首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mechanisms of Giardia lamblia differentiation into cysts.   总被引:6,自引:0,他引:6       下载免费PDF全文
Microbiologists have long been intrigued by the ability of parasitic organisms to adapt to changes in the environment. Since most parasites occupy several niches during their journey between vectors and hosts, they have developed adaptive responses which allow them to survive under adverse conditions. Therefore, the life cycles of protozoan and helminthic parasites are excellent models with which to study numerous mechanisms involved in cell differentiation, such as the regulation of gene expression, signal transduction pathways, and organelle biogenesis. Unfortunately, many of these studies are very difficult because the conditions needed to elicit developmental changes in parasites remain undetermined in most cases. Recently, several interesting findings were reported on the process of differentiation of Giardia lamblia trophozoites into cysts. G. lamblia is a flagellated protozoan that inhabits the upper small intestine of its vertebrate host and is a major cause of enteric disease worldwide. It belongs to the earliest identified lineage among eukaryotes and therefore offers a unique insight into the progression from primitive to more complex eukaryotic cells. The discovery of a specific stimulus that induces trophozoites to differentiate into cysts, the identification and characterization of encystation-specific molecules, the elucidation of novel biochemical pathways, and the development of useful reagents and techniques have made this parasite an excellent model with which to study differentiation in eukaryotic cells. In this review, we summarize the most recent fundings on several aspects of Giardia differentiation and discuss the significance of these findings within the context of current knowledge in the field.  相似文献   

2.
Genome ploidy in different stages of the Giardia lamblia life cycle   总被引:2,自引:0,他引:2  
The early diverging eukaryotic parasite Giardia lamblia is unusual in that it contains two apparently identical nuclei in the vegetative trophozoite stage. We have determined the nuclear and cellular genome ploidy of G. lamblia cells during all stages of the life cycle. During vegetative growth, the nuclei cycle between a diploid (2N) and tetraploid (4N) genome content and the cell, consequently, cycles between 4N and 8N. Stationary phase trophozoites arrest in the G2 phase with a ploidy of 8N (two nuclei, each with a 4N ploidy). On its way to cyst formation, a G1 trophozoite goes through two successive rounds of chromosome replication without an intervening cell division event. Fully differentiated cysts contain four nuclei, each with a ploidy of 4N, resulting in a cyst ploidy of 16N. The newly excysted cell, for which we suggest the term 'excyzoite', contains four nuclei (cellular ploidy 16N). In a reversal of the events occurring during encystation, the excyzoite divides twice to form four trophozoites containing two diploid nuclei each. The formation of multiple cells from a single cyst is likely to be one of the main reasons for the low infectious doses of G. lamblia .  相似文献   

3.
Protein S-palmitoylation, a hydrophobic post-translational modification, is performed by protein acyltransferases that have a common DHHC Cys-rich domain (DHHC proteins), and provides a regulatory switch for protein membrane association. In this work, we analyzed the presence of DHHC proteins in the protozoa parasite Giardia lamblia and the function of the reversible S-palmitoylation of proteins during parasite differentiation into cyst. Two specific events were observed: encysting cells displayed a larger amount of palmitoylated proteins, and parasites treated with palmitoylation inhibitors produced a reduced number of mature cysts. With bioinformatics tools, we found nine DHHC proteins, potential protein acyltransferases, in the Giardia proteome. These proteins displayed a conserved structure when compared to different organisms and are distributed in different monophyletic clades. Although all Giardia DHHC proteins were found to be present in trophozoites and encysting cells, these proteins showed a different intracellular localization in trophozoites and seemed to be differently involved in the encystation process when they were overexpressed. dhhc transgenic parasites showed a different pattern of cyst wall protein expression and yielded different amounts of mature cysts when they were induced to encyst. Our findings disclosed some important issues regarding the role of DHHC proteins and palmitoylation during Giardia encystation.  相似文献   

4.
Giardia lamblia is a flagellate protozoan that infects humans and other mammals and the most frequently isolated intestinal parasite worldwide. Giardia trophozoites undergo essential biological changes to survive outside the intestine of their host by differentiating into infective cysts. Cyst formation, or encystation, is considered one of the most primitive adaptive responses developed by eukaryotes early in evolution and crucial for the transmission of the parasite among susceptible hosts. During this process, proteins that will assemble into the extracellular cyst wall (CWP1 and CWP2) are transported to the cell surface within encystation-specific secretory vesicles (ESVs) by a developmentally regulated secretory pathway. Cyst wall proteins (CWPs) are maintained as a dense material inside the ESVs, but after exocytosis, they form the fibrillar matrix of the cyst wall. Little is known about the molecular mechanisms involved in granule biogenesis and discharge in Giardia, as well as the assembly of the extracellular wall. In this work, we provide evidences that a novel 54-kDa protein that exclusively localizes to the ESVs is induced during encystation similar to CWPs, proteolytically processed during granule maturation, and able to bind calcium in vitro. The gene encoding this molecule predicts a novel protein (called gGSP for G. lamblia Granule-specific Protein) without homology to any other protein reported in public databases. Nevertheless, it possesses characteristics of calcium-sequestering molecules of higher eukaryotes. Inhibition of gGSP expression abolishes cyst wall formation, suggesting that this secretory granule protein regulates Ca(2+)-dependent degranulation of ESVs during cyst wall formation.  相似文献   

5.
Survival of Giardia lamblia trophozoites after exposure to UV light   总被引:1,自引:0,他引:1  
The ability of Giardia lamblia trophozoites to reproduce after exposure to different fluences of UV radiation was determined using an in vitro-cultured method. The rate of parasite reproduction following UV exposure was measured by direct enumeration of trophozoites cultured in Diamond's Trypticase Yeast extract-Iron (TYI)-S-33 medium. The results suggested that some G. lamblia trophozoites may survive or are reactivated following exposure to UV fluences up to 10 mJ cm(-2). In addition, trophozoites exposed to a UV fluence of 1 mJ cm(-2) were infectious to Mongolian gerbils. Evidence of survival or reactivation at UV fluences of 20 and 40 mJ cm(-2) was ambiguous and statistically inconclusive, while at 100 mJ cm(-2) there was no evidence of survival or reactivation. This finding may have implications for criteria used by the drinking water and wastewater treatment industry to ensure safe reduction of G. lamblia cysts by UV disinfection processes.  相似文献   

6.
Giaridia lamblia was long considered to be one of the most primitive eukaryotes and to lie close to the transition between prokaryotes and eukaryotes, but several supporting features, such as lack of mitochondrion and Golgi, have been challenged recently. It was also reported previously that G. lamblia lacked nucleolus, which is the site of pre-rRNA processing and ribosomal assembling in the other eukaryotic cells. Here, we report the identification of the yeast homolog gene, krr1, in the anucleolate eukaryote, G. lamblia. The krr1 gene, encoding one of the pre-rRNA processing proteins in yeast, is actively transcribed in G. lamblia. The deduced protein sequence of G. lamblia krr1 is highly similar to yeast KRR1p that contains a single-KH domain. Our database searches indicated that krr1 genes actually present in diverse eukaryotes and also seem to present in Archaea. However, only the eukaryotic homologs, including that of G. lamblia, have the single-KH domain, which contains the conserved motif KR(K)R. Fibrillarin, another important pre-rRNA processing protein has also been identified previously in G. lamblia. Moreover, our database search shows that nearly half of the other nucleolus-localized protein genes of eukaryotic cells also have their homologs in Giardia. Therefore, we suggest that a common mechanism of pre-RNA processing may operate in the anucleolate eukaryote G. lamblia and in the other eukaryotes and that like the case of "lack of mitochondrion," "lack of nucleolus" may not be a primitive feature, but a secondarily evolutionary condition of the parasite.  相似文献   

7.
AIMS: Our study focused on the design of oligonucleotide probes and a suitable hybridization protocol that would allow rapid and specific identification of potentially viable cysts of the waterborne parasite Giardia lamblia. METHODS AND RESULTS: Comparative analysis of ribosomal RNA (rRNA) sequences of Giardia lamblia and a number of closely and more distantly related species identified six regions that appear to be specific for the G. lamblia 16S rRNA. Fluorescently labelled probes targeting these regions were produced and employed in fluorescent in situ hybridization (FISH) experiments. Two of the six probes tested successfully. CONCLUSION: Our study provides the first reported probes for specific FISH detection of G. lamblia. The method depends on sufficient amounts of intact rRNA in the target organism, which is unlikely to be present in nonviable cysts that have been exposed to the environment for a prolonged period. SIGNIFICANCE AND IMPACT OF THE STUDY: Currently, detection of G. lamblia cysts is largely based on immunofluorescence assays (IFA) targeting cyst wall surface antigens. These assays lack specificity and will detect species others than G. lamblia. Further, IFA will detect nonviable cysts and cyst wall fragments that do not pose a public health risk. In contrast, FISH probes allow specific detection and are likely to only detect viable, infectious cysts.  相似文献   

8.
9.
10.
Giardia lamblia is a multiflagellar parasite and one of the earliest diverging eukaryotic cells. It possesses a cytoskeleton made of several microtubular structures-an adhesive disc, four pairs of flagella, median body, and funis. This protozoan displays different types of movements, including a lateral and dorso-ventral dislocation of its posterior region, which has not been completely elucidated. In the present study, high-resolution field emission scanning electron microscopy was used to analyze the funis structure of G. lamblia trophozoites. It was shown that the funis is made of short arrays of microtubules emanating from the axonemes of the caudal flagella, which are anchored to dense rods that run parallel to the posterior-lateral flagella. After emergence of the posterior-lateral flagella, funis microtubules are anchored to the epiplasm, a fibrous layer that underlies the portion of membrane that presents tail contractility. Based on these observations a model for the tail flexion of G. lamblia is proposed.  相似文献   

11.
In this study, we describe the development of fluorescent oligonucleotide probes to variable regions in the small subunit of 16S rRNA in three distinct Giardia species. Sense and antisense probes (17-22 mer) to variable regions 1, 3, and 8 were labeled with digoxygenin or selected fluorochomes (FluorX, Cy3, or Cy5). Optimal results were obtained with fluorochome-labeled oligonucleotides for detection of rRNA in Giardia cysts. Specificity of fluorescent in situ hybridization (FISH) was shown using RNase digestion and high stringency to diminish the hybridization signal, and oligonucleotide probes for rRNA in Giardia lamblia, Giardia muris, and Giardia ardeae were shown to specifically stain rRNA only within cysts or trophozoites of those species. The fluorescent oligonucleotide specific for rRNA in human isolates of Giardia was positive for ten different strains. A method for simultaneous FISH detection of cysts using fluorescent antibody (genotype marker) and two oligonucleotide probes (species marker) permitted visualization of G. lamblia and G. muris cysts in the same preparation. Testing of an environmental water sample revealed the presence of FISH-positive G. lamblia cysts with a specific rDNA probe for rRNA, while negative cysts were presumed to be of animal or bird origin.  相似文献   

12.
Giardia cysts isolated from humans, beavers, mice, and muskrats were tested in cross-species transmission experiments for their ability to infect either beavers or muskrats. Giardia cysts, derived from multiple symptomatic human donors and used for inoculation of beavers or muskrats, were shown to be viable by incorporation of fluorogenic dyes, excystation, and their ability to produce infections in the Mongolian gerbil model. Inoculation of beavers with 5 x 10(5) Giardia lamblia cysts resulted in the infection of 75% of the animals (n = 8), as judged by the presence of fecal cysts or intestinal trophozoites at necropsy. The mean prepatent period was 13.1 days. An infective dose experiment, using 5 x 10(1) to 5 x 10(5) viable G. lamblia cysts collected by fluorescence-activated cell sorting, demonstrated that doses of between, less than 50, and less than 500 viable cysts were required to produce infection in beavers. Scanning electron microscopy of beaver small intestine revealed that attachment of G. lamblia trophozoites produced lesions in the microvillous border. Inoculation of muskrats with G. lamblia cysts produced infections when the dose of cysts was equal to or greater than 1.25 x 10(5). The inoculation of beavers with Giardia ondatrae or Giardia muris cysts did not produce any infection; however, the administration to muskrats of Giardia cysts of beaver origin resulted in the infection of 62% of the animals (n = 8), with a prepatent period of 5 days. Our results demonstrated that beavers and muskrats could be infected with Giardia cysts derived from humans, but only by using large numbers of cysts.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Oxygen Uptake In Cysts and Trophozoites of Giardia Lamblia   总被引:1,自引:0,他引:1  
ABSTRACT. Oxygen uptake in cysts and trophozoites of the parasitic protozoan Giardia lamblia was examined. Both showed oxygen uptake activity, but that of cysts was only 10% to 20% that of trophozoites. Oxygen dependence of oxygen uptake in cysts and trophozoites showed oxygen maxima above which oxygen uptake decreased. the oxygen concentration at which the oxygen uptake rate was greatest was higher for trophozoites than for cysts. the effect of various inhibitors on cyst and trophozoithe oxygen uptake suggested that flavoproteins and quinones play some role in oxygen uptake. the substrate specificities and the effect of inhibitors on G. lamblia trophozoites were similar to those observed for G. muris. Metronidazole, the drug most commonly used in treatment of giardiasis, inhibited oxygen uptake and motility in trophozoites; however, it had no obvious effect on either oxygen uptake or excystation in cysts. Menadione, a redox cycling naphthaquinone, first stimulated, then completely inhibited, oxygen uptake in cysts and trophozoites; a complete loss of cyst viability and trophozoite motility was also observed. the effect of menadione on G. Iamblia may indicate that redox cycling compounds have potential as chemotherapeutic agents for the treatment of giardiasis.  相似文献   

14.
15.
Gardia spp. are flagellated protozoans that parasitize the small intestines of mammals, birds, reptiles, and amphibians. The infectious cysts begin excysting in the acidic environment of the stomach and become trophozoites (the vegetative form). The trophozoites attach to the intestinal mucosa through the suction generated by a ventral disk and cause diarrhea and malabsorption by mechanisms that are not well understood. Giardia spp. have a number of unique features, including a predominantly anaerobic metabolism, complete dependence on salvage of exogenous nucleotides, a limited ability to synthesize and degrade carbohydrates and lipids, and two nuclei that are equal by all criteria that have been tested. The small size and unique sequence of G. lamblia rRNA molecules have led to the proposal that Giardia is the most primitive eukaryotic organism. Three Giardia spp. have been identified by light lamblia, G. muris, and G. agilis, but electron microscopy has allowed further species to be described within the G. lamblia group, some of which have been substantiated by differences in the rDNA. Animal models and human infections have led to the conclusion that intestinal infection is controlled primarily through the humoral immune system (T-cell dependent in the mouse model). A major immunogenic cysteine-rich surface antigen is able to vary in vitro and in vivo in the course of an infection and may provide a means of evading the host immune response or perhaps a means of adapting to different intestinal environments.  相似文献   

16.
The biology of Giardia spp.   总被引:29,自引:2,他引:27       下载免费PDF全文
Gardia spp. are flagellated protozoans that parasitize the small intestines of mammals, birds, reptiles, and amphibians. The infectious cysts begin excysting in the acidic environment of the stomach and become trophozoites (the vegetative form). The trophozoites attach to the intestinal mucosa through the suction generated by a ventral disk and cause diarrhea and malabsorption by mechanisms that are not well understood. Giardia spp. have a number of unique features, including a predominantly anaerobic metabolism, complete dependence on salvage of exogenous nucleotides, a limited ability to synthesize and degrade carbohydrates and lipids, and two nuclei that are equal by all criteria that have been tested. The small size and unique sequence of G. lamblia rRNA molecules have led to the proposal that Giardia is the most primitive eukaryotic organism. Three Giardia spp. have been identified by light lamblia, G. muris, and G. agilis, but electron microscopy has allowed further species to be described within the G. lamblia group, some of which have been substantiated by differences in the rDNA. Animal models and human infections have led to the conclusion that intestinal infection is controlled primarily through the humoral immune system (T-cell dependent in the mouse model). A major immunogenic cysteine-rich surface antigen is able to vary in vitro and in vivo in the course of an infection and may provide a means of evading the host immune response or perhaps a means of adapting to different intestinal environments.  相似文献   

17.
18.
Encystation of Giardia lamblia is required for survival outside the host, as well as for initiation of new infections. Previously, we induced cultured G. lamblia trophozoites to encyst in vitro for the first time. During encystation, we observed the appearance of a new class of large secretory vesicle (encystation-specific vesicle; ESV) within which cyst antigens are concentrated and transported to the nascent wall. The present kinetic and physiologic studies now show that ESV are the earliest morphologic change observed in encystation. Expression of ESV, as well as subsequent encystation, are regulated by exposure to bile at the slightly alkaline pH which is typical of the human intestinal tract. ESV formation appears to be less stringently regulated than formation of water-resistant cysts because omission of either encystation stimuli or alkaline pH preferentially inhibits encystation. Since cysts do not attach, we asked when in encystation this physiologic transition occurs. We found that most encysting trophozoites remain attached until they begin to round up (greater than 24 hr). However, if they are made to detach, as early as 12 hr in encystation, well before they round up, they are defective in the ability to reattach. If trophozoites also become less able to reattach to the intestinal epithelium early in encystation in vivo, this would increase their exposure to lumenal encystation stimuli and promote encystation. These studies have provided new insights into the complex sequence of morphologic and physiologic alterations which occur during encystation of G. lamblia in vitro and their regulation by host intestinal factors.  相似文献   

19.
The reconstruction of Giardia lamblia life cycle in vitro is an excellent tool for the study of the parasite's molecular biology. The present work describes techniques developed that better define parasite differentiation. An encystation protocol is presented along with a method for isolation and purification of the produced cysts. The cyst morphology at the light microscopy level is identical to that of in vivo cysts. A two-dimension protein map obtained by high-resolution electrophoresis indicated that most of the parasite's proteins are acid. Based on this result, the two dimension gel electrophoresis used a pH 4-7 gradient in the first, isoelectric focusing dimension. Differences in protein expression during the stages of encystation were clearly discerned, as well as images of the parasite obtained by light and by transmission electron microscopy that describe the morphological and the ultrastructural changes that occur as the cysts are produced in vitro.  相似文献   

20.
Giardia cysts isolated from humans, beavers, mice, and muskrats were tested in cross-species transmission experiments for their ability to infect either beavers or muskrats. Giardia cysts, derived from multiple symptomatic human donors and used for inoculation of beavers or muskrats, were shown to be viable by incorporation of fluorogenic dyes, excystation, and their ability to produce infections in the Mongolian gerbil model. Inoculation of beavers with 5 x 10(5) Giardia lamblia cysts resulted in the infection of 75% of the animals (n = 8), as judged by the presence of fecal cysts or intestinal trophozoites at necropsy. The mean prepatent period was 13.1 days. An infective dose experiment, using 5 x 10(1) to 5 x 10(5) viable G. lamblia cysts collected by fluorescence-activated cell sorting, demonstrated that doses of between, less than 50, and less than 500 viable cysts were required to produce infection in beavers. Scanning electron microscopy of beaver small intestine revealed that attachment of G. lamblia trophozoites produced lesions in the microvillous border. Inoculation of muskrats with G. lamblia cysts produced infections when the dose of cysts was equal to or greater than 1.25 x 10(5). The inoculation of beavers with Giardia ondatrae or Giardia muris cysts did not produce any infection; however, the administration to muskrats of Giardia cysts of beaver origin resulted in the infection of 62% of the animals (n = 8), with a prepatent period of 5 days. Our results demonstrated that beavers and muskrats could be infected with Giardia cysts derived from humans, but only by using large numbers of cysts.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号