首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kinesin-5 is an essential mitotic motor. However, how its spatial-temporal distribution is regulated in mitosis remains poorly understood. We expressed localization and affinity purification-tagged Eg5 from a mouse bacterial artificial chromosome (this construct was called mEg5) and found its distribution to be tightly regulated throughout mitosis. Fluorescence recovery after photobleaching analysis showed rapid Eg5 turnover throughout mitosis, which cannot be accounted for by microtubule turnover. Total internal reflection fluorescence microscopy and high-resolution, single-particle tracking revealed that mEg5 punctae on both astral and midzone microtubules rapidly bind and unbind. mEg5 punctae on midzone microtubules moved transiently both toward and away from spindle poles. In contrast, mEg5 punctae on astral microtubules moved transiently toward microtubule minus ends during early mitosis but switched to plus end-directed motion during anaphase. These observations explain the poleward accumulation of Eg5 in early mitosis and its redistribution in anaphase. Inhibition of dynein blocked mEg5 movement on astral microtubules, whereas depletion of the Eg5-binding protein TPX2 resulted in plus end-directed mEg5 movement. However, motion of Eg5 on midzone microtubules was not altered. Our results reveal differential and precise spatial and temporal regulation of Eg5 in the spindle mediated by dynein and TPX2.  相似文献   

2.
Success of mitosis depends upon the coordinated and regulated activity of many cellular factors, including kinesin motor proteins, which are required for the assembly and function of the mitotic spindle. Eg5 is a kinesin implicated in the formation of the bipolar spindle and its movement prior to and during anaphase. We have determined the crystal structure of the Eg5 motor domain with ADP-Mg bound. This structure revealed a new intramolecular binding site of the neck-linker. In other kinesins, the neck-linker has been shown to be a critical mechanical element for force generation. The neck-linker of conventional kinesin is believed to undergo an ordered-to-disordered transition as it translocates along a microtubule. The structure of Eg5 showed an ordered neck-linker conformation in a position never observed previously. The docking of the neck-linker relies upon residues conserved only in the Eg5 subfamily of kinesin motors. Based on this new information, we suggest that the neck-linker of Eg5 may undergo an ordered-to-ordered transition during force production. This ratchet-like mechanism is consistent with the biological activity of Eg5.  相似文献   

3.
The microtubule-dependent kinesin-like protein Eg5 from Homo sapiens is involved in the assembly of the mitotic spindle. It shows a three-domain structure with an N-terminal motor domain, a central coiled coil, and a C-terminal tail domain. In vivo HsEg5 is reversibly inhibited by monastrol, a small cell-permeable molecule that causes cells to be arrested in mitosis. Both monomeric and dimeric Eg5 constructs have been examined in order to define the minimal monastrol binding domain on HsEg5. NMR relaxation experiments show that monastrol interacts with all of the Eg5 constructs used in this study. Enzymatic techniques indicate that monastrol partially inhibits Eg5 ATPase activity by binding directly to the motor domain. The binding is noncompetitive with respect to microtubules, indicating that monastrol does not interfere with the formation of the motor-MT complex. The binding is not competitive with respect to ATP. Both enzymology and in vivo assays show that the S enantiomer of monastrol is more active than the R enantiomer and racemic monastrol. Stopped-flow fluorometry indicates that monastrol inhibits ADP release by forming an Eg5-ADP-monastrol ternary complex. Monastrol reversibly inhibits the motility of human Eg5. Monastrol has no inhibitory effect on the following members of the kinesin superfamily: MC5 (Drosophila melanogaster Ncd), HK379 (H. sapiens conventional kinesin), DKH392 (D. melanogaster conventional kinesin), BimC1-428 (Aspergillus nidulans BimC), Klp15 (Caenorhabditis elegans C-terminal motor), or Nkin460GST (Neurospora crassa conventional kinesin).  相似文献   

4.
HsEg5 is an important mitotic kinesin responsible for bipolar spindle formation at early mitosis. A rich body of evidence shows that inhibition of HsEg5 can result in mitotic arrest followed by cellular apoptosis. Recently identified HsEg5 inhibitor, CK0238273, exhibits potent antitumor activity and is currently in clinical trial. Here we report the cocrystal structure of the motor domain of HsEg5 in complex with CK0238273 at a 2.15 Å resolution. Compared to the previously published HsEg5-Monastrol complex structure, CK0238273 shares the same induced-fit pocket with similar allosteric inhibitory mechanism. However, CK0238273 shows better fitting to the binding pocket with 65% increase of hydrophobic interaction area than that of Monastrol. Some unique hydrophilic interactions were also observed mostly between the phenyl ring and 8-chloro on quinazolinone of CK0238273 with ARG221 and GLY217. We believe that the combination of these interactions defines the superior potency and specificity of CK0238273.  相似文献   

5.
Mitotic kinesins represent potential drug targets for anticancer chemotherapy. Inhibitors of different chemical classes have been identified that target human Eg5, a kinesin responsible for the establishment of the bipolar spindle. One potent Eg5 inhibitor is S-trityl-L-cysteine (STLC), which arrests cells in mitosis and exhibits tumor growth inhibition activity. However, the underlying mechanism of STLC action on the molecular level is unknown. Here, cells treated with STLC were blocked in mitosis through activation of the spindle assembly checkpoint as shown by the phosphorylated state of BubR1 and the accumulation of mitosis specific phosphorylation on histone H3 and aurora A kinase. Using live cell imaging, we observed prolonged mitotic arrest and subsequent cell death after incubation of GFP-alpha-tubulin HeLa cells with STLC. Activated caspase-9 occurred before cleavage of caspase-8 leading to the accumulation of the activated executioner caspase-3 suggesting that STLC induces apoptosis through the intrinsic apoptotic pathway. Proteome analysis following STLC treatment revealed 33 differentially regulated proteins of various cellular processes, 31 of which can be linked to apoptotic cell death. Interestingly, four identified proteins, chromobox protein homolog, RNA-binding Src associated in mitosis 68 kDa protein, stathmin, and translationally controlled tumor protein can be linked to mitotic and apoptotic processes.  相似文献   

6.
We have prepared antibodies specific for HSET, the human homologue of the KAR3 family of minus end-directed motors. Immuno-EM with these antibodies indicates that HSET frequently localizes between microtubules within the mammalian metaphase spindle consistent with a microtubule cross-linking function. Microinjection experiments show that HSET activity is essential for meiotic spindle organization in murine oocytes and taxol-induced aster assembly in cultured cells. However, inhibition of HSET did not affect mitotic spindle architecture or function in cultured cells, indicating that centrosomes mask the role of HSET during mitosis. We also show that (acentrosomal) microtubule asters fail to assemble in vitro without HSET activity, but simultaneous inhibition of HSET and Eg5, a plus end-directed motor, redresses the balance of forces acting on microtubules and restores aster organization. In vivo, centrosomes fail to separate and monopolar spindles assemble without Eg5 activity. Simultaneous inhibition of HSET and Eg5 restores centrosome separation and, in some cases, bipolar spindle formation. Thus, through microtubule cross-linking and oppositely oriented motor activity, HSET and Eg5 participate in spindle assembly and promote spindle bipolarity, although the activity of HSET is not essential for spindle assembly and function in cultured cells because of centrosomes.  相似文献   

7.
Spindle pole regulation by a discrete Eg5-interacting domain in TPX2   总被引:1,自引:0,他引:1  
Targeting protein for Xklp2 (TPX2) activates the Ser/Thr kinase Aurora A in mitosis and targets it to the mitotic spindle [1, 2]. These effects on Aurora A are mediated by the N-terminal domain of TPX2, whereas a C-terminal fragment has been reported to affect microtubule nucleation [3]. Using the Xenopus system, we identified a novel role of TPX2 during mitosis. Injection of TPX2 or its C terminus (TPX2-CT) into blastomeres of two-cell embryos led to potent cleavage arrest. Despite cleavage arrest, TPX2-injected embryos biochemically undergo multiple rounds of DNA synthesis and mitosis, and arrested blastomeres have abnormal spindles, clustered centrosomes, and an apparent failure of cytokinesis. In Xenopus S3 cells, transfection of TPX2-FL causes spindle collapse, whereas TPX2-CT blocks pole segregation, resulting in apposing spindle poles with no evident displacement of Aurora A. Analysis of TPX2-CT deletion peptides revealed that only constructs able to interact with the class 5 kinesin-like motor protein Eg5 induce the spindle phenotypes. Importantly, injection of Eg5 into TPX2-CT-arrested blastomeres causes resumption of cleavage. These results define a discrete domain within the C terminus of TPX2 that exerts a novel Eg5-dependent function in spindle pole segregation.  相似文献   

8.
Assembly of the mitotic spindle is essential for proper chromosome segregation during mitosis. Maintenance of spindle poles requires precise regulation of kinesin- and dynein-generated forces, and improper regulation of these forces disrupts pole integrity leading to pole fragmentation. The formation and function of the mitotic spindle are regulated by many proteins, including Aurora A kinase and the motor proteins Kif2a and Eg5. Here, we characterize a surprising role for the RhoA GTPase-activating protein, p190RhoGAP, in regulating the mitotic spindle. We show that cells depleted of p190RhoGAP arrest for long periods in mitosis during which cells go through multiple transitions between having bipolar and multipolar spindles. Most of the p190RhoGAP-depleted cells finally achieve a stable bipolar attachment and proceed through anaphase. The multipolar spindle phenotype can be rescued by low doses of an Eg5 inhibitor. Moreover, we show that p190RhoGAP-depleted multipolar cells localize Aurora A to all the poles, but the kinase is only activated at the two centriolar poles. Overall, our data identify an unappreciated connection between p190RhoGAP and the proteins that control spindle poles including Aurora A kinase and Eg5 that is required to prevent or correct spindle pole fragmentation.  相似文献   

9.

Background

Motor proteins from the kinesin-5 subfamily play an essential role in spindle assembly during cell division of most organisms. These motors crosslink and slide microtubules in the spindle. Kinesin-5 motors are phosphorylated at a conserved site by Cyclin-dependent kinase 1 (Cdk1) during mitosis. Xenopus laevis kinesin-5 has also been reported to be phosphorylated by Aurora A in vitro.

Methodology/Principal Findings

We investigate here the effect of these phosphorylations on kinesin-5 from Xenopus laevis, called Eg5. We find that phosphorylation at threonine 937 in the C-terminal tail of Eg5 by Cdk1 does not affect the velocity of Eg5, but strongly increases its binding to microtubules assembled in buffer. Likewise, this phosphorylation promotes binding of Eg5 to microtubules in Xenopus egg extract spindles. This enhancement of binding elevates the amount of Eg5 in spindles above a critical level required for bipolar spindle formation. We find furthermore that phosphorylation of Xenopus laevis Eg5 by Aurora A at serine 543 in the stalk is not required for spindle formation.

Conclusions/Significance

These results show that phosphorylation of Eg5 by Cdk1 has a direct effect on the interaction of this motor with microtubules. In egg extract, phosphorylation of Eg5 by Cdk1 ensures that the amount of Eg5 in the spindle is above a level that is required for spindle formation. This enhanced targeting to the spindle appears therefore to be, at least in part, a direct consequence of the enhanced binding of Eg5 to microtubules upon phosphorylation by Cdk1. These findings advance our understanding of the regulation of this essential mitotic motor protein.  相似文献   

10.
Eg5, a member of the widely conserved kinesin-5 family, is a plus-end-directed motor involved in separation of centrosomes, and in bipolar spindle formation and maintenance during mitosis in vertebrates. To investigate the requirement for Eg5 in mammalian development, we have generated Eg5 deficient mice by gene targeting. Heterozygous mice are healthy, fertile, and show no detectable phenotype, whereas Eg5−/− embryos die during early embryogenesis, prior to the implantation stage. This result shows that Eg5 is essential during early mouse development and cannot be compensated by another molecular motor.  相似文献   

11.
12.
The mitotic spindle is a microtubule-based machine that segregates a replicated set of chromosomes during cell division. Many cancer drugs alter or disrupt the microtubules that form the mitotic spindle. Microtubule-dependent molecular motors that function during mitosis are logical alternative mitotic targets for drug development. Eg5 (Kinesin-5) and Kif15 (Kinesin-12), in particular, are an attractive pair of motor proteins, as they work in concert to drive centrosome separation and promote spindle bipolarity. Furthermore, we hypothesize that the clinical failure of Eg5 inhibitors may be (in part) due to compensation by Kif15. In order to test this idea, we screened a small library of kinase inhibitors and identified GW108X, an oxindole that inhibits Kif15 in vitro. We show that GW108X has a distinct mechanism of action compared with a commercially available Kif15 inhibitor, Kif15-IN-1 and may serve as a lead with which to further develop Kif15 inhibitors as clinically relevant agents.  相似文献   

13.
14.
Bipolar spindle formation is essential for the accurate segregation of genetic material during cell division. Although centrosomes influence the number of spindle poles during mitosis, motor and non-motor microtubule-associated proteins (MAPs) also play key roles in determining spindle morphology. TPX2 is a novel MAP also characterized in Xenopus cell-free extracts. To examine hTPX2 (human TPX2) function in human cells, we used siRNA to knock-down its expression and found that cells lacking hTPX2 arrest in mitosis with multipolar spindles. NuMA, gamma-tubulin, and centrin localize to each pole, and nocodazole treatment of cells lacking hTPX2 demonstrates that the localization of gamma-tubulin to multiple spindle poles requires intact microtubules. Furthermore, we show that the formation of monopolar microtubule arrays in human cell extracts does not require hTPX2, demonstrating that the mechanism by which hTPX2 promotes spindle bipolarity is independent of activities focusing microtubule minus ends at spindle poles. Finally, inhibition of the kinesin Eg5 in hTPX2-depleted cells leads to monopolar spindles, indicating that Eg5 function is necessary for multipolar spindle formation in the absence of hTPX2. Our observations reveal a structural role for hTPX2 in spindles and provide evidence for a balance between microtubule-based motor forces and structural spindle components.  相似文献   

15.
Various factors including some motor proteins regulate microtubule (MT) transport and influence the formation of neuronal processes. Eg5, a slow and non-processive (+)-end directed motor molecule, is expressed in developing and differentiated neurons. However, how Eg5 works in neurons is still elusive. Thus, we treated primary rat cortical neuron cultures with monastrol, a specific inhibitor of Eg5, to investigate its role in neurons. Immature neurons treated with monastrol extended longer processes than control within a few hours. After 3 days, immature neurons treated with monastrol had longer dendrites but slightly shorter axons than control. This difference in growth between dendrites and axons became more prominent as the cells differentiated until 5 days. Interestingly, MT distributions in the cell bodies of monastrol-treated neurons appeared somewhat circular surrounding the nucleus, while MTs in the cell bodies of control neurons were primarily distributed in the MT organizing center (MTOC) just beside the nucleus. In mature neurons, monastrol treatment induced the axonal clusters of tubulins, grossly not affecting dendrites. Taken together, we conclude that Eg5 acts distinctively on dendrites and axons in neurons and suggest a putative model of how Eg5 works distinctively on dendrites and axons.  相似文献   

16.
Conventional kinesin and Eg5 are essential nanoscale motor proteins. Single-molecule and presteady-state kinetic experiments indicate that both motors use similar strategies to generate movement along microtubules, despite having distinctly different in vivo functions. Single molecules of kinesin, a long-distance cargo transporter, are highly processive, binding the microtubule and taking 100 or more sequential steps at velocities of up to 700 nm/s before dissociating, whereas Eg5, a motor active in mitotic spindle assembly, is also processive, but takes fewer steps at a slower rate. By dissecting the structural, biochemical and mechanical features of these proteins, we hope to learn how kinesin and Eg5 are optimized for their specific biological tasks, while gaining insight into how biochemical energy is converted into mechanical work.  相似文献   

17.
During early embryonic cycles, the time required for mitotic spindle assembly must match the autonomous cell cycle oscillations because a lack of coordination between these two processes will result in chromosome segregation errors. Members of the widely conserved BimC kinesin family are essential for spindle formation in all eukaryotes, and complete loss of BimC function results in monopolar spindles that have two spindle poles that are not separated. However, the precise roles of BimC motor activity in the spindle assembly process are not known. To examine the contribution of BimC kinesin's motor activity to spindle assembly, we generated and characterized mutants of Eg5, a vertebrate BimC kinesin, with reduced in vitro microtubule-gliding velocities. In Xenopus egg extracts, we replaced endogenous Eg5 with recombinant wild-type or mutant motor proteins. By using centrosome-dependent and centrosome-independent spindle assembly assays, we found that mechanisms that determine spindle size and shape were robust to approximately 6-fold reductions in Eg5 motility. However, the spindle assembly process was slower when Eg5 motor function was impaired. This role of Eg5 was independent of its contribution to centrosome separation. We provide evidence that Eg5 is a rate-limiting component of the cellular machinery that drives spindle assembly in vertebrates.  相似文献   

18.
Inhibition of the microtubule (MT) motor protein Eg5 results in a mitotic arrest due to the formation of monopolar spindles, making Eg5 an attractive target for anti-cancer therapies. However, Eg5-independent pathways for bipolar spindle formation exist, which might promote resistance to treatment with Eg5 inhibitors. To identify essential components for Eg5-independent bipolar spindle formation, we performed a genome-wide siRNA screen in Eg5-independent cells (EICs). We find that the kinase Aurora A and two kinesins, MCAK and Kif18b, are essential for bipolar spindle assembly in EICs and in cells with reduced Eg5 activity. Aurora A promotes bipolar spindle assembly by phosphorylating Kif15, hereby promoting Kif15 localization to the spindle. In turn, MCAK and Kif18b promote bipolar spindle assembly by destabilizing the astral MTs. One attractive way to interpret our data is that, in the absence of MCAK and Kif18b, excessive astral MTs generate inward pushing forces on centrosomes at the cortex that inhibit centrosome separation. Together, these data suggest a novel function for astral MTs in force generation on spindle poles and how proteins involved in regulating microtubule length can contribute to bipolar spindle assembly.  相似文献   

19.
Mitotic spindle assembly requires the regulated activity of numerous spindle-associated proteins. In mammalian cells, the Kinesin-5 motor Eg5 interacts with the spindle assembly factor TPX2, but how this interaction contributes to spindle formation and function is not established. Using bacterial artificial chromosome technology, we generated cells expressing TPX2 lacking the Eg5 interaction domain. Spindles in these cells were highly disorganized with multiple spindle poles. The TPX2-Eg5 interaction was required for kinetochore fiber formation and contributed to Eg5 localization to spindle microtubules but not spindle poles. Microinjection of the Eg5-binding domain of TPX2 resulted in spindle elongation, indicating that the interaction of Eg5 with TPX2 reduces motor activity. Consistent with this possibility, we found that TPX2 reduced the velocity of Eg5-dependent microtubule gliding, inhibited microtubule sliding, and resulted in the accumulation of motor on microtubules. These results establish a novel function of TPX2 in regulating the location and activity of the mitotic motor Eg5.  相似文献   

20.
Eg5 is a kinesin whose inhibition leads to cycle arrest during mitosis, making it a potential therapeutic target in cancers. Circular dichroism and isothermal titration calorimetry of our pyrrolotriazine-4-one series of inhibitors with Eg5 motor domain revealed enhanced binding in the presence of adenosine 5′-diphosphate (ADP). Using this information, we studied the interaction of this series with ADP-Eg5 complexes using a thermal shift assay. We measured up to a 7 °C increase in the thermal melting (Tm) of Eg5 for an inhibitor that produced IC50 values of 60 and 130 nM in microtubule-dependent adenosine triphosphatase (ATPase) and cell-based cytotoxicity assays, respectively. In general, the inhibitor potency of the pyrrolotriazine-4-one series in in vitro biological assays correlated with the magnitude of the thermal stability enhancement of ADP-Eg5. The thermal shift assay also confirmed direct binding of Eg5 inhibitors identified in a high-throughput screen and demonstrated that the thermal shift assay is applicable to a range of chemotypes and can be useful in evaluating both potent (nM) and relatively weakly binding (μM) leads. Overall, the thermal shift assay was found to be an excellent biophysical method for evaluating direct binding of a large number of compounds to Eg5, and it complemented the catalytic assay screens by providing an alternative determination of inhibitor potency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号