首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Twenty-eight compounds, including 24 structurally related derivatives of tariquidar synthesized in our laboratory, and four XR compounds, reported by Xenova group Ltd, were investigated by the Hoechst 33342 and Calcein AM functional assays for estimation of their inhibitory effects on the transport activity of P-glycoprotein (P-gp). A high correlation between the effects obtained in both assays was observed at the substrate concentrations used. The analyses of kinetics data from experiments at different substrate concentrations revealed non-competitive inhibition in the Calcein AM assay and competitive inhibition in the Hoechst 33342 assay. The 3D structures of the compounds were further aligned on Hoechst 33342 using flexible and pharmacophore alignments. The results suggested that inhibitors could interact with the H-binding site of P-gp and this could potentially be achieved by different ways of binding. The best 3D-QSAR models, generated by CoMFA and CoMSIA, yielded an internal predictive squared correlation coefficient higher than 0.8 and included electrostatic, steric, hydrogen bond acceptor, and hydrophobic fields. Validation of the models on an external test set of 30 XR compounds gave predictive squared correlation coefficients of up to 0.66. An excellent correspondence between the experimental and modeled activities of the test compounds was observed. The models can be used for prediction and rational design of new P-gp inhibitors.  相似文献   

2.
Synthesis and in vitro cytotoxicity assays of new anthranilamide MDR modulators have been performed to assess their inhibition potency of the P-glycoprotein (P-gp) transporter. The aromatic spacer group between nitrogen atoms (N1 and N2) in the known inhibitor XR9576 was replaced with a flexible alkyl chain of 2 to 6 carbon atoms in length. 6,7-Dimethoxy-1,2,3,4-tetrahydroisoquinoline and their open-chain N-methylhomoveratrylamine counterparts were shown to be potent P-gp inhibitors. The maximal inhibition was obtained when using an ethyl or propyl spacer. Several compounds were more potent than verapamil and intrinsically less cytotoxic than XR9576. In addition, in vitro metabolism studies of 23a with a subset of human CYP-450 isoforms revealed that, unlike XR9576, 23a inhibited CYP3A4, an enzyme that colocalizes with P-gp in the intestine and contributes to tumor cell chemoresistance by enhancing the biodisposition of anticancer drugs such as paclitaxel toward metabolism. In this context, 22a might be a suitable candidate for further drug development.  相似文献   

3.
Synthesis and in vitro cytotoxicity assays of new anthranilamide MDR modulators have been performed to assess their inhibition potency on the P-glycoprotein (P-gp) transporter. Previous studies showed that the replacement of the aromatic spacer group between nitrogen atoms (N(1) and N(2)) in the P-gp inhibitor XR9576 with ethyl or propyl chain is optimal for P-gp inhibition potency. To confirm that observation, the ethyl or the propyl linker arm was replaced with a pyrrolidine or an alicyclic group such as cyclohexyl. In addition, an arylpiperazinyl group and two methoxyl groups onto the anthranilic part were introduced to assess their effect on the anti P-gp activity. Five molecules were prepared and evaluated on CEM/VLB500. All new anthranilamides were more potent than verapamil, most of them exhibited a lower cytotoxicity than XR9576. Compound 5 was the most potent and its inhibition activity was similar to XR9576. Interestingly, in vitro biotransformation studies of compounds 4 and 5 using human CYP-450 isoforms revealed, that conversely to XR9576, compounds 4 and 5 inhibited CYP3A4, an enzyme that colocalizes with P-gp in the intestine and contributes to tumor cell chemoresistance by enhancing the biodisposition of numerous drugs, notably paclitaxel. In that context, 5 might be suitable for further drug development.  相似文献   

4.
The development of new modulators possessing high efficacy, low toxicity and high selectivity is a pivotal approach to overcoming P-glycoprotein (P-gp) mediated multidrug resistance (MDR) in tumour cells. In this study 39 compounds are presented which have been synthesized and pharmacologically investigated in our laboratory. Similarly to the potent 3rd generation MDR modulator tariquidar (XR9576) the compounds contain a tetrahydroisoquinoline–ethyl-phenylamine substructure that, in contrast to XR9576, is connected to a smaller hydrophobic part, thus leading to molecules of lower molecular weight. The connection between the tetrahydroisoquinoline–ethyl-phenylamine substructure and the hydrophobic part was achieved through four different types of linkers: amide, urea, amide-ether and amide-styryl. A number of structural modifications in the hydrophobic part were created. The calcein AM assay served as test system to determine the P-gp transport inhibitory potencies of the compounds. For the amide linker derivatives a structure–activity relationship analysis was performed outlining which structural modifications contributed to the inhibitory potency. The compounds containing a bicyclic hydrophobic part with a particular substituent in a specific orientation were identified as the most potent amide derivatives. Among the urea derivatives the compounds with highest inhibitory potency possessed an ortho-nitro substituent. The conformational analysis revealed that this position enables the formation of a hydrogen bond to the urea linker thus stabilizing the conformation. Regarding the amide-styryl derivatives the elongation of the amide linker seemed to be most decisive for the observed increase in activity. The most promising candidate in the whole library possess an amide-ether linker and an ortho-nitro substituent in the hydrophobic part. This compound inhibites P-gp slightly less than tariquidar and can serve as a lead structure for new potent P-gp modulators.  相似文献   

5.
Tariquidar (XR9576) analogs, modulators of cancer multidrug resistance (MDR), were subjected to QSAR and 3D-QSAR analyses. The structural features contributing to anti-MDR activity were identified by the Free-Wilson analysis and pharmacophore search using Hoechst 33342 as a template. 3D-QSAR CoMFA and CoMSIA models were derived and tested. The best models yielded an external predictivity of 0.66-0.75 squared correlation coefficient and outlined HB-acceptor, steric, and hydrophobic fields as the most important 3D properties. On the basis of the QSAR and 3D-QSAR analyses it was suggested that the strong inhibitory potency of the compounds studied is related to the presence of a bulky aromatic ring system with a 3rd positioned heteroatom toward the anthranilamide nucleus in the opposite end of the tetrahydroquinoline group. The results can help in directing the rational design of new generations of potent P-glycoprotein MDR modulators.  相似文献   

6.
Breast cancer resistance protein (BCRP/ABCG2) belongs to the ATP binding cassette family of transport proteins. BCRP has been found to confer multidrug resistance in cancer cells. A strategy to overcome resistance due to BCRP overexpression is the investigation of potent and specific BCRP inhibitors. The aim of the current study was to investigate different multi-substituted chalcones for their BCRP inhibition. We synthesized chalcones and benzochalcones with different substituents (viz. OH, OCH(3), Cl) on ring A and B of the chalcone structure. All synthesized compounds were tested by Hoechst 33342 accumulation assay to determine inhibitory activity in MCF-7 MX and MDCK cells expressing BCRP. The compounds were also screened for their P-glycoprotein (P-gp) and Multidrug resistance-associated protein 1 (MRP1) inhibitory activity in the calcein AM accumulation assay and were found to be selective towards inhibition of BCRP. Substituents at position 2' and 4' on chalcone ring A were found to be essential for activity; additionally there was a great influence of substituents on ring B. Presence of 3,4-dimethoxy substitution on ring B was found to be optimal, while presence of 2- and 4-chloro substitution also showed a positive effect on BCRP inhibition.  相似文献   

7.
ABCB1, also known as P-glycoprotein (P-gp) or multidrug resistance protein 1 (MDR1), is a membrane-associated multidrug transporter of the ATP-binding cassette (ABC) transporter family. It is one of the most widely studied transporters that enable cancer cells to develop drug resistance. Reliable high-throughput assays that can identify compounds that interact with ABCB1 are crucial for developing new therapeutic drugs. A high-throughput assay for measuring ABCB1-mediated calcein AM efflux was developed using a fluorescent and phase-contrast live cell imaging system. This assay demonstrated the time- and dose-dependent accumulation of fluorescent calcein in ABCB1-overexpressing KB-V1 cells. Validation of the assay was performed with known ABCB1 inhibitors, XR9576, verapamil, and cyclosporin A, all of which displayed dose-dependent inhibition of ABCB1-mediated calcein AM efflux in this assay. Phase-contrast and fluorescent images taken by the imaging system provided additional opportunities for evaluating compounds that are cytotoxic or produce false positive signals. Compounds with known therapeutic targets and a kinase inhibitor library were screened. The assay identified multiple agents as inhibitors of ABCB1-mediated efflux and is highly reproducible. Among compounds identified as ABCB1 inhibitors, BEZ235, BI 2536, IKK 16, and ispinesib were further evaluated. The four compounds inhibited calcein AM efflux in a dose-dependent manner and were also active in the flow cytometry-based calcein AM efflux assay. BEZ235, BI 2536, and IKK 16 also successfully inhibited the labeling of ABCB1 with radiolabeled photoaffinity substrate [125I]iodoarylazidoprazosin. Inhibition of ABCB1 with XR9576 and cyclosporin A enhanced the cytotoxicity of BI 2536 to ABCB1-overexpressing cancer cells, HCT-15-Pgp, and decreased the IC50 value of BI 2536 by several orders of magnitude. This efficient, reliable, and simple high-throughput assay has identified ABCB1 substrates/inhibitors that may influence drug potency or drug-drug interactions and predict multidrug resistance in clinical treatment.  相似文献   

8.
In this study, pharmacophore and 3D-QSAR models were developed for analogues of 3-substituted-benzofuran-2-carboxylate as inhibitors of Fas-mediated cell death pathways. Our pharmacophore model has good correspondence with experimental results and can explain the variance in biological activities coherently with respect to the structure of the data set compounds. The predictive power for our synthesized compounds were 0.96 for the pharmacophore model, 0.58 for the comparative molecular field analysis (CoMFA) model, and 0.57 for the comparative molecular similarity analysis (CoMSIA) model.  相似文献   

9.
P-glycoprotein (P-gp) appears to be associated within specialized raftlike membrane microdomains. The activity of P-gp is sensitive to its lipid environment, and a functional association in raft microdomains will require that P-gp retains activity in the microenvironment. Purified hamster P-gp was reconstituted in liposomes comprising sphingomyelin and cholesterol, both highly enriched in membrane microdomains and known to impart a liquid-ordered phase to bilayers. The activity of P-gp was compared with that of proteoliposomes composed of crude egg phosphatidylcholine (unsaturated) or dipalmitoyl phosphatidylcholine (saturated) in the presence or absence of cholesterol. The maximal rate of ATP hydrolysis was not significantly altered by the nature of the lipid species. However, the potencies of nicardipine and XR9576 to modulate the ATPase activity of P-gp were increased in the sphingolipid-based proteoliposomes. The drug-P-gp interaction was investigated by measurement of the rates of [(3)H]XR9576 association and dissociation from the transporter. The lipid environment of P-gp did not affect these kinetic parameters of drug binding. In summary, P-gp retains function in liquid-ordered cholesterol and sphingolipid model membranes in which the communication between the transmembrane and the nucleotide binding domains after drug binding to the protein is more efficient.  相似文献   

10.
P-glycoprotein (P-gp) confers multiple drug resistance on cancer cells by acting as a plasma membrane localized ATP-dependent drug efflux pump. Currently, there is little information on the nature of the communication between the energy-providing nucleotide binding domains (NBDs) and the drug binding sites of P-gp to generate transport of substrate. Many substrates and modulators cause alterations in ATP hydrolysis, but what effect do the various stages of the catalytic cycle have on drug interaction with P-gp? Vanadate trapping of Mg.ADP caused a reversible decrease in the binding capacity of the transported substrate [(3)H]-vinblastine and the nontransported modulator [(3)H]XR9576 to P-gp in CH(r)B30 cell membranes. The non-hydrolyzable nucleotide analogue ATP-gamma-S also caused a reduction in the binding capacity of [(3)H]-vinblastine but not for the modulator [(3)H]XR9576. This indicates that signaling to the NBDs following binding of a nontransported modulator is different to that transmitted upon interaction of a transported substrate. Second, it appears that the binding of nucleotide, rather than its hydrolysis, causes the initial conformational shift in the drug-binding site during a transport cycle.  相似文献   

11.
BackgroundA major problem of cancer treatment is the development of multidrug resistance (MDR) to chemotherapy. MDR is caused by different mechanisms such as the expression of the ABC-transporters P-glycoprotein (P-gp, MDR1, ABCB1) and breast cancer resistance protein (BCRP, ABCG2). These transporters efflux xenobiotic toxins, including chemotherapeutics, and they were found to be overexpressed in different cancer types.PurposeIdentification of novel molecules that overcome MDR by targeting ABC-transporters.MethodsResazurin reduction assay was used for cytotoxicity test. AutoDock 4.2. was used for molecular docking. The function of P-gp and BCRP was tested using a doxorubicin uptake assay and an ATPase assay. ROS generation was detected using flow cytometry for the measurement of H2DCFH-DA fluorescence. Annexin/PI staining was applied for the detection of apoptosis. Bioinformatic analyses were performed using LigandScout 3.12. software and DataWarrior software.ResultsIn our search for new molecules that selectively act against resistant phenotypes, we identified isopetasin and S-isopetasin, which are bioactive natural products from Petasites formosanus. They exerted collateral sensitivity towards leukemia cells with high P-gp expression in CEM/ADR5000 cells, compared to sensitive wild-type CCRF-CEM leukemia cells. Also, they revealed considerable activity towards breast cancer cells overexpressing breast cancer resistance protein, MDA-MB-231-BCRP clone 23. This motivated us to investigate whether the function of P-gp was inhibited. In-silico results showed the compounds bound with high affinity and interacted with key amino acid residues in P-gp . Then, we found that the two compounds increased doxorubicin accumulation in P-gp overexpressing CEM/ADR5000 by three-fold compared to cells without inhibitor. P-gp-mediated drug efflux was ATP-dependent. Isopetasin and S-isopetasin increased the ATPase activity of human P-gp in a comparable fashion as verapamil used as control P-gp inhibitor. As isopetasin and S-isopetasin exerted dual roles, first as cytotoxic compounds and then as P-gp inhibitors, we suggested that their P-gp inhibition is part of a larger complex of mechanisms to induce cell death in cancer patients. P-gp dysfunction induces mitochondrial stress to generate ATP. Upon continuing stress by P-gp inhibition, the mitochondria generate reactive oxygen species (ROS). Initially established for verapamil, this theory was validated in the present study for isopetasin and S-isopetasin, as treatment with the two candidates increased ROS levels in CEM/ADR5000 cells followed by apoptosis.ConclusionOur study highlights the importance of isopetasin and S-isopetasin as novel ROS-generating and apoptosis-inducing P-gp inhibitors.  相似文献   

12.
A set of 32 natural and synthetic coumarins were tested in order to evaluate their activity on human leukemic cells (K562/R7) overexpressing P-glycoprotein (P-gp). Their ability to reduce the P-gp-mediated drug efflux of daunorubicin out of cells was evaluated at 10 microM. Four natural compounds, previously isolated from Calophyllum dispar (Clusiaceae) and substituted by a common alpha-(hydroxyisopropyl)dihydrofuran moiety, exhibited a significant inhibitory effect on P-gp when compared to the positive control cyclosporin A. A 3D-quantitative structure-activity relationship (3D-QSAR) analysis of the coumarins was performed using the biological results obtained by comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) of P-gp. Results showed a favorable electrostatic and steric volume, like the alpha-(hydroxyisopropyl)dihydrofuran moiety, beside C(5)-C(6) or C(7)-C(8) positions. In addition, the analysis revealed an important hydrophobic, neutral charge group, like phenyl, in position C(4) on the coumarinic ring.  相似文献   

13.
Breast cancer resistant protein (BCRP/ABCG2), a 72 kDa plasma membrane transporter protein is a member of ABC transporter superfamily. Increased expression of BCRP causes increased efflux and therefore, reduced intracellular accumulation of many unrelated chemotherapeutic agents leading to multidrug resistance (MDR). A series of 31 benzamide and phenyltetrazole derivatives with amide and urea linkers has been synthesized to serve as potential BCRP inhibitors in order to overcome BCRP-mediated MDR. The target derivatives were tested for their cytotoxicity and reversal effects in human non-small cell lung cancer cell line H460 and mitoxantrone resistant cell line H460/MX20 using the MTT assay. In the benzamide series, compounds 6 and 7 exhibited a fold resistance of 1.51 and 1.62, respectively at 10 µM concentration which is similar to that of FTC, a known BCRP inhibitor. Compounds 27 and 31 were the most potent analogues in the phenyltetrazole series with amide linker with a fold resistance of 1.39 and 1.32, respectively at 10 µM concentration. For the phenyltetrazole series with urea linker, 38 exhibited a fold resistance of 1.51 which is similar than that of FTC and is the most potent compound in this series. The target compounds did not exhibit reversal effect in P-gp overexpressing resistant cell line SW620/Ad300 suggesting that they are selective BCRP inhibitors.  相似文献   

14.
P-glycoprotein (P-gp) is an ATP-dependent multidrug resistance efflux transporter that plays an important role in anticancer drug resistance and in pharmacokinetics of medicines. Despite a large number of structurally and functionally diverse compounds, also flavonoids and chalcones have been reported as inhibitors of P-gp. The latter share some similarity with the well studied class of propafenones, but do not contain a basic nitrogen atom. Furthermore, due to their rigidity, they are suitable candidates for 3D-QSAR studies. In this study, a set of 22 new chalcone derivatives were synthesized and evaluated in a daunomycin efflux inhibition assay using the CCRF.CEM.VCR1000 cell line. The compound 10 showed the highest activity (IC50 = 42 nM), which is one order of magnitude higher than the activity for an equilipohillic propafenone analogue. 2D- and 3D-QSAR studies indicate the importance of H-bond acceptors, methoxy groups, hydrophobic groups as well as the number of rotatable bonds as pharmacophoric features influencing P-gp inhibitory activity.  相似文献   

15.
The transmembrane (TM) domains in P-glycoprotein (P-gp) contain the drug binding sites and undergo conformational changes driven by nucleotide catalysis to effect translocation. However, our understanding of exactly which regions are involved in such events remains unclear. A site-directed labelling approach was used to attach thiol-reactive probes to cysteines introduced into transmembrane segment 6 (TM6) in order to perturb function and infer involvement of specific residues in drug binding and/or interdomain communication. Covalent attachment of coumarin-maleimide at residue 339C within TM6 resulted in impaired ATP hydrolysis by P-gp. The nature of the effect was to reduce the characteristic modulation of basal activity caused by transported substrates, modulators and the potent inhibitor XR9576. Photoaffinity labelling of P-gp with [(3)H]-azidopine indicated that residue 339C does not alter drug binding per se. However, covalent modification of this residue appears to prevent conformational changes that lead to drug stimulation of ATP hydrolysis.  相似文献   

16.
Proteasome had been clinically validated as an effective target for the treatment of cancers. Up to now, many structurally diverse proteasome inhibitors were discovered. And two of them were launched to treat multiple myeloma (MM) and mantle cell lymphoma (MCL). Based on our previous biological results of dipeptidyl boronic acid proteasome inhibitors, robust 3D-QSAR models were developed and structure–activity relationship (SAR) was summarized. Several structurally novel compounds were designed based on the theoretical models and finally synthesized. Biological results showed that compound 12e was as active as the standard bortezomib in enzymatic and cellular activities. In vivo pharmacokinetic profiles suggested compound 12e showed a long half-life, which indicated that it could be administered intravenously. Cell cycle analysis indicated that compound 12e inhibited cell cycle progression at the G2M stage.  相似文献   

17.
We recently reported alkoxyl biphenyl derivatives bearing dibenzo[c,e]azepine scaffold as novel P-glycoprotein (P-gp, ABCB1) inhibitors. In this study, their ability to reverse breast cancer resistance protein (BCRP, ABCG2)-mediated multidrug resistance was tested in HEK293/BCRP cells which was BCRP-transfected stable HEK293 cells. It was observed that compounds 4d, 4h, 4i increased mitoxantrone accumulation in HEK293/BCRP cells via inhibiting BCRP efflux function. Notably, the inhibitory activity of 4i was comparable to that of the classical BCRP inhibitor Ko143 at an equimolar concentration. Interestingly, 4i had little inhibitory effect on multidrug resistance-associated protein 1 (MRP1, ABCC1), another drug efflux transporter. These results, together with the previous findings, suggest that 4i may be a dual inhibitor of P-gp and BCRP to warrant further investigation.  相似文献   

18.
19.
Starting from lead compound 1 (EC(50)=1.64 microM), its non-basic nucleus has been conformationally restricted by 4-biphenyl and 2-naphthyl moieties. In each series we investigated if the presence of H-bond donor or acceptor substituents, the basicity and the lipophilicity (clogP) were correlated with the P-gp inhibiting activity of tested compounds. In the biphenyl series, derivative 4d displayed the best results (EC(50)=0.05 microM). The corresponding amide 3d was found less active (EC(50)=3.5 microM) ascertaining the importance of basicity in this series whilst the presence of hydroxy or methoxy substituents seems to be negligible. In the naphthyl series, both the basicity and the presence of H-bond donor or acceptor groups seem to be negligible. Moreover, the lipophilicity did not influence the P-gp inhibition activity of each series. Specific biological assays have been carried out to establish the P-gp interacting mechanism of tested compounds discriminating between substrates and inhibitors. Moreover, compound 4d displayed a potent P-gp inhibition activity with good selectivity towards BCRP pump.  相似文献   

20.
An assessment of energetic costs associated with P-glycoprotein (P-gp)-mediated xenobiotic efflux is important in understanding the energy budgets, tradeoffs, and fitness of organisms inhabiting contaminated environments. Here, a functional characterization and determination of the energetic costs associated with doxorubicin (DOX) efflux was examined in isolated hepatocytes of rainbow trout. The accumulation and efflux of DOX were both concentration dependent. The efflux of DOX over a 3 h incubation period resulted in a significant decrease in intracellular ATP concentrations (maximum decrease 25%) compared to control baseline levels, while significant increases in concentrations of ADP (max. 26%), AMP (max. 36%) and inorganic phosphate (max. 11%). were observed. In addition, significant reductions in the adenylate energy charge ([AEC]: max 11%), and phosphorylation potential ([PP]: max. 53%) were shown in cells incubated with DOX compared to control cells. Inhibition of DOX efflux (max. 61%) by the non-competitive P-gp inhibitor tariquidar (XR9576), demonstrated that changes in ATP, ADP, AMP, inorganic phosphate concentrations, AEC and PP in DOX-exposed hepatocytes were mainly due to P-gp activity. Overall, these results indicate that the exposure of trout hepatocytes to DOX increases energetic and metabolic costs that are associated specifically with P-gp efflux activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号