首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Calumenin belongs to a family of multiple EF-hand proteins that include reticulocalbin, ERC-55, and Cab45. Reticulocalbin and ERC-55 localize to the ER due to a C-terminal HDEL retrieval signal. Cab45 contains a HEEF C-terminal sequence and is localized to the Golgi apparatus. The murine homologue of calumenin is reported to be present in the ER due to a C-terminal HDEF retrieval signal. The human homologue differs from the murine at 7 amino acid positions but the HDEF signal is conserved. However, in the cultured human cell lines, HaCaT keratinocytes, normal and transformed MRC-5 fibroblasts, as well as in transfected COS-1 cells, human calumenin could be demonstrated in the ER as well as in the Golgi complex. Especially in MRC-5 cells, a certain heterogeneity was observed, with some of the cells having calumenin localized solely to the ER while in other cells calumenin could be demonstrated in the ER as well as in the Golgi complex. Immunoelectron microscopy of placental syncytiotrophoblast cells showed that a substantial fraction of calumenin is localized in close association with the ER membrane. In addition, the protein may be recovered from the medium of cultured cells in an endoglycosidase H-resistant form, suggesting that the glycosylated protein has been further modified in the Golgi apparatus and secreted to the medium.  相似文献   

2.
CREC proteins constitute a family of EF-hand calcium binding proteins localized to the secretory pathway. Calumenin is the only member known to be secreted. Recently, it was shown that thrombin-activated thrombocytes liberate calumenin, which also is found in atherosclerotic lesions but not in normal vasculature. To study the possible effects of calumenin extracellularly, we used proteomic profiling of fibroblasts cultured in absence and in presence of calumenin. Using 2-DE and MS/MS, we show that normal fibroblasts contain several 28-29-kDa N-terminal and a 16-kDa C-terminal fragment of beta- or gamma-actin. Extracellularly added calumenin decreases the levels of both the N-terminal and C-terminal actin fragments, and, in addition, decreases the expression level of septin 2, which interacts with the actin cytoskeleton and is involved in cytokinesis. Labeling of S-phase fibroblasts with bromo-2'deoxy-uridine indicates that calumenin added to the medium also modulates the cell cycle. Our study thus indicates that calumenin may have an autocrine or a paracrine effect on the cells in its vicinity, and, therefore, may be involved in the pathophysiology of thrombosis or in wound healing.  相似文献   

3.
Calumenin interacts with serum amyloid P component   总被引:6,自引:0,他引:6  
Vorum H  Jacobsen C  Honoré B 《FEBS letters》2000,465(2-3):129-134
We recently reported the identification of human calumenin, a novel Ca(2+) binding, transformation-sensitive and secreted protein [Vorum et al. (1998) Biochim. Biophys. Acta 1386, 121-131; Vorum et al. (1999) Exp. Cell Res. 248, 473-481] belonging to the family of multiple EF-hand proteins of the secretory pathway that include reticulocalbin, ERC-55, Cab45 and crocalbin. In order to further investigate the extracellular functions of calumenin we immobilized the recombinant protein to a column. After application of a placental tissue extract we were able to elute one protein that interacts with calumenin in the presence of Ca(2+). Amino acid sequencing identified this protein as serum amyloid P component (SAP). Furthermore, we verified and characterized the calumenin-SAP interaction by the surface plasmon resonance technique. The findings indicate that calumenin may participate in the immunological defense system and could be involved in the pathological process of amyloidosis that leads to formation of amyloid deposits seen in different types of tissues.  相似文献   

4.
Honoré B  Vorum H 《FEBS letters》2000,466(1):11-18
The CREC family consists of a number of recently discovered multiple (up to seven) EF-hand proteins that localise to the secretory pathway of mammalian cells. At present, the family includes reticulocalbin, ERC-55/TCBP-49/E6BP, Cab45, calumenin and crocalbin/CBP-50. Similar proteins are found in quite diverse invertebrate organisms such as DCB-45 and SCF in Drosophila melanogaster, SCF in Bombyx mori, CCB-39 in Caenorhabditis elegans and Pfs40/PfERC in Plasmodium falciparum. The Ca(2+) affinity is rather low with dissociation constants around 10(-4)-10(-3) M. The proteins may participate in Ca(2+)-regulated activities. Recent evidence has been obtained that some CREC family members are involved in pathological activities such as malignant cell transformation, mediation of the toxic effects of snake venom toxins and putative participation in amyloid formation.  相似文献   

5.
Although many aspects of the physiological and pathophysiological mechanisms remain unknown, recent advances in our knowledge suggest that the CREC proteins are promising disease biomarkers or targets for therapeutic intervention in a variety of diseases. The CREC family of low affinity, Ca2+‐binding, multiple EF‐hand proteins are encoded by five genes, RCN1, RCN2, RCN3, SDF4, and CALU, resulting in reticulocalbin, ER Ca2+‐binding protein of 55 kDa (ERC‐55), reticulocalbin‐3, Ca2+‐binding protein of 45 kDa (Cab45), and calumenin. Alternative splicing increases the number of gene products. The proteins are localized in the cytosol, in various parts of the secretory pathway, secreted to the extracellular space or localized on the cell surface. The emerging functions appear to be highly diverse. The proteins interact with several different ligands. Rather well‐described functions are attached to calumenin with the inhibition of several proteins in the endoplasmic or sarcoplasmic reticulum membrane, the vitamin K1 2,3‐epoxide reductase, the γ‐carboxylase, the ryanodine receptor, and the Ca2+‐transporting ATPase. Other functions concern participation in the secretory process, chaperone activity, signal transduction as well as participation in a large variety of disease processes.  相似文献   

6.
The cystic fibrosis transmembrane regulator (CFTR) is a cyclic-AMP dependent chloride channel expressed at the apical surface of epithelial cells lining various organs such as the respiratory tract. Defective processing and functioning of this protein caused by mutations in the CFTR gene results in loss of ionic balance, defective mucus clearance, increased proliferation of biofilms and inflammation of human airways observed in cystic fibrosis (CF) patients. The process by which CFTR folds and matures under the influence of various chaperones in the secretory pathway remains incompletely understood. Recently, calumenin, a secretory protein, belonging to the CREC family of low affinity calcium binding proteins has been identified as a putative CFTR chaperone whose biophysical properties and functions remain uncharacterized. We compared hydropathy, instability, charge, unfoldability, disorder and aggregation propensity of calumenin and other CREC family members with CFTR associated chaperones and calcium binding proteins, wild-type and mutant CFTR proteins and intrinsically disordered proteins (IDPs). We observed that calumenin, along with other CREC proteins, was significantly more charged and less folded compared to CFTR associated chaperones. Moreover like IDPs, calumenin and other CREC proteins were found to be less hydrophobic and aggregation prone. Phylogenetic analysis revealed a close link between calumenin and other CREC proteins indicating how evolution might have shaped their similar biophysical properties. Experimentally, calumenin was observed to significantly reduce F508del-CFTR aggregation in a manner similar to AavLEA1, a well-characterized IDP. Fluorescence microscopy based imaging analysis also revealed altered trafficking of calumenin in bronchial cells expressing F508del-CFTR, indicating its direct role in the pathophysiology of CF. In conclusion, calumenin is characterized as a charged protein exhibiting close similarity with IDPs and is hypothesized to regulate F508del-CFTR folding by electrostatic effects. This work provides useful insights for designing optimized synthetic structural correctors of CFTR mutant proteins in the future.  相似文献   

7.
Jung DH  Kim DH 《Gene》2004,327(2):185-194
Calumenin is a multiple EF-hand protein located in endo/sarcoplasmic reticulum of mammalian heart and other tissues [J. Biol. Chem. 272 (1997) 18232; Genomics 49 (1998) 331; Biochim. Biophys. Acta 1386 (1998) 121]. In the present study, a new isoform of mouse calumenin (mouse calumenin 2) was cloned by RT-PCR and genomic DNA PCR. The deduced amino acid sequence of mouse calumenin 2 is 315 aa long with the calculated MW of 37,064 and pI of 4.26. It has 92% aa sequence identity to previously identified mouse calumenin [J. Biol. Chem. 272 (1997) 18232] (mouse calumenin 1). The difference in the aa sequence was restricted to the first two EF-hand regions (residues 74-138). Northern blot analysis shows that mouse calumenin 2 is highly expressed in heart, lung, testis and unpregnant uterus. The expression of mouse calumenin 2 appears to decrease when fetal development is progressed. Genomic DNA PCR, sequencing and data mining of mouse genome database were utilized to examine the exon-intron boundaries of mouse calumenin genes. Both mouse calumenin 1 and 2 genes encompass six exons, and five of them (Exon1, 3, 4, 5 and 6) are identical. However, mouse calumenin 1 contains Exon2-1, whereas mouse calumenin 2 contains a neighboring Exon2-2. The calumenin genes are localized on mouse chromosome 6 having conserved synteny with human chromosome 7q32. For comparison, the genomic organization of human calumenin was also examined using the published human genome database (UCSC Genome Bioinformatics at ). Like mouse calumenin genes, two human calumenin genes also consist of five identical exons (Exon1, 3, 4, 5 and 6) and a different Exon2. The present study suggests that the genomic organization of calumenin genes is well conserved between human and mouse.  相似文献   

8.
Calumenin is a multiple EF-hand Ca2+-binding protein localized in the sarcoplasmic reticulum (SR) with C-terminal SR retention signal HDEF. Recently, we showed evidence that calumenin interacts with SERCA2 in rat cardiac SR (Sahoo, S. K., and Kim, D. H. (2008) Mol. Cells 26, 265–269). The present study was undertaken to further characterize the association of calumenin with SERCA2 in mouse heart by various gene manipulation approaches. Immunocytochemical analysis showed that calumenin and SERCA2 were partially co-localized in HL-1 cells. Knockdown (KD) of calumenin was conducted in HL-1 cells and 80% reduction of calumenin did not induce any expressional changes of other Ca2+-cycling proteins. But it enhanced Ca2+ transient amplitude and showed shortened time to reach peak and decreased time to reach 50% of baseline. Oxalate-supported Ca2+ uptake showed increased Ca2+ sensitivity of SERCA2 in calumenin KD HL-1 cells. Calumenin and SERCA2 interaction was significantly lower in the presence of thapsigargin, vanadate, or ATP, as compared with 1.3 μm Ca2+, suggesting that the interaction is favored in the E1 state of SERCA2. A glutathione S-transferase-pulldown assay of calumenin deletion fragments and SERCA2 luminal domains suggested that regions of 132–222 amino acids of calumenin and 853–892 amino acids of SERCA2-L4 are the major binding partners. On the basis of our in vitro binding data and available information on three-dimensional structure of Ca2+-ATPases, a molecular model was proposed for the interaction between calumenin and SERCA2. Taken together, the present results suggest that calumenin is a novel regulator of SERCA2, and its expressional changes are tightly coupled with Ca2+-cycling of cardiomyocytes.  相似文献   

9.
Calumenin is a multiple EF-hand Ca2+-binding protein located in endo/sarcoplasmic reticulum of mammalian tissues. In the present study, we cloned two rabbit calumenin isoforms (rabbit calumenin-1 and -2, GenBank Accession Nos. SY225335 and AY225336, respectively) by RT-PCR. Both isoforms contain a 19 aa N-terminal signal sequence, 6 EF-hand domains, and a C-terminal ER/SR retrieval signal, HDEF. Both calumenin isoforms exist in rabbit cardiac and skeletal muscles, but calumenin-2 is the main isoform in skeletal muscle. Presence of calumenin in rabbit sarcoplasmic reticulum (SR) was identified by Western blot analysis. GST-pull down and co-immunoprecipitation experiments showed that ryanodine receptor 1 (RyR1) interacted with calumenin-2 in millimolar Ca2+ concentration range. Experiments of gradual EF-hand deletions suggest that the second EF-hand domain is essential for calumenin binding to RyR1. Adenovirus-mediated overexpression of calumenin-2 in C2C12 myotubes led to increased caffeine-induced Ca2+ release, but decreased depolarization-induced Ca2+ release. Taken together, we propose that calumenin-2 in the SR lumen can directly regulate the RyR1 activity in Ca2+-dependent manner.  相似文献   

10.
SPCs (subtilisin-like proprotein convertases) are a family of seven structurally related serine endoproteases that are involved in the proteolytic activation of proproteins. In an effort to examine the substrate protein for PACE4 (paired basic amino-acid-cleaving enzyme-4), an SPC, a potent protein inhibitor of PACE4, an alpha1-antitrypsin RVRR (Arg-Val-Arg-Arg) variant, was expressed in GH4C1 cells. Ectopic expression of the RVRR variant caused accumulation of the 48 kDa protein in cells. Sequence analysis indicates that the 48 kDa protein is a putative Ca2+-binding protein, RCN-3 (reticulocalbin-3), which had previously been predicted by bioinformatic analysis of cDNA from the human hypothalamus. RCN-3 is a member of the CREC (Cab45/reticulocalbin/ERC45/calumenin) family of multiple EF-hand Ca2+-binding proteins localized to the secretory pathway. The most interesting feature of the RCN-3 sequence is the presence of five Arg-Xaa-Xaa-Arg motifs, which represents the target sequence of SPCs. Biosynthetic studies showed that RCN-3 is transiently associated with proPACE4, but not with mature PACE4. Inhibition of PACE4 maturation by a Ca2+ ionophore resulted in accumulation of the proPACE4-RCN-3 complex in cells. Furthermore, autoactivation and secretion of PACE4 was increased upon co-expression with RCN-3. Our findings suggest that selective and transient association of RCN-3 with the precursor of PACE4 plays an important role in the biosynthesis of PACE4.  相似文献   

11.
Calumenin is a Ca2+ binding protein localizing at the lumen of the endoplasmic reticulum (ER). Although it has been implicated in various diseases, the in vivo functions of calumenin are largely unknown. Here, we report that calumenin has pleiotropic roles in muscle and cuticle function in Caenorhabditis elegans. Mutant analysis revealed that the calu-1 is required for regulating fertility, locomotion and body size. In addition, calu-1 is important for two behaviors, defecation and pharyngeal pumping, consistent with its ability to bind Ca2+. The genetic analysis further suggested the possibility that calu-1 regulates the pharyngeal pumping together with the inositol 1,4,5-triphosphate (IP3) receptor encoded by itr-1. Taken together, our data suggest that calumenin is important for calcium signaling pathways in C. elegans.  相似文献   

12.
Calumenin, a multiple EF-hand Ca2+ binding protein is located in the SR of mammalian heart, but the functional role of the protein in the heart is unknown. In the present study, an adenovirus gene transfer system was employed for neonatal rat heart to examine the effects of calumenin over-expression (Calu-OE) on Ca2+ transients. Calu-OE (8 folds) did not alter the expression levels of DHPR, RyR2, NCX, SERCA2, CSQ and PLN. However, Calu-OE affected several parameters of Ca2+ transients. Among them, prolongation of time to 50% baseline (T50) was the most outstanding change in electrically-evoked Ca2+ transients. The higher T50 was due to an inhibition of SERCA2-mediated Ca2+ uptake into SR, as tested by oxalate-supported Ca2+ uptake. Furthermore, co-IP study showed a direct interaction between calumenin and SERCA2. Taken together, calumenin in the cardiac SR may play an important role in the regulation of Ca2+ uptake during the EC coupling process.  相似文献   

13.
The present study characterizes the anticoagulant resistance mechanism in a Danish bromadiolone-resistant strain of Norway rats (Rattus norvegicus), with a Y139C VKORC1 mutation. We compared liver expression of the VKORC1 gene, which encodes a protein of the vitamin K 2,3-epoxide reductase complex, the NQO1 gene, which encodes a NAD(P)H quinone dehydrogenase and the Calumenin gene between bromadiolone-resistant and anticoagulant-susceptible rats upon saline and bromadiolone administration. Additionally, we established the effect of bromadiolone on the gene expression in the resistant and susceptible phenotype. Bromadiolone had no effect on VKORC1 and NQO1 expression in resistant rats, but induced significantly Calumenin expression in the susceptible rats. Calumenin expression was similar between the resistant and the susceptible rats upon saline administration but twofold lower in resistant rats after bromadiolone treatment. These results indicate that Danish bromadiolone resistance does not involve an overexpression of calumenin. Independent of the treatment, we observed a low VKORC1 expression in resistant rats, which in conjugation with the Y139C polymorphism most likely explains the low VKOR activity and the enhanced need for vitamin K observed in Danish resistant rats. Furthermore the bromadiolone resistance was found to be associated with a low expression of the NQO1 gene.  相似文献   

14.
目的:研究黄芪注射液对网腔钙结合蛋白(calumenin)基因沉默阿霉素损伤心肌细胞内质网应激伴侣蛋白GRP78,GRP94 mRNA的作用。方法:实验将体外培养的1~3 d乳鼠心肌细胞分为5组:对照组、模型组(正常细胞+3 mg/L阿霉素)、calumenin基因沉默模型组(慢病毒感染细胞+3 mg/L阿霉素)、黄芪组1(正常细胞+3 mg/L阿霉素+200 g/L黄芪)、黄芪组2(慢病毒感染细胞+3 mg/L阿霉素+200 g/L黄芪)。构建慢病毒-calumenin质粒,转染乳鼠培养心肌细胞,采用实时荧光定量分析(real-time PCR)检测各组心肌细胞calumenin及内质网应激伴侣蛋白GRP78、GRP94 mRNA表达。结果:①与对照组比较,模型组心肌细胞calumenin mRNA表达减少(P<0.05),而calumenin基因沉默模型组及黄芪组2心肌细胞calumenin mRNA表达明显减少(P<0.01);与模型组比较,黄芪组1心肌细胞calumenin mRNA表达增加(P<0.05);与calumenin基因沉默模型组比较,黄芪组2心肌细胞calumenin mRNA表达明显增加(P<0.01)。②与对照组相比较,模型组及calumenin基因沉默模型组心肌细胞内质网应激伴侣蛋白GRP78、GRP94 mRNA表达明显增多(P<0.01);与模型组比较,黄芪组1心肌细胞GRP78、GRP94 mRNA表达明显减少(P<0.01);与calumenin基因沉默模型组比较,黄芪组2心肌细胞内质网应激伴侣蛋白GRP78、GRP94 mRNA表达明显减少(P<0.01)。结论:①阿霉素损伤可引起心肌细胞calumenin表达减少。②Calumenin可缓解阿霉素损伤所诱导心肌细胞内质网应激。黄芪注射液可抑制阿霉素损伤所诱导心肌细胞内质网应激,这种作用可能系通过calumenin介导实现的。  相似文献   

15.
Disturbance of endoplasmic reticulum (ER) homeostasis causes ER stress (ERS), and triggers the unfolded protein response (UPR) that consequently reduces accumulation of unfolded proteins by increasing the quantity of ER chaperones. Calumenin, a Ca2+-binding protein with multiple EF hand motifs, which is located in the ER/SR, is highly expressed during the early developmental stage of the heart, similar to other ER-resident chaperones. The aim of this study was to investigate the functional role of calumenin during ERS in the heart. Like other chaperones (e.g., GRP94 and GRP78), calumenin expression was highly upregulated during ERS induced by 10 μg/ml tunicamycin, but attenuated in the presence of 500 μM PBA, the chemical chaperone in neonatal rat ventricular cardiomyocytes (NRVCs). Upon 7.5-fold overexpression of calumenin using a recombinant adenovirus system, the expression levels of ERS markers (GRP78, p-PERK, and p-elF2α) and ER-initiated apoptosis markers (CHOP and p-JNK) were reduced, whereas the survival protein BCL-2 was upregulated during ERS compared to the control. Evaluation of cell viability by TUNEL assay showed that apoptosis was also significantly reduced by calumenin overexpression in ERS-induced cells. Taken together, our results suggest that calumenin plays an essential role in the alleviation of ERS in neonatal rat cardiomyocytes.  相似文献   

16.
Cystic fibrosis (CF) is the most common lethal autosomal recessive disease in the Caucasian population. It is due to mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. To date, over 1910 mutations have been identified in the CFTR gene. Among these mutations, the CF-causing missense mutation G551D-CFTR (approx. 5% of cases) encodes for a CFTR chloride channel with normal expression on the cell surface. Nevertheless, it is associated with severe disease due to its altered channel activation. The aim of the present study was to identify specific interacting proteins of G551D-CFTR. Co-immunoprecipitated proteins with G551D-CFTR were resolved by 2D-gel electrophoresis (2-DE). Mass Spectrometry revealed that calumenin was present in the protein complex linked to G551D-CFTR. Despite its basal expression was not modified in G551D-CFTR expressing cells when compared to Wt-CFTR expressing cells, it was more abundant in the G551D-CFTR complex detected by immunoprecipitation. The calumenin-CFTR interaction was also shown by Surface Plasmon Resonance and further confirmed by computational analysis of the predicted calumenin's partners. Because in our cellular model calumenin was found in the endoplasmic reticulum (ER) by immunofluorescence experiments, we suggest that calumenin is likely involved in the mutated CFTR's maturation. In conclusion, we showed for the first time that calumenin binds to CFTR and that it is increased in the G551D-CFTR complex. We suggest that it may be involved in the physiopathology of G551D-CFTR and that G551D-CFTR may follow a specific maturation and trafficking pathway. We also hypothesize that UPR may be triggered independently of the retention of G551D-CFTR in the ER because Grp78/Bip expression is increased in the cells. Finally, we propose here that Calumenin is a new CFTR chaperone.  相似文献   

17.
目的:研究黄芪注射液对缺血性心肌病大鼠心肌重塑、网腔钙结合蛋白(calumenin)及自噬影响。方法:36只雄性SD大鼠分为正常对照组(n=12)、缺血性心肌病组(n=12)、黄芪注射液组(n=12),3组大鼠术前行心电图及心脏彩超检查后,正常对照组不做任何处理,而缺血性心肌病组和黄芪注射液组大鼠开胸结扎冠状动脉20 min后,解开结扎线行再灌注后关闭胸腔建立心肌缺血模型,黄芪注射液组术后每次注射黄芪注射液10 g/kg体重,每周注射1次,共注射4次。3组大鼠术后4周行心脏彩超检查后处死大鼠取心脏行HE染色、VG染色,观察心肌病理改变,用Western blot技术检测各组大鼠心肌细胞calumenin、LC3-Ⅰ、LC3-Ⅱ表达变化及LC3-Ⅰ/LC3-Ⅱ比值变化。结果:与缺血性心肌病组比较,黄芪注射液组大鼠心脏彩超及心肌病理得到明显改善;同时,calumenin表达增加LC3-Ⅰ/LC3-Ⅱ比值表达降低(P<0.01)。结论:黄芪注射液对缺血性心肌病大鼠心室重塑及心肌细胞自噬有明显抑制作用,该作用可能是通过calumenin所介导的。  相似文献   

18.
Human squamous carcinoma cells attach and spread on thrombospondin (TSP)-coated culture dishes but exhibit significant variability among individual cell lines in their degree of responsiveness. Using a highly responsive squamous carcinoma line and a cell line which is much less responsive (as well as a human melanoma cell line which does not respond at all in the adhesion assay), we have examined binding of exogenous radiolabeled TSP. The cells which were the most responsive to TSP in the adhesion assay bound the greatest amount of radiolabeled ligand. Binding was time- and dose-dependent, saturable, inhibitable with excess unlabeled TSP, reversible, and specific. The less-responsive squamous carcinoma cells bound only 25-30% of the amount of TSP bound by the highly responsive cells while the nonresponsive melanoma cells bound less than 10% of the amount bound by the highly responsive squamous carcinoma cells. Our previous studies (J. Varani et al. (1986) Exp. Cell Res. 167, 376) have shown that the highly responsive squamous carcinoma cells also synthesized the greatest amount of TSP as indicated by biosynthetic labeling studies. The less-responsive squamous carcinoma cells were intermediate in synthetic activity and no synthetic activity was seen with the melanoma cells. These findings suggest that the amount of ligand bound may determine the degree of biological responsiveness and that endogenously synthesized TSP may be the source of that ligand.  相似文献   

19.
Human calumenin (hCALU) is a six EF-hand protein belonging to the CREC family. As other members of the family, it is localized in the secretory pathway and regulates the activity of SERCA2a and of the ryanodine receptor in the endoplasmic reticulum (ER). We have studied the effects of Ca2+ binding to the protein and found it to attain a more compact structure upon ion binding. Circular Dichroism (CD) measurements suggest a major rearrangement of the protein secondary structure, which reversibly switches from disordered at low Ca2+ concentrations to predominantly alpha-helical when Ca2+ is added. SAXS experiments confirm the transition from an unfolded to a compact structure, which matches the structural prediction of a trilobal fold. Overall our experiments suggest that calumenin is a Ca2+ sensor, which folds into a compact structure, capable of interacting with its molecular partners, when Ca2+ concentration within the ER reaches the millimolar range.  相似文献   

20.
Song J  Lee MS  Carlberg I  Vener AV  Markley JL 《Biochemistry》2006,45(51):15633-15643
Thylakoid soluble phosphoprotein of 9 kDa (TSP9) has been identified as a plant-specific protein in the photosynthetic thylakoid membrane (Carlberg et al. (2003) Proc. Natl. Acad. Sci. 100, 757-762). Nonphosphorylated TSP9 is associated with the membrane, whereas, after light-induced phosphorylation, a fraction of the phosphorylated TSP9 is released into the aqueous stroma. By NMR spectroscopy, we have determined the structural features of nonphosphorylated TSP9 both in aqueous solution and in membrane mimetic micelles. The results show that both wild type nonphosphorylated TSP9 and a triple-mutant (T46E + T53E + T60E) mimic of the triphosphorylated form of TSP9 are disordered under aqueous conditions, but adopt an ordered conformation in the presence of detergent micelles. The micelle-induced structural features, which are similar in micelles either of SDS or dodecylphosphocholine (DPC), consist of an N-terminal alpha-helix, which may represent the primary site of interaction between TSP9 and binding partners, and a less structured helical turn near the C-terminus. These structured elements contain mainly hydrophobic residues. NMR relaxation data for nonphosphorylated TSP9 in SDS micelles indicated that the molecule is highly flexible with the highest order in the N-terminal alpha-helix. Intermolecular NOE signals, as well as spin probe-induced broadening of NMR signals, demonstrated that the SDS micelles contact both the structured and a portion of the unstructured regions of TSP9, in particular, those containing the three phosphorylation sites (T46, T53, and T60). This interaction may explain the selective dissociation of phosphorylated TSP9 from the membrane. Our study presents a structural model for the role played by the structured and unstructured regions of TSP9 in its membrane association and biological function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号