首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microaerobic cultivation conditions are often beneficial for the biotechnological production of reduced metabolites like 2,3‐butanediol. However, due to oxygen limitation, process monitoring based on oxygen transfer rate, or dissolved oxygen measurement provides only limited information. In this study, online monitoring of the respiratory quotient is used to investigate the metabolic activity of Bacillus licheniformis DSM 8785 during mixed acid‐2,3‐butanediol production under microaerobic conditions. Thereby, the respiratory quotient provides valuable information about different metabolic phases. Based on partial reaction stoichiometries, the metabolic activity in each phase of the cultivation was revealed, explaining the course of the respiratory quotient. This provides profound information on the formation or consumption of glucose, 2,3‐butanediol, ethanol and lactate, both, in shake flasks and stirred tank reactor cultivations. Furthermore, the average respiratory quotient correlates with the oxygen availability during the cultivation. Carbon mass balancing revealed that this reflects the increased formation of reduced metabolites with increasing oxygen limitation. The results clearly demonstrate that the respiratory quotient is a valuable online signal to reveal and understand the metabolic activity during microaerobic cultivations. The approach of combining respiratory quotient monitoring with stoichiometric considerations can be applied to other organisms and processes to define suitable cultivation conditions to produce the desired product spectrum.  相似文献   

2.
3.
A new disposable, multiphase, microbioreactor (MBR; with a working volume of 550 μl) equipped with online sensors is presented for biotechnological screening research purposes owing to its high-throughput potential. Its design and fabrication, online sensor integration, and operation are described. During aerobic cultivation, sufficient oxygen supply is the most important factor that influences growth and product formation. The MBR is a microbubble column bioreactor (μBC), and the oxygen supply was realized by active pneumatic bubble aeration, ensuring sufficient volumetric liquid-phase mass transfer (k L a) and proper homogenization of the cultivation broth. The μBC was equipped with miniaturized sensors for the pH, dissolved oxygen, optical density and glucose concentration that allowed real-time online monitoring of these process variables during cultivation. The challenge addressed here was the integration of sensors in the limited available space. The MBR was shown to be a suitable screening platform for the cultivation of biological systems. Batch cultivations of Saccharomyces cerevisiae were performed to observe the variation in the process variables over time and to show the robustness and operability of all the online sensors in the MBR.  相似文献   

4.
The effect was studied of oxygen supply on the changes in total and specific rate of oxygen consumption by the cells, oxygen transfer rate, saturation concentrations of dissolved oxygen and the yields of batch and continuous cultivations. Experiments were done on the microorganismKlebsiella aerogenes CCM 2318 growing on synthetic glucose medium. Continuous cultivations were carried out at dilution rates of 0.96 and 0.178 h−1. The rate of oxygen transfer was determined by the sulphite method and the coefficient KLa was assessed using the dynamic method with a correction for changes in the saturations of dissolved oxygen. A lowered oxygen supply in batch cultivations caused deformations in the course of cell respiration. Comparison of results of batch and continuous cultivations showed that the highest yields Yx/s and Yx/o are attained at low dilution rates without oxygen limitation. Batch cultivations, on the other hand, exhibit the lowest yields and the highest cell respiration levels. In both types of cultivations, a respiration peak was ascertained under the conditions of growth limitation by oxygen.  相似文献   

5.
6.
Oxygen-balanced mixotrophy (OBM) is a novel type of microalgal cultivation that improves autotrophic productivity while reducing aeration costs and achieving high biomass yields on substrate. The scale-up of this process is not straightforward, as nonideal mixing in large photobioreactors might have unwanted effects in cell physiology. We simulated at lab scale dissolved oxygen and glucose fluctuations in a tubular photobioreactor operated under OBM where glucose is injected at the beginning of the tubular section. We ran repeated batch experiments with the strain Galdieria sulphuraria ACUF 064 under glucose pulse feeding of different lengths, representing different retention times: 112, 71, and 21 min. During the long and medium tube retention time simulations, dissolved oxygen was depleted 15–25 min after every glucose pulse. These periods of oxygen limitation resulted in the accumulation of coproporphyrin III in the supernatant, an indication of disruption in the chlorophyll synthesis pathway. Accordingly, the absorption cross-section of the cultures decreased steeply, going from values of 150–180 m2 kg−1 at the end of the first batch down to 50–70 m2 kg−1 in the last batches of both conditions. In the short tube retention time simulation, dissolved oxygen always stayed above 10% air saturation and no pigment reduction nor coproporphyrin III accumulation were observed. Concerning glucose utilization efficiency, glucose pulse feeding caused a reduction of biomass yield on substrate in the range of 4%–22% compared to the maximum levels previously obtained with continuous glucose feeding (0.9 C-g C-g−1). The missing carbon was excreted to the supernatant as extracellular polymeric substances constituted by carbohydrates and proteins. Overall, the results point out the importance of studying large-scale conditions in a controlled environment and the need for a highly controlled glucose feeding strategy in the scale-up of mixotrophic cultivation.  相似文献   

7.
A simple pulse-based method for the determination of the maximum uptake capacities for glucose and oxygen in glucose limited cultivations of E. coli is presented. The method does not depend on the time-consuming analysis of glucose or acetate, and therefore can be used to control the feed rate in glucose limited cultivations, such as fed-batch processes. The application of this method in fed-batch processes of E. coli showed that the uptake capacity for neither glucose nor oxygen is a constant parameter, as often is assumed in fed-batch models. The glucose uptake capacity decreased significantly when the specific growth rate decreased below 0.15 h(-1) and fell to about 0.6 mmol g(-1) h(-1) (mmol per g cell dry weight and hour) at the end of fed-batch fermentations, where specific growth rate was approximately 0.02 h(-1). The oxygen uptake capacity started to decrease somewhat earlier when specific growth rate declined below 0.25 h(-1) and was 5 mmol g(-1) h(-1) at the end of the fermentations. The behavior of both uptake systems is integrated in a dynamic model which allows a better fitting of experimental values for glucose in fed-batch processes in comparison to generally used unstructured kinetic models.  相似文献   

8.
Macroporous microcarriers are commonly applied to fixed and fluidized bed bioreactors for the cultivation of stringent adherent cells. Several investigations showed that these carriers are advantageous in respect to a large surface area (Griffiths, 1990; Looby, 1990a). When growing a rC-127 cell line on Cytoline 2 (Pharmacia Biotech), no satisfactory product yield could be achieved. A possible limitation in the supply of nutrient components was investigated to explain these poor results. No significant concentration gradients could be detected. Nevertheless, fluorescence staining revealed a decreasing viability, particularly inside the macroporous structure. Therefore, oxygen transfer to and into the carriers was examined by means of an oxygen microprobe during the entire process. Additional mathematical modeling supported these results. The maximum penetration depth of oxygen was determined to be 300 μm. A critical value influencing the oxygen uptake rate of the rC-127 cells occured at a dissolved oxygen concentration of 8% of air saturation. A significant mass transfer resistance within a laminar boundary film at the surface of the carrier could be detected. This boundary layer had a depth of 170 μm. The results showed that even a 40% air saturation in the bulk liquid could not provide an efficient oxygenation of the surface biofilm during the exponential growth phase. Fluorescent staining reveals a poor viability of cells growing inside the carrier volume. Thus, oxygen supply limits the growth of rC-127 cells on macroporous microcarriers. Poor process performance and low product yield could be explained this way. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
In order to investigate the impact of high oxygen and carbon dioxide concentrations, Escherichia coli was grown in batch cultivations where the air supply was enriched with either oxygen or carbon dioxide. The effect of elevated concentrations of oxygen and carbon dioxide on stochiometric and kinetic constants was studied this way. The maximum growth rate was significantly reduced, the production of acetic acid and the biomass yield coefficient on glucose increased in cultures with carbon dioxide enriched air, compared to reference cultivations and cultivations with oxygen enriched air. The application of oxygen enriched air was studied in high cell density cultivations of Escherichia coli. Two production processes were chosen to investigate the impact of oxygen enrichment. Biomass concentration, specific growth rate, yield coefficient, respiration, mixed acid fermentation products and the product yield and quality for the recombinant product were investigated. First, a process for the production of biomass was investigated. Exponential growth could proceed for a longer time and higher growth rates could be maintained with oxygen enriched air supply. However, a higher specific oxygen consumption rate per glucose was measured after the start of the oxygen enrichment, indicating higher maintenance and consequently the growth rate and yield coefficient decreased drastically in the end of the process. Second, a process for the production of recombinant human growth hormone (rhGH) was investigated. Although the glucose feed rate and all medium components were doubled, the amount of produced biomass could only be increased by 77% when oxygen enriched air (40% oxygen) supply was applied. This was due to a decreased yield coefficient of biomass per glucose. The total amount of produced product was decreased by almost 50% compared to the control, although less proteolytically degraded variants were produced.  相似文献   

10.
Jet aerated loop reactors (JLRs) provide high mass transfer coefficients (kLa) and can be used for the intensification of mass transfer limited reactions. The jet loop reactor achieves higher kLa values than a stirred tank reactor (STR). The improvement relies on significantly higher local power inputs (~104) than those obtainable with the STR. Operation at high local turnover rates requires efficient macromixing, otherwise reactor inhomogeneities might occur. If sufficient homogenization is not achieved, the selectivity of the reaction and the respective yields are decreased. Therefore, the balance between mixing and mass transfer in jet loop reactors is a critical design aspect. Monitoring the dissolved oxygen levels during the turnover of a steady sodium sulfite feed implied the abundance of gradients in the JLR. Prolonged mixing times at identical power input and aeration rates (~100%) were identified for the JLR in comparison to the STR. The insertion of a draft tube to the JLR led to a more homogenous dissolved oxygen distribution, but unfortunately a reduction of mixing time was not achieved. In case of increased medium viscosities as they may arise in high cell density cultivations, no gradient formation was detected. However, differences in medium viscosity significantly altered the mass transfer and mixing performance of the JLR.  相似文献   

11.
12.
An empirical model was applied to describe the growth related formation of scleroglucan in batchwise cultivation of Sclerotium rolfsii. In this case, the level of oxygen supply controls the carbon flux into glucan, biomass, and CO2 evolution and therefore determines the yield coefficients YGlucan/BDM and YBDM/O2. It was observed that scleroglucan formation is enhanced under microaerobic conditions. However, as the empirical model and data of actual batch cultivations show, different maxima exist for product end concentration [g/l] and volumetric productivity [g/ld] depending on the total oxygen uptake during cultivation. A sufficient bulk mixing of the highly viscous culture suspension becomes particularly important during large-scale cultivations. In addition, the scleroglucan production process proved to be shear sensitive. A correlation between the attainable molecular weight of the glucan and the stirrer tip velocity in bioreactors of different sizes is presented. For all these reasons, a scale-up of this process is very complex. Large-scale cultivations under microaerobic conditions, aiming for maximum product end concentration, were slowed down by poor bulk mixing leading to a lower carbon flux into glucan formation. On the other hand, a scale-up designed for maximum volumetric productivity using high oxygen supply was successfully conducted up to a reactor volume of 1.500 l. To minimize the loss in product quality (molecular weight of the glucan) due to high stirrer tip velocities, a mixing concept was developed employing reduced agitation combined with maximum aeration to secure a sufficient axial bulk mixing in the reactor.  相似文献   

13.
The yeast Arxula adeninivorans is considered to be a promising producer of recombinant proteins. However, growth characteristics are poorly investigated and no industrial process has been established yet. Though of vital interest for strain screening and production processes, rationally defined culture conditions remain to be developed. A cultivation system was evolved based on targeted sampling and mathematical analysis of rationally designed small-scale cultivations in shake flasks. The oxygen and carbon dioxide transfer rates were analyzed as conclusive online parameters. Oxygen limitation extended cultivation and led to ethanol formation in cultures supplied with glucose. Cultures were inhibited at pH-values below 2.8. The phosphorus demand was determined as 1.55 g phosphorus per 100 g cell dry weight. Synthetic SYN6 medium with 20 g glucose l?1 was optimized for cultivation in shake flasks by buffering at pH 6.4 with 140 mmol MES l?1. Optimized SYN6 medium and operating conditions provided non-limited cultivations without by-product formation. A maximal specific growth rate of 0.32 h?1 and short fermentations of 15 h were achieved. A pH optimum curve was derived from the oxygen transfer rates of differently buffered cultures, showing maximal growth between pH 2.8 and 6.5. Furthermore, it was shown that the applied medium and cultivation conditions were also suitable for non-limiting growth and product formation of a genetically modified A. adeninivorans strain expressing a heterologous phytase.  相似文献   

14.
Corynebacterium glutamicum is well-known as an industrial workhorse, most notably for its use in the bulk production of amino acids in the feed and food sector. Previous studies of the effect of gradients in scale-down reactors with complex media disclosed an accumulation of several carboxylic acids and a parallel decrease of growth and product accumulation. This study, therefore, addresses the impact of carboxylic acids, for example, acetate and l -lactate, on the cultivation of the cadaverine producing strain C. glutamicum DM1945Δact3:Ptuf-ldcCopt and their potential role in scale up related performance losses. A fluctuating power input in shake flask and stirred tank cultivations with mineral salt was applied to mimic discontinuous oxygen availability. Results demonstrate, whenever sufficient oxygen was available, C. glutamicum recovered from previously occurring stressful conditions like an oxygen limiting phase. Reassimilation of acids was detected simultaneously. In cultures, which were supplemented with either acetate or l -lactate, a rapid cometabolization of both acids in presence of glucose was observed, showing conversion rates of 7.8 and 3.8 mmol gcell dry weight−1 hr−1, respectively. Uptake of these acids was accompanied by increased oxygen consumption. Proteins related to oxidative stress response, glycogen synthesis, and the main carbon metabolism were found in altered concentrations under oscillatory cultivation conditions. (Proteomics data are available via ProteomeXchange with identifier PXD012760). Virtually no impact on growth or product formation was observed. We conclude that the reduced growth and product formation in scale-down cultivations when complex media was used is not caused by the accumulation of carboxylic acids.  相似文献   

15.
Many secondary metabolites, including various polyketides, require complex enzymatic pathways for modification into their final biologically active forms. Limitation of the dissolved oxygen supplied during cultivation of various microbial strains can decrease the activity of cytochrome P-450 monooxygenases required for the processing of pathway intermediates into their final forms, resulting in the accumulation of these intermediates as the primary products. Here, a generalized oxygen-limited cultivation strategy is specifically demonstrated with a myxobacterial strain engineered to heterologously express the epothilone polyketide synthase (PKS) gene cluster under either an excess (the dissolved oxygen tension is maintained at 50% of saturation) or a depleted (no residual dissolved oxygen detected) level of oxygenation during cultivation. Cultivation of this myxobacterial strain with excess oxygenation resulted in the production of epothilones A and B as the primary products, while cultivation of this same strain under depleted oxygenation resulted in the production of epothilones C and D as the primary products. Additionally, the peak cell density in the oxygen-depleted cultivations was 60% higher than that observed in oxygen-excess cultivations. Finally, an active EpoK epoxidase was found to catalyze the production of a novel epothilone (Epo506) with an unexpected structure during the cultivation of another myxobacterial strain expressing a genetically modified epothilone PKS under excess oxygenation. The structure of Epo506 was determined by high-resolution mass spectrometry and one- and two-dimensional NMR.  相似文献   

16.
High-cell-density cultivations of Escherichia coli K12 in a dialysis reactor with controlled levels of dissolved oxygen were carried out with different carbon sources: glucose and glycerol. Extremely high cell concentrations of 190 g/l and 180 g/l dry cell weight were obtained in glucose medium and in glycerol medium respectively. Different behaviour was observed in the formation of acetic acid in these cultivations. In glucose medium, acetic acid was formed during the earlier phase of cultivation. However, in glycerol medium, acetic acid formation started later and was particularly rapid at the end of the cultivation. In order to estimate the influence of acetic acid during these high-cell-density cultivations, the inhibitory effect of acetic acid on cell growth was investigated under different culture conditions. It was found that the inhibition of cell growth by acetic acid in the fermentor was much less than that in a shaker culture. On the basis of the results obtained in these investigations of the inhibitory effect of acetic acid, and the mathematical predictions of cell growth in a dialysis reactor, the influence of acetic acid on high-cell-density cultivation is discussed. Received: 20 May 1997 / Received revision: 12 August 1997 / Accepted: 25 August 1997  相似文献   

17.
The success of bioprocess implementation relies on the ability to achieve high volumetric productivities and requires working with high‐cell‐density cultivations. Elevated atmospheric pressure might constitute a promising tool for enhancing the oxygen transfer rate (OTR), the major growth‐limiting factor for such cultivations. However, elevated pressure and its effects on the cellular environment also represent a potential source of stress for bacteria and may have negative effects on product formation. In order to determine whether elevated pressure can be applied for enhancing productivity in the case of medium‐chain‐length polyhydroxyalkanoate (mcl‐PHA) production by Pseudomonas putida KT2440, the impact of a pressure of 7 bar on the cell physiology was assessed. It was established that cell growth was not inhibited by this pressure if dissolved oxygen tension (DOT) and dissolved carbon dioxide tension (DCT) were kept below ~30 and ~90 mg L?1, respectively. Remarkably, a little increase of mcl‐PHA volumetric productivity was observed under elevated pressure. Furthermore, the effect of DCT, which can reach substantial levels during high‐cell‐density processes run under elevated pressure, was investigated on cell physiology. A negative effect on product formation could be dismissed since no significant reduction of mcl‐PHA content occurred up to a DCT of ~540 mg L?1. However, specific growth rate exhibited a significant decrease, indicating that successful high‐cell‐density processes under elevated pressure would be restricted to chemostats with low dilution rates and fed‐batches with a small growth rate imposed during the final part. This study revealed that elevated pressure is an adequate and efficient way to enhance OTR and mcl‐PHA productivity. We estimate that the oxygen provided to the culture broth under elevated pressure would be sufficient to triple mcl‐PHA productivity in our chemostat system from 3.4 (at 1 bar) to 11 g L?1 h?1 (at 3.2 bar). Biotechnol. Bioeng. 2012; 109:451–461. © 2011 Wiley Periodicals, Inc.  相似文献   

18.
An automated glucose feeding strategy that avoids acetate accumulation in cultivations of Escherichia coli is discussed. We have previously described how a probing technique makes it possible to detect and avoid overflow metabolism using a dissolved oxygen sensor. In this article these ideas are extended with a safety net that guarantees that aerobic conditions are maintained. The method is generally applicable, as no strain-specific information is needed and the only sensor required is a standard dissolved oxygen probe. It also gives the highest feed rate possible with respect to limitations from overflow metabolism and oxygen transfer, thus maximizing bioreactor productivity. The strategy was implemented on three different laboratory-scale platforms and fed-batch cultivations under different operating conditions were performed with three recombinant strains, E. coli K-12 UL635, E. coli BL21(DE3), and E. coli K-12 UL634. In spite of disturbances from antifoam and induction of recombinant protein production, the method reproducibly gave low concentrations of acetate and glucose. The ability to obtain favorable cultivation conditions independently of strain and operating conditions makes the presented strategy a useful tool, especially in situations where it is important to get good results on the first attempt.  相似文献   

19.
Oxygen supply is one of the most critical process parameters in aerobic cultivations. To assure sufficient oxygen supply, shake flasks are usually used in combination with orbital shaking machines. In this study, a measurement technique for the dissolved oxygen tension (DOT) in shake flask cultures with viscosity changes is presented. The movement of the shaker table is monitored by means of a Hall effect sensor. For DOT measurements, infrared fluorescent oxygen-sensitive nanoparticles are added to the culture broth. The position of the rotating bulk liquid needs to be determined to assure measurements inside the liquid. The leading edge of the bulk liquid is detected based on the fluorescence signal intensity of the oxygen-sensitive nanoparticles. Furthermore, online information about the viscosity of the culture broth is acquired due to the detection of the position of the leading edge of the bulk liquid relative to the direction of the centrifugal force, as described by Sieben et al. (2019. Sci. Rep., 9, 8335). The DOT measurement is combined with a respiration activity monitoring system which allows for the determination of the oxygen transfer rate (OTR) in eight parallel shake flasks. Based on DOT and OTR, the volumetric oxygen transfer coefficient (kLa) is calculated during cultivation. The new system was successfully applied in cultivations of Escherichia coli, Bacillus licheniformis, and Xanthomonas campestris.  相似文献   

20.
A submerged batch cultivation ofMoraxella bovis in a medium containing enzymic casein hydrolyzate and supplemented with dialyzed ram blood was described. Up to the growth limitation the bacteria grew exponentially without a lag phase and with a doubling period of 64 min. During the exponential phase no significant decrease of viable cells and cell autolysis were observed. Amino acids were the limiting factor. At the end of growth glutamie acid, threonine and serine were detected at the lowest concentrations. Substrate limitation led to an irreversible decrease of the metabolic activity. Growth yield on oxygen was 2.3 × 109 cells per mg O2. The fraction of respiration required for growth-uncoupled processes was negligible. During the cultivation ammonia was produced and the pH increased but it was not the inhibitory factor. Respiration was not limited by oxygen at concentrations higher than 0.63 μmol O2 per L. Sufficient pili were produced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号