首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Metal nanoparticles were being used in different processes of developmental sectors like agriculture, industry, medical and pharmaceuticals. Nano-biotechnology along with sustainable organic chemistry has immense potential to reproduce innovative and key components of the systems to support surrounding environment, human health, and industry sustainably. Different unconventional methods were being used in green chemistry to synthesize gold and silver nanoparticles from various microbes. So, we reviewed different biological processes for green synthesis of metal nanoparticles. We also studied the mechanism of the synthesis process and procedures to characterize them. Some metallic nanoparticles have shown their potential to act as antimicrobial agent against plant pathogens. Here, we outlined green nanoparticles synthesized from microbes and highlighted their role against plant disease management.  相似文献   

2.
Surface plasma oscillations in metallic particles as well as in thin metallic films have been studied extensively in the past decades. New features regarding surface plasma excitations are, however, constantly discovered, leading, for example, to surface-enhanced Raman scattering studies and enhanced optical transmission though metal films with nanohole arrays. In the present work, the role of a metallic substrate is examined in two cases, one involving an overcoat of dielectric nanoparticles and the other an overcoat of metallic nanoparticles. Theoretical results are obtained by modeling the nanoparticles as forming a two-dimensional, hexagonal lattice of spheres. The scattered electromagnetic field is then calculated using a variant of the Green function method. Comparison with experimental results is made for nanoparticles of tungsten oxide and tin oxide deposited on either gold or silver substrates, giving qualitative agreement on the extra absorption observed when the dielectric nanoparticles are added to the metallic surfaces. Such absorption would be attributed to the mirror image effects between the particles and the substrate. On the other hand, calculations of the optical properties of silver or gold nanoparticle arrays on a gold or a silver substrate demonstrate very interesting features in the spectral region from 400 to 1,000 nm. Interactions between the nanoparticle arrays surface plasmons and their images in the metallic substrate would be responsible for the red shift observed in the absorption resonance. Moreover, effects of particle size and ambient index of refraction are studied, showing a great potential for applications in biosensing with structures consisting of metallic nanoparticle arrays on metallic substrates.  相似文献   

3.
He S  Zhang Y  Guo Z  Gu N 《Biotechnology progress》2008,24(2):476-480
An environmentally friendly method using a cell-free extract (CFE) of Rhodopseudomonas capsulata is proposed to synthesize gold nanowires with a network structure. This procedure offers control over the shapes of gold nanoparticles with the change of HAuCl4 concentration. The CFE solutions were added with different concentrations of HAuCl4, resulting in the bioreduction of gold ions and biosynthesis of morphologies of gold nanostructures. It is probable that proteins acted as the major biomolecules involved in the bioreduction and synthesis of gold nanoparticles. At a lower concentration of gold ions, exclusively spherical gold nanoparticles with sizes ranging from 10 to 20 nm were produced, whereas gold nanowires with a network structure formed at the higher concentration of gold ions in the aqueous solution. This method is expected to be applicable to the synthesis of other metallic nanowires such as silver and platinum, and even other anisotropic metal nanostructures are expected using the biosynthetic methods.  相似文献   

4.
Label-free immunosensor based on gold nanoparticle silver enhancement   总被引:1,自引:0,他引:1  
A label-free immunosensor for the sensitive detection of human immunoglobulin G (IgG) was prepared based on gold nanoparticle-silver enhancement detection with a simple charge-coupled device (CCD) detector. The gold nanoparticles, which were used as nuclei for the deposit of metallic silver and also for the adsorption of antibodies, were immobilized into wells of a 9-well chip. With the addition of silver enhancement buffer, metallic silver will deposit onto gold nanoparticles, causing darkness that can be optically measured by the CCD camera and quantified using ImageJ software. When antibody was immobilized onto the gold nanoparticles and antigen was captured, the formed immunocomplex resulted in a decrease of the darkness and the intensity of the darkness was in line with IgG concentrations from 0.05 to 10 ng/ml. The CCD detector is simple and portable, and the reported method has many desirable merits such as sensitivity and accuracy, making it a promising technique for protein detection.  相似文献   

5.
This study reveals a green process for the production of multi-morphological silver (Ag NPs) and gold (Au NPs) nanoparticles, synthesized using an agro-industrial residue cashew nut shell liquid. Aqueous solutions of Ag+ ions for silver and chloroaurate ions for gold were treated with cashew nut shell extract for the formation of Ag and Au NPs. The nano metallic dispersions were characterized by measuring the surface plasmon absorbance at 440 and 546 nm for Ag and Au NPs. Transmission electron microscopy showed the formation of nanoparticles in the range of 5–20 nm for silver and gold with assorted morphologies such as round, triangular, spherical and irregular. Scanning electron microscopy with energy dispersive spectroscopy and X-ray diffraction analyses of the freeze-dried powder confirmed the formation of metallic Ag and Au NPs in crystalline form. Further analysis by Fourier transform infrared spectroscopy provided evidence for the presence of various biomolecules, which might be responsible for the reduction of silver and gold ions. The obtained Ag and Au NPs had significant antibacterial activity, minimum inhibitory concentration and minimum bactericidal concentration on bacteria associated with fish diseases.  相似文献   

6.
《Process Biochemistry》2007,42(5):919-923
The development of reliable processes for the synthesis of silver nanomaterials is an important aspect of current nanotechnology research. Reports on the cell-associated biosynthesis of silver nanoparticles using microorganisms have been published, but these methods of synthesis are rather slow. In this paper, we report on the rapid synthesis of metallic nanoparticles of silver using the reduction of aqueous Ag+ ion using the culture supernatants of Klebsiella pneumonia, Escherichia coli, and Enterobacter cloacae (Enterobacteriacae). The synthetic process was quite fast and silver nanoparticles were formed within 5 min of silver ion coming in contact with the cell filtrate. Through a limited screening process involving a number of common microorganisms, we observed that the culture supernatants of different bacteria from Enterobacteriacae were potential candidates for the rapid synthesis of silver nanoparticles; further, we revealed that this method of synthesis requires far less time than previously published biological methods. Our investigation also showed that piperitone can partially inhibit the reduction of Ag+ to metallic silver nanoparticles by Enterobacteriacae.  相似文献   

7.
Nanomaterials have assumed a great deal of importance as they often display unique and considerably modified physical, chemical and biological properties as compared to their counterparts of the macroscale. In this study, biogenic synthesis of silver and gold nanoparticles by Geobacillus stearothermophilus has been attempted. The exposure of G. stearothermophilus cell free extract to the metal salts leads to the formation of stable silver and gold nanoparticles in the solution. These nanoparticles were characterized by UV–Vis spectra, FTIR, TEM, and XRD. The silver and gold nanoparticles have absorption maxima at 423 nm and 522 nm respectively. The TEM micrograph revealed the formation of polydispersed particles in the case of silver nanoparticles and monodispersed particles with respect to the gold nanoparticles. High stability of the nanoparticle solution could be attributed to the secretion of certain capping proteins by the bacterium in the reaction mixture. The involvement of these proteins was confirmed by FTIR and SDS PAGE.  相似文献   

8.
Size- and shape-controlled syntheses of silver and gold nanoparticles have been successfully developed using partially hydrolyzed starch vermicelli templates as green nanoreactors for the growth of nanoparticles. Mung bean vermicelli is of interest due to the higher amylose content and its transparency, allowing the formation of coloured particles on the vermicelli to be observed. The as-prepared silver and gold nanoparticles were characterized by UV–Visible spectroscopy, transmission electron microscopy (TEM), and X-ray diffraction (XRD). The carbonization of as-prepared vermicelli at 200 °C, 300 °C, and 500 °C was carried out to investigate nanoparticles embedded in the starch vermicelli templates. TEM of carbonized samples revealed the interesting patterns of gold nanorods and silver nanowire-liked assemblies along with carbon nanotubes. The carbonization of silver nanoparticles at 500 °C resulted to the loss of starch vermicelli capping nanoparticles and this led to the higher diffusion rate of nanoparticles to generate silver nanodendrites on TEM images. XRD data of carbonized yellow and purple silver nanoparticles revealed the presence of silver nanoparticles and a mixture of silver and silver chloride nanoparticles, respectively. This approach offers a great potential to design new fine structures of vermicelli and utilize its structure as a template for the large-scale synthesis of size- and shape-controlled silver and gold nanoparticles for chemical and biological applications.  相似文献   

9.
A simple and ecofriendly biosynthetic process has been developed for silver nanoparticles using the aqueous extract of gum olibanum (Boswellia serrata), a renewable natural plant biopolymer. The water soluble compounds in the gum serve as dual functional reducing and stabilizing agents. The effect of concentration of gum and silver nitrate; and reaction time on nanoparticle synthesis was studied. The UV–visible spectroscopy, transmission electron microscopy and X-ray diffraction techniques were used to characterize the synthesized nanoparticles. By tuning the reaction conditions, size controlled spherical nanoparticles of around 7.5 ± 3.8 nm was achieved. Using Fourier transform infrared spectroscopy and Raman spectroscopy, a probable mechanism involved in reduction and stabilization of nanoparticles has been explained. The produced silver nanoparticles exhibited substantial antibacterial activity on both the Gram classes of bacteria. By virtue of being biogenic and encapsulated with proteins, these surface functionalized nanoparticles can be easily integrated for various biological applications.  相似文献   

10.
Plant diseases are among the main constraints affecting the production and productivity of crops both in terms of quality and quantity. Use of chemicals continues to be the major tactic to mitigate the menace of crop diseases. However, because of the environmental concerns, health conscious attitude of human beings and other hazards associated with the use of chemicals, use of bio agents to suppress the disease-causing activity of plant pathogens is gaining importance. With the emergence and increase of microbial organisms resistant to multiple antibiotics, and the continuing emphasis on health-care costs, many researchers have tried to develop new and effective antimicrobial reagents that do not stimulate resistance and are less expensive. Nanoscale materials have emerged as novel antimicrobial agents owing to their high surface area to volume ratio and the unique chemical and physical properties, which increases their contact with microbes and their ability to permeate cells. Since silver displays multiple modes of inhibitory action to micro-organisms, it may be used for controlling various plant pathogens in a relatively safer way compared to synthetic fungicides. Development of reliable and eco-friendly processes for synthesis of metallic nanoparticles is an important step in the field of application of nanotechnology. One of the options to achieve this objective is to use synthesis of nanoparticles of silver by reduction of aqueous Ag+ ions with the culture supernatant of Pseudomonas fluorescens CHA0. In this study, P. fluorescens CHA0 that has a medium impact on Gaeumannomyces graminis var. tritici was selected. Then, P. fluorescens CHA0 was used for the synthesis of silver nanoparticles. The morphology of the nanoparticles was characterised by Transmission Electron Microscopy and UV–vis spectroscopy. The silver nanoparticles of approximate size 50 nm were observed. The process of reduction is extracellular which makes it an easier method for the synthesis of silver nanoparticles.  相似文献   

11.
《Process Biochemistry》2010,45(9):1450-1458
Despite the vast research being conducted on the development of biosynthetic procedures, the process is limited owing to the unavailability of modes to control the size and shape of the biosynthesized nanoparticles. In this study, we investigate the size and shape control of gold nanoparticles synthesized by leaf extract of Piper betle (PBE). The effects of various counter ions, temperatures, pH and reaction times on the morphology of gold nanoparticles are also scrutinized. Results from this study indicate that the presence of iodine during biosynthesis leads to the formation of spherical gold nanoparticles and induces the presence of bromine-emanating, truncated nanoplatelets. Spherical nanoparticles are formed with increasing incubation temperature. pH 3 was found to be the optimum for nanoparticles synthesis. The presence of phosphates, sulphates and nitrates increases the productivity of nanoparticles. ICP analysis revealed complete reduction of AuCl4 ions within 48 h of the reaction. The use of plant extract for rapid synthesis represents a novel and environmentally friendly approach for the fabrication of gold nanoparticles and nanoplatelets, as an alternative to chemical methods.  相似文献   

12.
Enzymatic digestion is proposed as a method for concentrating gold nanoparticles produced in plants. The mild conditions of digestion are used in order to avoid an increase in the gold particle size, which would occur with a high-temperature process, so that material suitable for catalysis may be produced. Gold nanoparticles of a 5-50-nm diameter, as revealed by transmission electron microscopy (TEM), at concentrations 760 and 1120 ppm Au, were produced within Brassica juncea grown on soil with 22-48 mg Au kg(-1). X-ray absorption near edge spectroscopy (XANES) reveals that the plant contained approximately equal quantities of Au in the metallic (Au0) and oxidized (Au+1) states. Enzymatic digestion dissolved 55-60 wt% of the plant matter. Due to the loss of the soluble gold fraction, no significant increase in the total concentration of gold in the samples was observed. However, it is likely that the concentration of the gold nanoparticles increased by a factor of two. To obtain a gold concentration suitable for catalytic reactions, around 95 wt% of the starting dry biomass would need to be solubilized or removed, which has not yet been achieved.  相似文献   

13.
Surface-enhanced Raman scattering (SERS) is a surface-sensitive technique that enhances Raman scattering by molecules adsorbed on rough metal surfaces. It is known that metal nanoparticles, especially gold and silver nanoparticles, exhibit great SERS properties, which make them very attractive for the development of biosensors and biocatalysts. On the other hand, the development of ecofriendly methods for the synthesis of metallic nanostructures has become the focus of research in several countries, and many microorganisms and plants have already been used to biosynthesize metallic nanostructures. However, the majority of these are pathogenic to plants or humans. Here, we report gold nanoparticles with good SERS properties, biosynthesized by Neurospora crassa extract under different environmental conditions, increasing Raman signals up to 40 times using methylene blue as a target molecule. Incubation of tetrachloroauric acid solution with the fungal extract at 60°C and a pH value of a) 3, b) 5.5, and c) 10 resulted in the formation of gold nanoparticles of a) different shapes like triangles, hexagons, pentagons etc. in a broad size range of about 10-200 nm, b) mostly quasi-spheres with some different shapes in a main size range of 6-23 nm, and c) only quasi-spheres of 3-12 nm. Analyses included TEM, HRTEM, and EDS in order to corroborate the shape and the elemental character of the gold nanoparticles, respectively. The results presented here show that these ‘green’ synthesized gold nanoparticles might have potential applicability in the field of biological sensing.  相似文献   

14.
Immunogold silver staining for light microscopy   总被引:5,自引:3,他引:2  
 The immunogold silver staining method (IGSS) is widely used as a sensitive and specific immunohistochemical visualisation technique. IGSS involves the specific deposition of metallic silver at the site of immunogold labelling and provides a means of visualisation at low magnification by light or electron microscopy. Silver developers for IGSS rapidly deposit metallic silver only at the site of heavy metals, including gold and silver, because of their catalytic activity. The developing solution contains the silver ions and reducing agent necessary for this reaction. Using different silver salts as ion donors and by selecting an appropriate temperature and pH, visible amounts of silver can be deposited in a few minutes at the site of colloidal gold labelling while little non-specific background deposition occurs. Inclusion of protective colloids in the solution can also be used to control the reaction. Although studies of the chemical basis of silver deposition around unlabelled colloidal gold date back to 1939, immunogold enhancement by silver was established in 1983. The IGSS method evolved from the combination of disparate photographic, histochemical and immunogold techniques which have been effectively combined and optimised over the last 10 years to provide a visualisation system which is well suited to many immunohistochemical studies. Accepted: 29 April 1996  相似文献   

15.

The synthesis of metal nanoparticles by green methods attained enormous attention in recent years due to its easiness, non-toxicity, and eco-friendly nature. In the present study, noble metal nanoparticles such as silver and gold were prepared using an aqueous leaf extract of a medicinal plant, Bauhinia purpurea. The leaf extract performed as both reducing and stabilizing agents for the development of nanoparticles. The formations of silver and gold nanoparticles were confirmed by observing the surface plasmon resonance peaks at 430 nm and 560 nm, respectively, in UV–Vis absorption spectrum. Various properties of nanoparticles were demonstrated using the characterization techniques such as FTIR, XRD, TEM, and EDX. The synthesized silver and gold nanoparticles had a momentous anticancer effect against lung carcinoma cell line A549 in a dose-dependent manner with IC50 values of 27.97 µg/mL and 36.39 µg/mL, respectively. The antimicrobial studies of synthesized nanoparticles were carried out by agar well diffusion method against six microbial strains. Silver and gold nanoparticles were also showed high antioxidant potentials with IC50 values of 42.37 µg/mL and 27.21 µg/mL, respectively; it was measured using DPPH assay. Additionally, the nanoparticles were observed to be good catalysts for the reduction of organic dyes.

  相似文献   

16.
The present study demonstrates that cultured macrophages are able to liberate gold ions from metallic gold surfaces, a process suggested to be called “dissolucytosis”, in a way analogous to the release taking place when metallic implants are placed in a body. Using the ultra-sensitive autometallographic (AMG) technique, we demonstrate that murine macrophages grown on a surface of metallic gold liberate gold ions. Ultra-structural AMG reveals that the gold ions are located in an ultra-thin membrane-like structure, “the dissolution membrane”, intervened between the macrophages and the metal surface. The presence of AMG silver enhanced gold nanoparticles in the dissolution membrane proves that the release of charged gold atoms takes place extracellularly. The dissolution membrane is most likely secreted and chemically controlled by the “dissolucytes”, here macrophages, and the membrane is essential for the dissolution of metal implants and particles, which cannot be phagocytosed. Our findings support the notion that whenever a metallic gold surface is attacked by dissolucytes, gold ions are liberated and taken up by surrounding cells. As gold ions can suppress the inflammatory process, it is reasonable to expect that when dissolucytosis takes place in the living organism the liberated gold ions will cause local immunosuppression.  相似文献   

17.
Silver nanoparticles as a new generation of antimicrobials   总被引:7,自引:0,他引:7  
Silver has been in use since time immemorial in the form of metallic silver, silver nitrate, silver sulfadiazine for the treatment of burns, wounds and several bacterial infections. But due to the emergence of several antibiotics the use of these silver compounds has been declined remarkably. Nanotechnology is gaining tremendous impetus in the present century due to its capability of modulating metals into their nanosize, which drastically changes the chemical, physical and optical properties of metals. Metallic silver in the form of silver nanoparticles has made a remarkable comeback as a potential antimicrobial agent. The use of silver nanoparticles is also important, as several pathogenic bacteria have developed resistance against various antibiotics. Hence, silver nanoparticles have emerged up with diverse medical applications ranging from silver based dressings, silver coated medicinal devices, such as nanogels, nanolotions, etc.  相似文献   

18.
《Process Biochemistry》2010,45(7):1065-1071
In this paper we have reported the green synthesis of silver (AgNPs) and gold (AuNPs) nanoparticles by reduction of silver nitrate and chloroauric acid solutions, respectively, using fruit extract of Tanacetum vulgare; commonly found plant in Finland. The process for the synthesis of AgNPs and AuNPs is rapid, novel and ecofriendly. Formation of the AgNPs and AuNPs were confirmed by surface plasmon spectra using UV–Vis spectrophotometer and absorbance peaks at 452 and 546 nm. Different tansy fruit extract concentration (TFE), silver and gold ion concentration, temperature and contact times were experimented in the synthesis of AgNPs and AuNPs. The properties of prepared nanoparticles were characterized by TEM, XRD, EDX and FTIR. Finally zeta potential values at various pH were analyzed along with corresponding SPR spectra.  相似文献   

19.
Nanotechnology is gaining enormous attention as the most dynamic research area in science and technology. It involves the synthesis and applications of nanomaterials in diverse fields including medical, agriculture, textiles, food technology, cosmetics, aerospace, electronics, etc. Silver nanoparticles (AgNPs) have been extensively used in such applications due to their excellent physicochemical, antibacterial, and biological properties. The use of plant extract as a biological reactor is one of the most promising solutions for the synthesis of AgNPs because this process overcomes the drawbacks of physical and chemical methods. This review article summarizes the plant-mediated synthesis process, the probable reaction mechanism, and the colorimetric sensing applications of AgNPs. Plant-mediated synthesis parameters largely affect the surface plasmon resonance (SPR) characteristic due to the changes in the size and shape of AgNPs. These changes in the size and shape of plant-mediated AgNPs are elaborately discussed here by analyzing the surface plasmon resonance characteristics. Furthermore, this article also highlights the promising applications of plant-mediated AgNPs in sensing applications regarding the detection of mercury, hydrogen peroxide, lead, and glucose. Finally, it describes the future perspective of plant-mediated AgNPs for the development of green chemistry.  相似文献   

20.
The development of silver-intensified immunogold-labeled antibodies for light microscopy described by Fritz et al. (4) has been investigated. Principles and chemistries used in color photographic science have been applied to immunogold enhancement. In this technique, colloidal gold acts as the catalytic center for the reduction of silver ions to metallic silver with subsequent color development in the presence of hydroquinone. Silver ions and hydroquinone are adsorbed onto the surface of colloidal gold. The reduction of silver ions to metallic silver is further catalyzed by autometallography. The colored-SIG technique offers several advantages. It has sensitivity comparable to the silver-intensified gold (SIG) method and greater sensitivity than immunoenzymatic procedures, takes approximately one hour, results in one of three color reaction products (magenta, cyan, or yellow), and produces better contrast between the reaction products and the background (Figure 1). Thus, this method should prove useful in double- and even triple-staining procedures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号