E4orf6 protein in vivo and provide further insight by which the multifunctional 55-kDa EIB protein can exert its multiple activities in lytically infected cells and in adenovirus transformation.  相似文献   

6.
S Zhang  S Mak    P E Branton 《Journal of virology》1992,66(4):2302-2309
To analyze the structure and function of the E1B 19,000-molecular-weight protein (19K protein) (163R) of human adenovirus type 12, mutants were produced at various positions across the 163R-coding sequence. Viruses bearing mutations within the first 100 or so amino acids yielded unstable 163R-related products, induced DNA degradation and enhanced cytopathic effect (cyt/deg phenotype) in KB cells, and transformed primary rodent cells at much lower efficiencies than wild-type (wt) virus. Deletion of the final 16 residues at the carboxy terminus had no phenotypic effect. Alteration of residue 105 reduced transforming efficiency significantly, suggesting that this region of 163R is functionally important. Disruption of the AUG initiation codon at nucleotide 1542 blocked production of 163R completely but resulted in higher levels of E1B 55K-482R protein synthesis and a transforming efficiency similar to that of wt virus. These data suggested that while 163R is of some importance, normal transforming efficiencies can be obtained in its absence if 482R is overexpressed.  相似文献   

7.
The newly constructed adenovirus type 5 mutant in1 carries a single AT base pair insertion immediately after nucleotide position 1715 in the E1B gene sequence which destroys the proximal AUG normally present in E1B messages and prevents production of intact E1B 19-kDa protein in infected cells. We have used in1, variants of in1 containing mutant alleles of viral genes known to enhance transformation frequency, and adenovirus type 5 mutant dl337 (S. Pilder, J. Logan, and T. Shenk, J. Virol. 52:664-671, 1984), in which the sequence between nucleotides 1770 and 1916 within the 19-kDa reading frame is deleted, to test the generally accepted hypothesis that this E1B protein is essential for the transformation of rodent cells and maintenance of the transformed phenotype. We find that these mutants transform rat embryo cells, rat kidney and mouse kidney primary cells, and cells of the 3Y1 rat line with decreased frequencies only when virus is added to these various cells at high input multiplicities of infection. In contrast, when lower doses of virus are used, the mutants transform with wild-type frequencies. Cells infected with higher doses of mutant virus show increased levels of DNA degradation and cell killing compared with those of cells infected with the same levels of wild-type virus, and these effects most likely contribute to the decreased transformation frequencies observed. On the basis of these results and the results of phenotypic analyses of numerous transformants, we propose that the E1B 19-kDa protein is not required for induction and/or maintenance of transformed-cell characteristics in rodent cells infected with adenovirus type 5.  相似文献   

8.
The E1B-55K protein plays an important role during human adenovirus type 5 productive infection. In the early phase of the viral infection, E1B-55K binds to and inactivates the tumor suppressor protein p53, allowing efficient replication of the virus. During the late phase of infection, E1B-55K is required for efficient nucleocytoplasmic transport and translation of late viral mRNAs, as well as for host cell shutoff. In an effort to separate the p53 binding and inactivation function and the late functions of the E1B-55K protein, we have generated 26 single-amino-acid mutations in the E1B-55K protein. These mutants were characterized for their ability to modulate the p53 level, interact with the E4orf6 protein, mediate viral late-gene expression, and support virus replication in human cancer cells. Of the 26 mutants, 24 can mediate p53 degradation as efficiently as the wild-type protein. Two mutants, R240A (ONYX-051) and H260A (ONYX-053), failed to degrade p53 in the infected cells. In vitro binding assays indicated that R240A and H260A bound p53 poorly compared to the wild-type protein. When interaction with another viral protein, E4orf6, was examined, H260A significantly lost its ability to bind E4orf6, while R240A was fully functional in this interaction. Another mutant, T255A, lost the ability to bind E4orf6, but unexpectedly, viral late-gene expression was not affected. This raised the possibility that the interaction between E1B-55K and E4orf6 was not required for efficient viral mRNA transport. Both R240A and H260A have retained, at least partially, the late functions of wild-type E1B-55K, as determined by the expression of viral late proteins, host cell shutoff, and lack of a cold-sensitive phenotype. Virus expressing R240A (ONYX-051) replicated very efficiently in human cancer cells, while virus expressing H260A (ONYX-053) was attenuated compared to wild-type virus dl309 but was more active than ONYX-015. The ability to separate the p53-inactivation activity and the late functions of E1B-55K raises the possibility of generating adenovirus variants that retain the tumor selectivity of ONYX-015 but can replicate more efficiently than ONYX-015 in a broad spectrum of cell types.  相似文献   

9.
Antipeptide sera were prepared in rabbits against synthetic peptides corresponding to the predicted amino and carboxy termini of the early region 1B 176R (19-kilodalton [kDa]) protein of human adenovirus type 5. Both antisera specifically immunoprecipitated the 19- and 18.5-kDa forms of the 176R protein observed previously with antitumor sera. These data suggested that both species are full-length molecules of 176 residues. To identify posttranslational modifications that could explain the formation of these multiple species and possibly their known association with membranes, studies were carried out to determine whether they are glycosylated or acylated. Neither the 19- nor the 18.5-kDa species appeared to be a glycoprotein, however, they were labeled with [3H]palmitate and [3H]myristate, indicating that both species are acylated. Thus, whereas acylation does not appear to be the cause of the multiple species, it could play a role in the membrane association of these viral proteins. The acylation of 176R was found to be unusual. The fatty acid linkage was resistant to treatment with hydroxylamine or methanol-KOH, suggesting that acylation was through an amide bond. In addition, both palmitate and myristate were present in 176R, suggesting either a lack of specificity in the acylation reaction or the existence of more than one acylation site.  相似文献   

10.
The adenovirus E1A and E1B proteins are required for transformation of primary rodent cells. When expressed in the absence of the 19,000-dalton (19K) E1B protein, however, the E1A proteins are acutely cytotoxic and induce host cell chromosomal DNA fragmentation and cytolysis, analogous to cells undergoing programmed cell death (apoptosis). E1A alone can efficiently initiate the formation of foci which subsequently undergo abortive transformation whereby stimulation of cell growth is counteracted by continual cell death. Cell lines with an immortalized growth potential eventually arise with low frequency. Coexpression of the E1B 19K protein with E1A is sufficient to overcome abortive transformation to produce high-frequency transformation. Like E1A, the tumoricidal cytokine tumor necrosis factor alpha (TNF-alpha) evokes a programmed cell death response in many tumor cell lines by inducing DNA fragmentation and cytolysis. Expression of the E1B 19K protein by viral infection, by transient expression, or in transformed cells completely and specifically blocks this TNF-alpha-induced DNA fragmentation and cell death. Cosegregation of 19K protein transforming activity with protection from TNF-alpha-mediated cytolysis demonstrates that both activities are likely the consequence of the same function of the protein. Therefore, we propose that by suppressing an intrinsic cell death mechanism activated by TNF-alpha or E1A, the E1B 19K protein enhances the transforming activity of E1A and enables adenovirus to evade TNF-alpha-dependent immune surveillance.  相似文献   

11.
12.
H van Ormondt  J Maat  C P van Beveren 《Gene》1980,11(3-4):299-309
The sequence of the leftmost 11.3% of the non-oncogenic human adenovirus type 5 (Ad5) DNA has been determined. This segment contains the entire early region E1 of the Ad5 genome which has been shown to be involved in in vitro transformation of non-permissive rodent cells (Van der Eb et al., 1980). From the DNA sequence, and from the mRNA sequence data obtained by Perricaudet et al, (1979, 1980) for the E1 mRNAs from the closely related adenovirus type 2 (Ad2), it is possible to predict the primary structure of the polypeptides encoded by this region. The function of these proteins in cell transformation is discussed. From the positions of mapped restriction endonuclease sites and termini of RNA segments in the nucleotide sequence the length of the Ad5 DNA is estimated to be 36.6 kb.  相似文献   

13.
14.
15.
An antiserum specific for the carboxy terminus of p60src, the transforming protein of Rous sarcoma virus, was produced by immunization of rabbits with a conjugate of bovine serum albumin and the synthetic peptide NH2-Tyr-Val-Leu-Glu-Val-Ala-Glu-COOH. The carboxy-terminal six amino acids of this peptide correspond in sequence to that deduced for the carboxy terminus of the p60src of the Schmidt-Ruppin strain of Rous sarcoma virus of subgroup A. The p60src proteins of the several strains of Rous sarcoma virus and the cellular homolog of the viral transforming protein, p60c-src, comprise a polymorphic family of polypeptides. The anticarboxy-terminal serum reacted readily with the p60src proteins of three different strains of Rous sarcoma virus. In contrast, no precipitation of cellular p60c-src could be detected with this serum. This suggests that the viral p60src proteins have identical carboxy termini and that the carboxy terminus of cellular p60c-src may be different from that of viral p60src. The anticarboxy-terminal serum reacted poorly with the subpopulation of viral p60src which is present in a complex with two cellular phosphoproteins. Apparently, the presence of the two cellular proteins interferes with the recognition of p60src by the anticarboxy-terminal serum. It seems likely, therefore, that these two cellular proteins bind to the carboxy-terminal domain of p60src.  相似文献   

16.
17.
18.
19.
The adenovirus type 5 243R E1A protein induces p53-dependent apoptosis in the absence of the 19- and 55-kDa E1B polypeptides. This effect appears to result from an accumulation of p53 protein and is unrelated to expression of E1B products. We now report that in the presence of the E1B 55-kDa polypeptide, the 289R E1A protein does not induce such p53 accumulation and, in fact, is able to block that induced by E1A 243R. This inhibition also requires the 289R-dependent transactivation of E4orf6 expression. E4orf6 is known to form complexes with the E1B 55-kDa protein and to function both in the transport and stabilization of viral mRNA and in shutoff of host cell protein synthesis. We demonstrated that the block in p53 accumulation is not due to the generalized shutoff of host cell metabolism. Rather, it appears to result from a mechanism targeted specifically to p53, most likely involving a decrease in the stability of p53 protein. The E1B 55-kDa protein is known to interact with both E4orf6 and p53, and as demonstrated recently by others, we showed that E4orf6 also binds directly to p53. Thus, multiple interactions between all three proteins may regulate p53 stability, resulting in the maintenance of low levels of p53 following virus infection.  相似文献   

20.
Infection with adenovirus mutants carrying either point mutations or deletions in the coding region for the 19-kDa E1B gene product (19K protein) causes degradation of host cell and viral DNAs (deg phenotype) and enhanced cytopathic effect (cyt phenotype). Therefore, one function of the E1B 19K protein is to protect nuclear DNA integrity and preserve cytoplasmic architecture during productive adenovirus infection. When placed in the background of a virus incapable of expressing a functional E1A gene product, however, E1B 19K gene mutations do not result in the appearance of the cyt and deg phenotypes. This demonstrated that expression of the E1A proteins was responsible for inducing the appearance of the cyt and deg phenotypes. By constructing a panel of viruses possessing E1A mutations spanning each of the three E1A conserved regions in conjunction with E1B 19K gene mutations, we mapped the induction of the cyt and deg phenotypes to the amino-terminal region of E1A. Viruses that fail to express conserved region 3 (amino acids 140 to 185) and/or 2, (amino acids 121 to 185) or nonconserved sequences between conserved regions 2 and 1 of E1A (amino acids 86 to 120) were still capable of inducing cyt and deg. This indicated that activities associated with these regions, such as transactivation and binding to the product of the retinoblastoma susceptibility gene, were dispensable for induction of E1A-dependent cytotoxic effects. In contrast, deletion of sequences in the amino terminus of E1A (amino acids 22 to 107) resulted in extragenic suppression of the cyt and deg phenotypes. Therefore, a function affected by deletion of amino acids 22 to 86 of E1A is responsible for exerting cytotoxic effects in virally infected cells. Furthermore, transient high-level expression of the E1A region using a cytomegalovirus promoter plasmid expression vector was sufficient to induce the cyt and deg phenotypes, demonstrating that E1A expression alone is sufficient to exert these cytotoxic effects and that other viral gene products are not involved. Finally, placing E1A expression under the control of a strong promoter did not alter the requirement for E1B in the transformation of primary cells. One possibility is that the E1B 19K protein is required to overcome the cytotoxic effects of E1A protein expression and thereby enable primary cells to become transformed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号