首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electrospinning was used to produce self-supporting nanofibrous poly(ethylene terephthalate) membranes with good mechanical properties and straightforward handling. The application of this type of membranes in apple juice clarification process was investigated. Processing characteristics and quality parameters of apple juice were analyzed in order to compare the proposed method to traditional clarification techniques. In general, the apple juice obtained from electrospun nanofiber membrane filtration revealed physico-chemical characteristics comparable to those from juice clarified by ultrafiltration or by conventional clarification using filtering aids. Nevertheless, the new process showed a high flux performance and revealed to be much faster, simple and more economical than the traditional processes. This work demonstrated the filtration potential of an electrospun PET membrane thus introducing a new concept of clarification and opening new approaches for the juice processing industry or even for other food industry fields.  相似文献   

2.
优良的甘蔗原料是生产高品质红糖的基础,筛选营养价值丰富的甘蔗种质资源,是选育红糖加工型甘蔗品种的基础.本研究以全国广泛种植、当前普遍用于红糖加工以及历史上较早应用于制作红糖等具有代表性的16份甘蔗种质为试验材料,通过分析蔗汁的蛋白质、总游离氨基酸、总多酚、蔗糖、还原糖、灰分、氯化物、胶体含量等营养、品质指标,采用因子分...  相似文献   

3.
Results of a field experiment comprising various sources of sulphur and iron showed that band application of sulphur @ 500 kg/ha significantly increased the mean sugar content by 5.6%, recovery of sugar by 5.8% and purity of sugarcane juice by 0.8% on account of increased leaf sulphur content as compared with that under control. The application of Fe-EDDHA or gypsum had little effect on the quality of sugarcane juice. Effect of ferrous sulphate was intermediate between that of sulphur and gypsum. A study of the relationship between sulphur content of leaves and juice characteristics showed that every 1% increase in sulphur content of leaves increased sugar content in cane juice by 0.038%, recovery of sugar by 0.038% and purity of juice by 0.033%.  相似文献   

4.
Summary Bacillus polymyxa (NRRL-18475) produced a levan-type fructan (B, 26 fructofuranoside) when grown on sucrose, sugarcane juice, and sugarbeet molasses. The organism converted about 46% of the fructose moiety of sucrose to levan when grown on sucrose medium, however, the yields of levan from sugarcane juice and beet molasses were much less than sucrose solution. Such sugarcane juice and beet molasses can be made a good substrate for levan production by various modifications. Adding peptone to sugarcane juice or passing beet molasses through a column of gel filtration media improved levan yield to a level almost comparable to that obtained from sucrose.  相似文献   

5.
Increased industrial use of sugarcane (Saccharum spp. hybrid) for food and bioenergy has led to considerable improvements in its genetic transformation, which allowed the development of not only pest- and herbicide-resistant lines but also lines expressing high-value bioproducts and biopolymers. However, the economic benefits of using inexpensive transgenic plant systems for the production of industrial proteins could be offset by high downstream processing costs. In this work, transgenic sugarcane expressing recombinant bovine lysozyme (BvLz) was used to evaluate the feasibility of extraction and fractionation of recombinant proteins expressed in sugarcane stalks. Three pH levels (4.5, 6.0 and 7.5) and three salt concentrations (0, 50, and 150 mM NaCl) were tested to determine BvLz and total protein extractability. Two extraction conditions were selected to prepare BvLz extracts for further processing by cross-flow filtration, a suitable method for concentration and conditioning of extracts for direct applications or prior to chromatography. Partial removal of native proteins was achieved using a 100 kDa membrane but 20–30 % of the extracted BvLz was lost. Concentration of clarified extracts using a 3 kDa membrane resulted in twofold purification and 65 % recovery of BvLz. Loading of concentrated sugarcane extract on hydrophobic interaction chromatography (HIC) resulted in 50 % BvLz purity and 69 % recovery of BvLz.  相似文献   

6.
The xylanase obtained from a hyper-producer Bacillus pumilus SV-85S was purified and characterized to evaluate its potential in industrial applications. Xylanase was purified to homogeneity 25.3-fold with 63.2% recovery using cation-exchange chromatography through CMSephadex C-50. The purified xylanase showed a single band on Native-PAGE and a single peak in RP-HPLC confirming its homogeneity. The purified enzyme revealed a single band on SDS-PAGE with a molecular mass of 23.6 kDa, which was confirmed with gel filtration chromatography through Sepharose 6B. The Km and Vmax of the purified xylanase was 1.0 mg/mL and 333.3 IU/mL, respectively. The temperature and pH profiles of the purified xylanase revealed that it was thermo and alkali stable. In recent years due to the overall increase in natural fruit juice consumption, juices have become important from a consumption point of view. However, raw juice is turbid and viscous which tends to settle during storage. Therefore, it must be clarified before commercialization. The efficacy of absolutely purified xylanase was studied on juice enrichment of apples (Malus domestica), pineapples (Ananas comosus L.) and tomatos (Lycopersicum esculentum). The treatment with xylanase lead to an increased juice yield by 23.53% (apple), 10.78% (pineapple), and 20.78% (tomato) as well as having a significant effect on juice clarity by an increase of % transmittance of 22.20, 19.80, and 14.30, respectively. The turbidity and viscosity was also decreased without affecting acid neutrality significantly.  相似文献   

7.
甘蔗品质指标的通径分析和因子分析   总被引:4,自引:0,他引:4  
应用通径分析和因子分析方法,对36个甘蔗品种(系)的11个品质指标数据进行分析。简单相关分析结果表明,甘蔗蔗糖分除了与蔗渣蒸煮液失水量没有显著相关外,与其他9个品质指标均有显著或极显著相关性。甘蔗纤维分与甘蔗出汁率、蔗汁折光锤度、蔗汁旋光读数、蔗汁直接转光度、蔗汁间接转光度和蔗渣含水量有极显著相关性,而与蔗渣蒸煮液失水量、蒸煮液的折光锤度和蒸煮液的旋光读数的相关性不显著。通径分析结果表明,甘蔗蔗糖分主要受甘蔗出汁率、蔗汁直接转光度、蔗汁间接转光度、蔗渣蒸煮液失水量和蒸煮液的旋光读数等5个指标影响较大,而甘蔗纤维分主要受甘蔗出汁率、蔗渣含水量、蔗渣蒸煮液失水量和蒸煮液的折光锤度等4个指标影响较大。因子分析结果表明,9个甘蔗品质指标可由4个主因子所代表。其特征值的累计贡献率迭94.30%。前3个主因子分别为蔗汁糖分指标因子、蔗渣糖分指标因子和蔗渣水分因子。其特征值的累计贡献率达83.06%,第4个主因子只有蔗渣蒸煮液失水量载荷值较大。  相似文献   

8.
Lactobacillus delbrueckii was grown on sugarcane molasses, sugarcane juice and sugar beet juice in batch fermentation at pH 6 and at 40°C. After 72 h, the lactic acid from 13% (w/v) sugarcane molasses (119 g total sugar l−1) and sugarcane juice (133 g total sugar l−1) was 107 g l−1 and 120 g l−1, respectively. With 10% (w/v) sugar beet juice (105 g total sugar l−1), 84 g lactic acid l−1 was produced. The optical purities of d-lactic acid from the feedstocks ranged from 97.2 to 98.3%.  相似文献   

9.
Maintenance of high cell viability was the main characteristic of our new strains of thermotolerant Saccharomyces. Total sugar conversion to ethanol was observed for sugarcane juice fermentation at 38-40 degrees C in less than 10 h and without continuous aeration of the culture. Invertase activity differed among the selected strains and increased during fermentation but was not dependent on cell viability. Invertase activity of the cells and optimum temperature for growth, as well as velocity of ethanol formation, were dependent on medium composition and the type of strain used. At high sugarcane syrup concentrations, the best temperature for ethanol formation by strain 781 was 35 degrees C. Distinct differences among the velocities of ethanol production using selected strains were also observed in sugarcane syrup at 35-38 degrees C.  相似文献   

10.
Due to the environmental concerns and the increasing price of oil, bioethanol was already produced in large amount in Brazil and China from sugarcane juice and molasses. In order to make this process competitive, we have investigated the suitability of immobilized Saccharomyces cerevisiae strain AS2.1190 on sugarcane pieces for production of ethanol. Electron microscopy clearly showed that cell immobilization resulted in firm adsorption of the yeast cells within subsurface cavities, capillary flow through the vessels of the vascular bundle structure, and attachment of the yeast to the surface of the sugarcane pieces. Repeated batch fermentations using sugarcane supported-biocatalyst were successfully carried out for at least ten times without any significant loss in ethanol production from sugarcane juice and molasses. The number of cells attached to the support increased during the fermentation process, and fewer yeast cells leaked into fermentation broth. Ethanol concentrations (about 89.73–77.13 g/l in average value), and ethanol productivities (about 59.53–62.79 g/l d in average value) were high and stable, and residual sugar concentrations were low in all fermentations (0.34–3.60 g/l) with conversions ranging from 97.67–99.80%, showing efficiency (90.11–94.28%) and operational stability of the biocatalyst for ethanol fermentation. The results of this study concerning the use of sugarcane as yeast supports could be promising for industrial fermentations. L. Liang and Y. Zhang have contributed equally to this work.  相似文献   

11.
As an environmentally friendly and industrially useful biopolymer, poly‐γ‐glutamic acid (γ‐PGA) from Bacillus licheniformis CGMCC 2876 was characterized by the high‐resolution mass spectrometry and 1H NMR. A flocculating activity of 11,474.47 U mL?1 obtained with γ‐PGA, and the effects of carbon sources, ions, and chemical properties (D‐/L‐composition and molecular weight) on the production and flocculating activity of γ‐PGA were discussed. Being a bioflocculant in the sugar refinery process, the color and turbidity of the sugarcane juice was IU 1,877.36 and IU 341.41 with 0.8 ppm of γ‐PGA, respectively, which was as good as the most widely used chemically synthesized flocculant in the sugarcane industry—polyacrylamide with 1 ppm. The γ‐PGA produced from B. licheniformis CGMCC 2876 could be a promising alternate of chemically synthesized flocculants in the sugarcane industry. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1287–1294, 2015  相似文献   

12.
果蔗叶片生理生化指标与品质性状的典范相关分析   总被引:1,自引:0,他引:1  
选用果蔗(Saccharum officinarum L.)14个品种,用典范相关分析法研究不同生育期叶片生理生化指标对果蔗品质性状的影响。结果表明:分蘖期类胡萝卜素含量与蔗茎蔗糖含量,可溶性总糖含量与蔗茎含水率,可溶性总糖含量与蔗汁还原糖含量均呈正相关;伸长初期叶绿素含量、CAT活性与蔗茎蔗糖含量,可溶性蛋白质含量与蔗茎纤维含量均呈正相关;伸长盛期Mg^2+ -ATP酶活性与蔗茎纤维含量,可溶性总糖含量与蔗茎蔗糖含量呈正相关,C/N与蔗茎含水率呈负相关;成熟期类胡萝卜素含量与蔗茎蔗糖含量呈正相关,可溶性总糖含量与蔗汁还原糖含量呈负相关。  相似文献   

13.
Perspective of the Sugarcane Industry in Brazil   总被引:1,自引:0,他引:1  
The sugarcane industry in Brazil is experiencing a rapid shift towards creating the grounds for a green and sustainable biorefinary industry. After 30 years of ProAlcool, the federal government program that boosted Brazil’s sugarcane industry by creating a mandate to blend ethanol with gasoline, flex fuel engines now dominate Brazil’s automobile industry. Currently, bioethanol replaces around 30% of the gasoline consumed in the country and its demand is projected to more that double in the next 10 years. On another front, the sugarcane genomics program created by FAPESP in the late 1990s paved the way for the establishment of innovative biotechnology startup companies that attracted the attention of the largest agro-biotechnology sector companies of the world. Almost all of these companies now have their sugarcane research centers surrounding the city of Campinas, São Paulo. In addition, innovative synthetic biology companies are developing technologies to produce diesel, jet fuel and other high value molecules using sugarcane juice as a carbon source. The sugarcane industry also teamed with petrochemical companies and already established operating plants to produce bioplastics. Innovations have also occurred in the field of co-generation of electricity from sugarcane bagasse. Currently sugarcane supplies 4% of the electricity needs of the country. Collectively, these innovations suggest that Brazil’s sugarcane industry could supply over 30% of the country energy needs by 2021 and a significant fraction of new bioproducts produced by its nascent biorefinary plants.  相似文献   

14.
Sucrose is the feedstock for more than half of the world's fuel ethanol production and a major human food. It is harvested primarily from sugarcane and beet. Despite attempts through conventional and molecular breeding, the stored sugar concentration in elite sugarcane cultivars has not been increased for several decades. Recently, genes have been cloned for bacterial isomerase enzymes that convert sucrose into sugars which are not metabolized by plants, but which are digested by humans, with health benefits over sucrose. We hypothesized that an appropriate sucrose isomerase (SI) expression pattern might simultaneously provide a valuable source of beneficial sugars and overcome the sugar yield ceiling in plants. The introduction of an SI gene tailored for vacuolar compartmentation resulted in sugarcane lines with remarkable increases in total stored sugar levels. The high-value sugar isomaltulose was accumulated in storage tissues without any decrease in stored sucrose concentration, resulting in up to doubled total sugar concentrations in harvested juice. The lines with enhanced sugar accumulation also showed increased photosynthesis, sucrose transport and sink strength. This remarkable step above the former ceiling in stored sugar concentration provides a new perspective into plant source–sink relationships, and has substantial potential for enhanced food and biofuel production.  相似文献   

15.
An alternative route for bio-ethanol production from sugarcane stalks (juice and bagasse) featuring a previously reported low temperature alkali pretreatment method was evaluated. Test-tube scale pretreatment-saccharification experiments were carried out to determine optimal LTA pretreatment conditions for sugarcane bagasse with regard to the efficiency of enzymatic hydrolysis of the cellulose. Free fermentable sugars and bagasse recovered from 2 kg of sugarcane stalks were jointly converted into ethanol via separate enzymatic hydrolysis and fermentation (SHF). Results showed that 98% of the cellulose present in the optimally pretreated bagasse was hydrolyzed into glucose after 72-h enzymatic saccharification using commercially available cellulase and β-glucosidase preparations at relatively low enzyme loading. The fermentable sugars in the mixture of the sugar juice and the bagasse hydrolysate were readily converted into 193.5 mL of ethanol by Saccharomyces cerevisiae within 12h, achieving 88% of the theoretical yield from the sugars and cellulose.  相似文献   

16.
Presence of endophytic diazotrophs in sugarcane juice   总被引:1,自引:0,他引:1  
Summary In this work we investigated the diazotrophs present in the juice of different varieties of sugarcane. Samples of the aerial part of sugarcane, between 3 and 5 months old, were assessed for the presence of diazotrophs. The isolated nitrogen-fixing microorganisms were identified as Gluconacetobacter diazotrophicus, Herbaspirillum seropedicae and Azospirillum brasilense. These microorganisms use organic acids found in the sugarcane juice as an energy source. They also use sugars, such as free glucose, that are present in all the organs of the aerial part. The distribution of endophytic microorganisms in sugarcane depends on the different organic acid and sugar concentrations present during development and growth. We concluded that in more mature regions of the sugarcane stem Gluconacetobacter diazotrophicus grows more abundantly than Herbaspirillum seropedicae or Azospirillum brasilense.  相似文献   

17.
Studies were conducted on eight sugarcane (Saccharum spp. hydrid) cultivars during the 1982–83 (plant crop) and 1983–84 (ratoon crop) growing seasons to determine the effects of glyphosine (Polaris) (N,N-bis (phosphonomethyl) glycine) and glyphosate (Polado) (sodium-N-(phosphonomethyl) glycine) on stalk sucrose content and yield. Difference due to crops (plant vs. ratoon) for sugarcane quality, kilograms of sugar per ton of cane (S/T), sugarcane yield, tons of cane per hectare (TCH), and sugar yield, tons of sugar per hectare (TSH) were significant. Significant differences were found in quality for the ratoon crop and cane and sugar yield in both crops due to ripener treatment. Cultivars in both crops differed significantly in quality and yield. Harvest dates were significantly different for all plant characteristics. Interactions of cultivar by treatment for the plant crop, harvest date by treatment for the ratoon crop, and cultivar by harvest date for both crops for cane quality also were significant. Time from ripener application to achievement of maximum sugar concentration also depended on cultivar. This is important in determining the economic benefits of a ripener treatment. Climatic conditions may also affect the benefits of such applications.Mention of trade name or proprietary product does not imply or constitute an endorsement or recommendation by the USDA or the University of Florida.  相似文献   

18.

Purpose

The production of bioethanol in Argentina is based on the sugarcane plantation system, with extensive use of agricultural land, scarce use of fertilizers, pesticides, and artificial irrigation, and burning of sugarcane prior to harvesting. The objective of this paper is to develop a life cycle assessment (LCA) of the fuel ethanol from sugarcane in Tucumán (Argentina), assessing the environmental impact potentials to identify which of them cause the main impacts.

Methods

Our approach innovatively combined knowledge about the main impact pathways of bioethanol production with LCA which covers the typical emission-related impact categories at the midpoint life cycle impact assessment. Real data from the Argentinean industry subsystems have been used to perform the study: S1—sugarcane production, S2—milling process, S3—sugar production, and S4—ethanol production from molasses, honey, or sugarcane juice.

Results and discussion

The results are shown in the three alternative pathways to produce bioethanol. Different impact categories are assessed, with global warming potential (GWP) having the highest impact. So, the production of 1 kg of ethanol from molasses emitted 22.5 kg CO2 (pathway 1), 19.2 kg CO2 from honey (pathway 2), and 15.0 kg CO2 from sugarcane juice (pathway 3). Several sensitivity analyses to study the variability of the GWP according to the different cases studied have been performed (changing the agricultural yield, including economic and calorific allocation in sugar production, and modifying the sugar price).

Conclusions

Agriculture is the subsystem which shows the highest impact in almost all the categories due to fossil fuel consumption. When an economic and calorific allocation is considered to assess the environmental impact, the value is lower than when mass allocation is used because ethanol is relatively cheaper than sugars and it has higher calorific value.  相似文献   

19.
Transgenic sugarcane plants expressing a vacuole‐targeted isomaltulose (IM) synthase in seven recipient genotypes (elite cultivars) were evaluated over 3 years at a field site typical of commercial cane growing conditions in the Burdekin district of Australia. IM concentration typically increased with internode maturity and comprised up to 217 mm (33% of total sugars) in whole‐cane juice. There was generally a comparable decrease in sucrose concentration, with no overall decrease in total sugars. Sugarcane is vegetatively propagated from stem cuttings known as setts. Culture‐derived plants were slower to establish and generally gave shorter and thinner stalks at harvest than those grown from field‐sourced setts in the initial field generations. However, after several cycles of field propagation, selections were obtained with cane yields similar to the recipient genotypes. There was no apparent adverse effect of IM accumulation on vigour assessed by stalk height and diameter or other visual indicators including germination of setts and establishment of stools. There was some inconsistency in IM levels in juice, between samplings of the vegetatively propagated transgenic lines. Until the causes are resolved, it is prudent to selectively propagate from stalks with higher IM levels in the initial vegetative field generations. Pol/Brix ratio allowed rapid identification of lines with high IM levels, using common sugar industry instruments. Sucrose isomerase activity was low in these transgenic lines, and the results indicate strong potential to develop sugarcane for commercial‐scale production of IM if higher activity can be engineered in appropriate developmental patterns.  相似文献   

20.
甘蔗非生物胁迫抗性研究进展   总被引:1,自引:0,他引:1  
甘蔗是世界上重要的糖料和能源作物,对于我国食糖产业发展具有举足轻重的作用。但是,我国甘蔗种植面积正不断减少,呈现出向高海拔、土壤贫瘠等生产条件差的地方转移的趋势,因此遭受的逆境胁迫程度日益加深,严重影响了甘蔗的生长发育及产量形成。如何解决逆境胁迫下甘蔗的产量问题是目前生产上面临的重要课题。目前最好的解决办法还是培育高抗逆品种,为了给甘蔗抗性品种选育提供参考,本文对甘蔗的各种逆境,如低温、干旱、高盐、重金属等伤害与抗逆性的生理生化机制及甘蔗抗逆相关功能基因的挖掘研究进行了综述,以期系统地了解甘蔗逆境研究现状,并提出了甘蔗抗逆育种需要开展的关键工作,以期为甘蔗抗逆相关研究方向的设定、抗性机理和抗性品种的选育提供借鉴。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号