首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在早古生代与前寒武纪的石油与源岩中,经常出现令人困惑的C29甾烷优势,而在有机地球化学中C29甾烷优势被认为是陆相有机质输入的标志。作者通过对比文献中各种海相藻类的热模拟产物分析,提出了早古生代与前寒武纪的石油与源岩中C29甾烷优势主要来源于浮游绿藻的观点,并通过C27甾烷/C29甾烷的比值提出了区分早古生代及前寒武纪石油源岩沉积环境的方法,对中国南方前寒武纪和早寒武世黑色岩系的有机地球化学分析也支持上述推断。此外,本文还提出了用有机碳同位素来进一步区分C29甾烷优势生物来源的方法。  相似文献   

2.
Lipid biomarker assemblages preserved within the bitumen and kerogen phases of sedimentary rocks from the ca. 780–729 Ma Chuar and Visingsö Groups facilitate paleoenvironmental reconstructions and reveal fundamental aspects of emerging mid‐Neoproterozoic marine communities. The Chuar and Visingsö Groups were deposited offshore of two distinct paleocontinents (Laurentia and Baltica, respectively) during the Tonian Period, and the rock samples used had not undergone excessive metamorphism. The major polycyclic alkane biomarkers detected in the rock bitumens and kerogen hydropyrolysates consist of tricyclic terpanes, hopanes, methylhopanes, and steranes. Major features of the biomarker assemblages include detectable and significant contribution from eukaryotes, encompassing the first robust occurrences of kerogen‐bound regular steranes from Tonian rocks, including 21‐norcholestane, 27‐norcholestane, cholestane, ergostane, and cryostane, along with a novel unidentified C30 sterane series from our least thermally mature Chuar Group samples. Appreciable values for the sterane/hopane (S/H) ratio are found for both the free and kerogen‐bound biomarker pools for both the Chuar Group rocks (S/H between 0.09 and 1.26) and the Visingsö Group samples (S/H between 0.03 and 0.37). The more organic‐rich rock samples generally yield higher S/H ratios than for organic‐lean substrates, which suggests a marine nutrient control on eukaryotic abundance relative to bacteria. A C27 sterane (cholestane) predominance among total C26–C30 steranes is a common feature found for all samples investigated, with lower amounts of C28 steranes (ergostane and crysotane) also present. No traces of known ancient C30 sterane compounds; including 24‐isopropylcholestanes, 24‐n‐propylcholestanes, or 26‐methylstigmastanes, are detectable in any of these pre‐Sturtian rocks. These biomarker characteristics support the view that the Tonian Period was a key interval in the history of life on our planet since it marked the transition from a bacterially dominated marine biosphere to an ocean system which became progressively enriched with eukaryotes. The eukaryotic source organisms likely encompassed photosynthetic primary producers, marking a rise in red algae, and consumers in a revamped trophic structure predating the Sturtian glaciation.  相似文献   

3.
The period 800–717 million years (Ma) ago, in the lead‐up to the Sturtian Snowball glaciation, saw an increase in the diversity of eukaryotic microfossils. To afford an independent and complementary view of this evolutionary period, this study presents the distribution of eukaryotic biomarkers from three pre‐Sturtian successions across the supercontinent Rodinia: the ca. 780 Ma Kanpa Formation of the Western Australian Officer Basin, the ca. 800–740 Ma Visingsö Group of Sweden, and the 740 Ma Chuar Group in Arizona, USA. The distribution of eukaryotic steranes is remarkably similar in the three successions but distinct from all other known younger and older sterane assemblages. Cholestane was the only conventional structure, while indigenous steranes alkylated in position C‐24, such as ergostane, stigmastane, dinosterane and isopropylcholestane, and n‐propylcholestane, were not observed. This sterane distribution appears to be age diagnostic for the pre‐Sturtian Neoproterozoic. It attests to the distinct evolutionary state of pre‐Snowball eukaryotes, pointing to a taxonomic disparity that was still lower than in the Ediacaran (635–541 Ma). All three basins also show the presence of a new C28 sterane that was tentatively identified as 26‐methylcholestane, here named cryostane. The only known extant organisms that can methylate sterols in the 26‐position are demosponges. This assignment is plausible as molecular clocks place the appearance of the earliest animals into the pre‐Sturtian Neoproterozoic. The unusual 26‐methylsterol may have protected sponges, but also other eukaryotes, against their own membranolytic toxins. Some protists release lytic toxins to deter predators and kill eukaryotic prey. As conventional membrane sterols can be the site of attack for these toxins, sterols with unusual side‐chain modification protect the cell. This interpretation of cryostane supports fossil evidence of predation in the Chuar Group and promotes hypotheses about the proliferation of eukaryophagy in the lead‐up to the Cryogenian.  相似文献   

4.
Between 1 and 1.5 billion years ago, eukaryotic organisms acquired the ability to convert light into chemical energy through endosymbiosis with a Cyanobacterium (e.g.,). This event gave rise to "primary" plastids, which are present in green plants, red algae, and glaucophytes ("Plantae" sensu Cavalier-Smith). The widely accepted view that primary plastids arose only once implies two predictions: (1) all plastids form a monophyletic group, as do (2) primary photosynthetic eukaryotes. Nonetheless, unequivocal support for both predictions is lacking (e.g.,). In this report, we present two phylogenomic analyses, with 50 genes from 16 plastid and 15 cyanobacterial genomes and with 143 nuclear genes from 34 eukaryotic species, respectively. The nuclear dataset includes new sequences from glaucophytes, the less-studied group of primary photosynthetic eukaryotes. We find significant support for both predictions. Taken together, our analyses provide the first strong support for a single endosymbiotic event that gave rise to primary photosynthetic eukaryotes, the Plantae. Because our dataset does not cover the entire eukaryotic diversity (but only four of six major groups in), further testing of the monophyly of Plantae should include representatives from eukaryotic lineages for which currently insufficient sequence information is available.  相似文献   

5.
The neutral lipid compositions of the coastal haptophyte Chrysotila lamellosa HAP 17 grown in batch culture at 10 and 20 degrees C have been determined. A comparison was also made between the lipid compositions of cells harvested in early and late stationary phase. This species contains a suite of very long-chain C(37)-C(40) alkenones and alkenoates as found in a few microalgae from the Haptophyta. The distributions of these compounds show some differences to earlier reports of different strains of this alga, which are only in part attributable to culture conditions. A suite of long-chain alkenols, the reduced form of the alkenones, was characterized for the first time. The abundance of these compounds was only 1.5% of that of the corresponding alkenones, and the relative proportion of C(37)-C(38) constituents depended on growth temperature. These data show that haptophyte algae are a possible source of the alkenols found in some marine sediments, but the small amounts found suggest that other sources such as bacterial reduction of alkenones are more likely in highly reducing sediments. A mixture of C(29)-C(33) n-alkenes, dominated by the C(31:1) monoene, was found in marked contrast to previous analyses of other strains which reported only the presence of a C(31:2) diene. The sterol distribution included the common haptophyte sterol 24alpha-methylcholesta-5,22E-dien-3beta-ol (epi-brassicasterol) as well as significant amounts of Delta(5)- and Delta(5,22)-C(29) sterols.  相似文献   

6.
Are red algae plants?   总被引:3,自引:0,他引:3  
For 200 years prior to the 1938 publication of H. F. Copeland, all authorities (with one exception) classified red algae (Rhodophyta) within Kingdom Plantae or its equivalent. Copeland's reclassification of red algae within Kingdom Protista or Protoctista drew from an alternative tradition, dating to Cohn in 1867, in which red algae were viewed as the earliest or simplest eukaryotes. Analyses of ribosomal RNA (rRNA) sequence data initially favoured Copeland's reclassification. Many more rRNA gene (rDNA) sequences are now available from the eukaryote lineages most closely related to red algae, and based on these data, the hypothesis that red algae and green plants are sister groups cannot be rejected. An increasing body of sequence, intron-location and functional data from nuclear- and mitochondrially encoded proteins likewise supports a sister-group relationship between red algae and green plants. Submerging Kingdoms Plantae, Animalia and Fungi into Eukarya would provide a more natural framework for the eventual resolution of whether red algae are plants or prorists.  相似文献   

7.
By about 2.0 billion years ago (Ga), there is evidence for a period best known for its extended, apparent geochemical stability expressed famously in the carbonate–carbon isotope data. Despite the first appearance and early innovation among eukaryotic organisms, this period is also known for a rarity of eukaryotic fossils and an absence of organic biomarker fingerprints for those organisms, suggesting low diversity and relatively small populations compared to the Neoproterozoic era. Nevertheless, the search for diagnostic biomarkers has not been performed with guidance from paleoenvironmental redox constrains from inorganic geochemistry that should reveal the facies that were most likely hospitable to these organisms. Siltstones and shales obtained from drill core of the ca. 1.3–1.4 Ga Roper Group from the McArthur Basin of northern Australia provide one of our best windows into the mid‐Proterozoic redox landscape. The group is well dated and minimally metamorphosed (of oil window maturity), and previous geochemical data suggest a relatively strong connection to the open ocean compared to other mid‐Proterozoic records. Here, we present one of the first integrated investigations of Mesoproterozoic biomarker records performed in parallel with established inorganic redox proxy indicators. Results reveal a temporally variable paleoredox structure through the Velkerri Formation as gauged from iron mineral speciation and trace‐metal geochemistry, vacillating between oxic and anoxic. Our combined lipid biomarker and inorganic geochemical records indicate at least episodic euxinic conditions sustained predominantly below the photic zone during the deposition of organic‐rich shales found in the middle Velkerri Formation. The most striking result is an absence of eukaryotic steranes (4‐desmethylsteranes) and only traces of gammacerane in some samples—despite our search across oxic, as well as anoxic, facies that should favor eukaryotic habitability and in low maturity rocks that allow the preservation of biomarker alkanes. The dearth of Mesoproterozoic eukaryotic sterane biomarkers, even within the more oxic facies, is somewhat surprising but suggests that controls such as the long‐term nutrient balance and other environmental factors may have throttled the abundances and diversity of early eukaryotic life relative to bacteria within marine microbial communities. Given that molecular clocks predict that sterol synthesis evolved early in eukaryotic history, and (bacterial) fossil steroids have been found previously in 1.64 Ga rocks, then a very low environmental abundance of eukaryotes relative to bacteria is our preferred explanation for the lack of regular steranes and only traces of gammacerane in a few samples. It is also possible that early eukaryotes adapted to Mesoproterozoic marine environments did not make abundant steroid lipids or tetrahymanol in their cell membranes.  相似文献   

8.
Currently the shikimate pathway is reported as a metabolic feature of prokaryotes, ascomycete fungi, apicomplexans, and plants. The plant shikimate pathway enzymes have similarities to prokaryote homologues and are largely active in chloroplasts, suggesting ancestry from the plastid progenitor genome. Toxoplasma gondii, which also possesses an alga-derived plastid organelle, encodes a shikimate pathway with similarities to ascomycete genes, including a five-enzyme pentafunctional arom. These data suggests that the shikimate pathway and the pentafunctional arom either had an ancient origin in the eukaryotes or was conveyed by eukaryote-to-eukaryote horizontal gene transfer (HGT). We expand sampling and analyses of the shikimate pathway genes to include the oomycetes, ciliates, diatoms, basidiomycetes, zygomycetes, and the green and red algae. Sequencing of cDNA from Tetrahymena thermophila confirmed the presence of a pentafused arom, as in fungi and T. gondii. Phylogenies and taxon distribution suggest that the arom gene fusion event may be an ancient eukaryotic innovation. Conversely, the Plantae lineage (represented here by both Viridaeplantae and the red algae) acquired different prokaryotic genes for all seven steps of the shikimate pathway. Two of the phylogenies suggest a derivation of the Plantae genes from the cyanobacterial plastid progenitor genome, but if the full Plantae pathway was originally of cyanobacterial origin, then the five other shikimate pathway genes were obtained from a minimum of two other eubacterial genomes. Thus, the phylogenies demonstrate both separate HGTs and shared derived HGTs within the Plantae clade either by primary HGT transfer or secondarily via the plastid progenitor genome. The shared derived characters support the holophyly of the Plantae lineage and a single ancestral primary plastid endosymbiosis. Our analyses also pinpoints a minimum of 50 gene/domain loss events, demonstrating that loss and replacement events have been an important process in eukaryote genome evolution.  相似文献   

9.
10.
Chromera velia is a recently discovered, photosynthetic, marine alveolate closely related to apicomplexan parasites, and more distantly to perkinsids and dinoflagellates. To date, there are no published studies on the sterols of C. velia. Because apicomplexans and perkinsids are not known to synthesize sterols de novo, but rather obtain them from their host organisms, our objective was to examine the composition of the sterols of C. velia to assess whether or not there is any commonality with dinoflagellates as the closest taxonomic group capable of synthesizing sterols de novo. Furthermore, knowledge of the sterols of C. velia may provide insight into the sterol biosynthetic capabilities of apicomplexans prior to loss of sterol biosynthesis. We have found that C. velia possesses two primary sterols, 24-ethylcholesta-5,22E-dien-3β-ol, and 24-ethylcholest-5-en-3β-ol, not common to dinoflagellates, but rather commonly found in other classes of algae and plants. In addition, we have identified computationally three genes, SMT1 (sterol-24C-methyltransferase), FDFT1 (farnesyl diphosphate farnesyl transferase, squalene synthase), and IDI1 (isopentenyl diphosphate Δ-isomerase), predicted to be involved in sterol biosynthesis by their similarity to analogous genes in other sterol-producing eukaryotes, including a number of algae.  相似文献   

11.
Eukaryotic steranes are typically absent or occur in very low concentrations in Precambrian sedimentary rocks. However, it is as yet unclear whether this may reflect low source inputs or a preservational bias. For instance, it has been proposed that eukaryotic lipids were profoundly degraded in benthic microbial mats that were ubiquitous prior to the advent of vertical bioturbation in the Cambrian (“mat‐seal effect”). It is therefore important to test the microbial turnover and degradation of eukaryotic steroids in real‐world microbial mats. Here we assessed steroid inventories in different layers of a microbial mat from a hypersaline lake on Kiritimati (Central Pacific). Various eukaryote‐derived C27‐C30 steroids were detected in all mat layers. These compounds most likely entered the mat system as unsaturated sterols from the water column or the topmost mat, and were progressively altered during burial in the deeper, anoxic mat layers over c. 103 years. This is reflected by increasing proportions of saturated sterols and sterenes, as well as the presence of thiosteranes in certain horizons. Sterol alteration can partly be assigned to microbial transformation but is also due to chemical reactions promoted by the reducing environment in the deeper mat layers. Notably, however, compounds with a sterane skeleton were similarly abundant in all mat layers and their absolute concentrations did not show any systematic decrease. The observed decrease of steroid/hopanoid ratios with depth may thus rather indicate a progressive “dilution” by lipids derived from heterotrophic bacteria. Further, pyrolysis revealed that steroids, in contrast to hopanoids, were not sequestered into non‐extractable organic matter. This may lead to a preservational bias against steroids during later stages of burial. Taken together, steroid preservation in the microbial mat is not only controlled by heterotrophic degradation, but rather reflects a complex interplay of taphonomic processes.  相似文献   

12.

Background  

Evolutionary analyses of the largest subunit of RNA polymerase II (RPB1) have yielded important and at times provocative results. One particularly troublesome outcome is the consistent inference of independent origins of red algae and green plants, at odds with the more widely accepted view of a monophyletic Plantae comprising all eukaryotes with primary plastids. If the hypothesis of a broader kingdom Plantae is correct, then RPB1 trees likely reflect a persistent phylogenetic artifact. To gain a better understanding of RNAP II evolution, and the presumed artifact relating to green plants and red algae, we isolated and analyzed RPB 1 from representatives of Glaucocystophyta, the third eukaryotic group with primary plastids.  相似文献   

13.
The Plantae comprising red, green (including land plants), and glaucophyte algae are postulated to have a single common ancestor that is the founding lineage of photosynthetic eukaryotes. However, recent multiprotein phylogenies provide little or no support for this hypothesis. This may reflect limited complete genome data available for red algae, currently only the highly reduced genome of Cyanidioschyzon merolae, a reticulate gene ancestry, or variable gene divergence rates that mislead phylogenetic inference. Here, using novel genome data from the mesophilic Porphyridium cruentum and Calliarthron tuberculosum, we analyze 60,000 novel red algal genes to test the monophyly of red + green (RG) algae and their extent of gene sharing with other lineages. Using a gene-by-gene approach, we find an emerging signal of RG monophyly (supported by ~50% of the examined protein phylogenies) that increases with the number of distinct phyla and terminal taxa in the analysis. A total of 1,808 phylogenies show evidence of gene sharing between Plantae and other lineages. We demonstrate that a rich mesophilic red algal gene repertoire is crucial for testing controversial issues in eukaryote evolution and for understanding the complex patterns of gene inheritance in protists.  相似文献   

14.
A molecular timeline for the origin of photosynthetic eukaryotes   总被引:24,自引:0,他引:24  
The appearance of photosynthetic eukaryotes (algae and plants) dramatically altered the Earth's ecosystem, making possible all vertebrate life on land, including humans. Dating algal origin is, however, frustrated by a meager fossil record. We generated a plastid multi-gene phylogeny with Bayesian inference and then used maximum likelihood molecular clock methods to estimate algal divergence times. The plastid tree was used as a surrogate for algal host evolution because of recent phylogenetic evidence supporting the vertical ancestry of the plastid in the red, green, and glaucophyte algae. Nodes in the plastid tree were constrained with six reliable fossil dates and a maximum age of 3,500 MYA based on the earliest known eubacterial fossil. Our analyses support an ancient (late Paleoproterozoic) origin of photosynthetic eukaryotes with the primary endosymbiosis that gave rise to the first alga having occurred after the split of the Plantae (i.e., red, green, and glaucophyte algae plus land plants) from the opisthokonts sometime before 1,558 MYA. The split of the red and green algae is calculated to have occurred about 1,500 MYA, and the putative single red algal secondary endosymbiosis that gave rise to the plastid in the cryptophyte, haptophyte, and stramenopile algae (chromists) occurred about 1,300 MYA. These dates, which are consistent with fossil evidence for putative marine algae (i.e., acritarchs) from the early Mesoproterozoic (1,500 MYA) and with a major eukaryotic diversification in the very late Mesoproterozoic and Neoproterozoic, provide a molecular timeline for understanding algal evolution.  相似文献   

15.
Phosphatic sediments of the Late Neoproterozoic (ca. 600 million years old [Myr]) Doushantuo Formation at Weng'an, South China, contain fossils of multicellular algae preserved in anatomical detail. As revealed by light microscopy and scanning electron microscopy, these fossils include both simple pseudoparenchymatous thalli with apical growth but no cortex-medulla differentiation and more complex thalli characterized by cortex-medulla differentiation and structures interpretable as carposporophytes, suggesting a multiphasic life cycle. Simple pseudoparenchymatous thalli, represented by Wengania, Gremiphyca, and Thallophycoides, are interpreted as stem group florideophytes. In contrast, complex pseudoparenchymatous thalli, such as Thallophyca and Paramecia, compare more closely to fossil and living corallinaleans than to other florideophyte orders, although they also differ in some important aspects (e.g., lack of biocalcification). These more complex thalli are interpreted as early stem group corallinaleans that diverged before Paleozoic stem groups such as Arenigiphyllum, Petrophyton, Graticula, and Archaeolithophyllum. This phylogenetic interpretation implies that (1) the phylogenetic divergence between the Florideophyceae and its sister group, the Bangiales, must have taken place before Doushantuo time-an inference supported by the occurrence of bangialean fossils in Mesoproterozoic rocks; (2) the initial diversification of the florideophytes occurred no later than the Doushantuo time; and (3) the corallinalean clade had a "soft" (uncalcified) evolutionary history in the Neoproterozoic before evolving biocalcification in the Paleozoic and undergoing crown group diversification in the Mesozoic.  相似文献   

16.
The wondrously diverse eukaryotes that constitute the red algae have been the focus of numerous recent molecular surveys and remain a rich source of undescribed and little known species for the traditional taxonomist. Molecular studies place the red algae in the kingdom Plantae; however, supraordinal classification has been largely confined to debate on subclass vs. class level status for the two recognized subgroups, one of which is widely acknowledged as paraphyletic. This narrow focus has generally masked the extent to which red algal classification needs modification. We provide a comprehensive review of the literature pertaining to the antiquity, diversity, and systematics of the red algae and propose a contemporary classification based on recent and traditional evidence.  相似文献   

17.
Membrane heredity and early chloroplast evolution   总被引:1,自引:0,他引:1  
Membrane heredity was central to the unique symbiogenetic origin from cyanobacteria of chloroplasts in the ancestor of Plantae (green plants, red algae, glaucophytes) and to subsequent lateral transfers of plastids to form even more complex photosynthetic chimeras. Each symbiogenesis integrated disparate genomes and several radically different genetic membranes into a more complex cell. The common ancestor of Plantae evolved transit machinery for plastid protein import. In later secondary symbiogeneses, signal sequences were added to target proteins across host perialgal membranes: independently into green algal plastids (euglenoids, chlorarachneans) and red algal plastids (alveolates, chromists). Conservatism and innovation during early plastid diversification are discussed.  相似文献   

18.
Carotenoids are produced by all photosynthetic organisms, where they play essential roles in light harvesting and photoprotection. The carotenoid biosynthetic pathway of diatoms is largely unstudied, but is of particular interest because these organisms have a very different evolutionary history with respect to the Plantae and are thought to be derived from an ancient secondary endosymbiosis between heterotrophic and autotrophic eukaryotes. Furthermore, diatoms have an additional xanthophyll-based cycle for dissipating excess light energy with respect to green algae and higher plants. To explore the origins and functions of the carotenoid pathway in diatoms we searched for genes encoding pathway components in the recently completed genome sequences of two marine diatoms. Consistent with the supplemental xanthophyll cycle in diatoms, we found more copies of the genes encoding violaxanthin de-epoxidase (VDE) and zeaxanthin epoxidase (ZEP) enzymes compared with other photosynthetic eukaryotes. However, the similarity of these enzymes with those of higher plants indicates that they had very probably diversified before the secondary endosymbiosis had occurred, implying that VDE and ZEP represent early eukaryotic innovations in the Plantae. Consequently, the diatom chromist lineage likely obtained all paralogues of ZEP and VDE genes during the process of secondary endosymbiosis by gene transfer from the nucleus of the algal endosymbiont to the host nucleus. Furthermore, the presence of a ZEP gene in Tetrahymena thermophila provides the first evidence for a secondary plastid gene encoded in a heterotrophic ciliate, providing support for the chromalveolate hypothesis. Protein domain structures and expression analyses in the pennate diatom Phaeodactylum tricornutum indicate diverse roles for the different ZEP and VDE isoforms and demonstrate that they are differentially regulated by light. These studies therefore reveal the ancient origins of several components of the carotenoid biosynthesis pathway in photosynthetic eukaryotes and provide information about how they have diversified and acquired new functions in the diatoms.  相似文献   

19.
Recent molecular data provide strong support for the view that all metazoan phyla, including Porifera, are of monophyletic origin. The relationship of Metazoa, including the Porifera, to Plantae, Fungi and unicellular eukaryotes has only rarely been studied by using cDNAs coding for proteins. Sequence data from rDNA suggested a relationship of Porifera to unicellular eukaryotes (choanoflagellates). However, ultrastructural studies of choanocytes did not support these findings. In the present study, we compared amino acid sequences that are found in a variety of metazoans (including sponges) with those of Plantae, Fungi and unicellular eukaryotes, to obtain an answer to this question. We used the four sequences from 70 kDa heat-shock proteins, the serine-threonine kinase domain found in protein kinases, beta-tubulin and calmodulin. The latter two sequences were deduced from cDNAs, isolated from the sponge Geodia cydonium for the phylogenetic analyses presented. These revealed that the sponge molecules were grouped into the same branch as the Metazoa, which is statistically (significantly) separated from those branches that comprise the sequences from Fungi, Plantae and unicellular eukaryotes. From our molecular data it seems evident that the unicellular eukaryotes existed at an earlier stage of evolution, and the Plantae and especially the Fungi and the Metazoa only appeared later.  相似文献   

20.
The phylogenetic position of the glaucophyte algae within the eukaryotic supergroup Plantae remains to be unambiguously established. Here, we assembled a multigene data set of conserved nuclear-encoded plastid-targeted proteins of cyanobacterial origin (i.e., through primary endosymbiotic gene transfer) from glaucophyte, red, and green (including land plants) algae to infer the branching order within this supergroup. We find strong support for the early divergence of glaucophytes within the Plantae, corroborating 2 important putatively ancestral characters shared by glaucophyte plastids and the cyanobacterial endosymbiont that gave rise to this organelle: the presence of a peptidoglycan deposition between the 2 organelle membranes and carboxysomes. Both these traits were apparently lost in the common ancestor of red and green algae after the divergence of glaucophytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号