首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In the present study the subacute effects of beta-N-oxalylamino-L-alanine (BOAA) and beta-N-methylamino-L-alanine (BMAA) on CNS monoamine neurons in rats were investigated following intracisternal injections or local intracerebral administration into substantia nigra. In vitro effects of BOAA and BMAA on high-affinity synaptosomal uptake of dopamine (DA), noradrenaline (NA), and serotonin (5-HT) were also examined. Intracisternal administration of BMAA decreased NA levels in hypothalamus, whereas no effects were seen on DA or 5-HT levels. Following intranigral injections of BOAA, NA levels tended to decrease in several regions, whereas the DA levels and the levels of DA metabolites were unaffected in all regions analyzed. Loss of tyrosine hydroxylase (TH) immunoreactivity in the intranigral injection sites and the presence of TH-immunoreactive pyknotic neurons near the borders of the injection sites were observed following both BOAA and BMAA treatments. Furthermore, substance P-immunoreactive terminals in substantia nigra pars reticulata were also found to have disappeared within the lesioned area following either BOAA or BMAA injections. Incubations with both BOAA and BMAA (10(-5) M) reduced high-affinity [3H]NA uptake in cortical synaptosomes to 69% and 41% of controls, respectively, whereas the striatal high-affinity [3H]DA uptake and the cortical high-affinity [3H]5-HT uptake were unaffected by BOAA or BMAA. The results demonstrate that both BOAA and BMAA can affect central monoamine neurons, although the potency and specificity of these substances on monoamine neurons when administered acutely into cerebral tissue or liquor cerebri seem to be low. However, the in vitro studies indicate selective effects of both compounds on NA neurons in synaptosomal preparations.  相似文献   

3.
The effect of modified and substituted analogues of prolyl-leucyl-glycinamide (PLG, MIF-I) was investigated on the steady-state level of noradrenaline (NA), dopamine (DA) and serotonin (5-HT) in various brain regions. Proline was replaced by D- or L-pipecolic acid (D- or L-Pip), which analogues in turn were protected by benzoxy-carbonyl (Z) group. Substitution by D- or L-pipecolic acid caused opposite changes in the DA level of the dorsal hippocampus. These effects were absent it the N-terminal of either analogues was protected by Z-group. Following the above mentioned N-terminal modification, the amino group of the C-terminal glycine was also substituted by methyl-esther (Gly-OMe), Z-D-Pip-Leu-Gly-OMe decreased the mesencephalic DA level, while Z-L-Pip-Leu-Gly-OMe increased the 5-HT content of the mesencephalon and striatum. In general, N-terminal substitution by D-pipecolic acid decreased, whereas that by L-pipecolic acid increased the monoamine level in the brain.  相似文献   

4.
段云峰  吴晓丽  王涛  金锋 《生命科学》2013,(10):1027-1035
五羟色胺(5-HT)和多巴胺(DA)是影响攻击行为的重要神经递质。参与这两种神经递质合成和分解、运输及信号转导等过程的物质均可能影响攻击行为,如影响5-HT作用的色氨酸、色氨酸羟化酶、单胺氧化酶、5-羟吲哚乙酸及5-HT转运体和5-HT受体;影响DA作用的多巴胺β羟化酶和儿茶酚胺邻位甲基转移酶以及DA转运体。未来攻击行为研究,应考虑色氨酸自身代谢、受体亚型及其他单胺类和儿茶酚胺类神经递质的影响。将肠道微生物纳入攻击行为研究也是未来研究的新方向。  相似文献   

5.
The effects of serotonin (5-HT), dopamine (DA), several peptides including FMRFamide and arginine vasotocin, the diterpene forskolin and Ca2+ were examined on adenylate cyclase in a particulate fraction from hearts of Aplysia californica. Enzyme activity was stimulated 6-7-fold by 5-HT (EC50, 1 microM) in the presence of GTP. Several 5-HT analogs particularly 5-methoxytryptamine and 5-methoxy-N-N-dimethyltryptamine were also active. The stimulatory action of 5-HT was antagonized by the 5-HT receptor blockers methergoline and metitepine and by the DA receptor blocker chlorpromazine. Dopamine had weak stimulatory action (EC50, 10 microM) and an efficacy relative to that of 5-HT of 0.3. The action of DA was antagonized by chloropromazine and metitepine. Several peptides including FMRFamide and arginine vasotocin had no effect on adenylate cyclase when tested over the concentration range 0.1-100 microM. The enzyme was stimulated 6-fold by the diterpene forskolin (EC50, 2 microM). 5-HT-stimulated activity was strongly inhibited by Ca2+. Calmodulin had no action on the enzyme in the presence of Ca2+.  相似文献   

6.
Measurements of serotonin (5-HT), dopamine (DA), and noradrenaline, and of 5-HT and DA metabolites, were obtained by HPLC from 16 brain regions and the spinal cord of 5-HT(1A) or 5-HT(1B) knockout and wild-type mice of the 129/Sv strain. In 5-HT(1A) knockouts, 5-HT concentrations were unchanged throughout, but levels of 5-HT metabolites were higher than those of the wild type in dorsal/medial raphe nuclei, olfactory bulb, substantia nigra, and locus coeruleus. This was taken as an indication of increased 5-HT turnover, reflecting an augmented basal activity of midbrain raphe neurons and consequent increase in their somatodendritic and axon terminal release of 5-HT. It provided a likely explanation for the increased anxious-like behavior observed in 5-HT(1A) knockout mice. Concomitant increases in DA content and/or DA turnover were interpreted as the result of a disinhibition of DA, whereas increases in noradrenaline concentration in some territories of projection of the locus coeruleus could reflect a diminished activity of its neurons. In 5-HT(1B) knockouts, 5-HT concentrations were lower than those of the wild type in nucleus accumbens, locus coeruleus, spinal cord, and probably also several other territories of 5-HT innervation. A decrease in DA, associated with increased DA turnover, was measured in nucleus accumbens. These changes in 5-HT and DA metabolism were consistent with the increased aggressiveness and the supersensitivity to cocaine reported in 5-HT(1B) knockout mice. Thus, markedly different alterations in CNS monoamine metabolism may contribute to the opposite behavioral phenotypes of these two knockouts.  相似文献   

7.
Abstract: Evidence exists that a reinforcement in monoaminergic transmission in the frontal cortex (FCX) is associated with antidepressant (AD) properties. Herein, we examined whether blockade of α2-adrenergic receptors modified the influence of monoamine reuptake inhibitors on FCX levels of serotonin (5-HT), noradrenaline (NAD), and dopamine (DA). The selective α2-adrenergic receptor agonist S 18616 (0.16 mg/kg, s.c.) suppressed extracellular levels of NAD, DA, and 5-HT (by 100, 51, and 63%, respectively) in single dialysates of FCX of freely moving rats. In contrast, the selective α2-adrenergic receptor antagonists atipamezole (0.16 mg/kg, s.c.) and 1-(2-pyrimidinyl)piperazine (1-PP; 2.5 mg/kg, s.c.) increased levels of NAD (by 180 and 185%, respectively) and DA (by 130 and 90%, respectively), without affecting 5-HT levels. Duloxetine (5.0 mg/kg, s.c.), a mixed inhibitor of 5-HT and NAD reuptake, and fluoxetine (10.0 mg/kg, s.c.), a selective 5-HT reuptake inhibitor, both increased levels of 5-HT (by 150 and 120%, respectively), NAD (by 400 and 100%, respectively), and DA (by 115 and 55%, respectively). Atipamezole (0.16 mg/kg, s.c.) markedly potentiated the influence of duloxetine and fluoxetine on levels of 5-HT (by 250 and 330%, respectively), NAD (by 1,030 and 215%, respectively), and DA (by 370 and 170%, respectively). 1-PP similarly potentiated the influence of duloxetine on 5-HT, NAD, and DA levels (by 290, 1,320, and 600%, respectively). These data demonstrate that α2-adrenergic receptors tonically inhibit NAD and DA and phasically inhibit 5-HT release in the FCX and that blockade of α2-adrenergic receptors strikingly potentiates the increase in FCX levels of 5-HT, NAD, and DA elicited by reuptake inhibitors. Concomitant α2-adrenergic receptor antagonism and inhibition of monoamine uptake may thus provide a mechanism allowing for a marked increase in the efficacy of AD agents.  相似文献   

8.
Abstract: Studies were designed to evaluate specificity of the transmitter amines serotonin (5-hydroxytryptamine, 5-HT) and dopamine (DA), as well as the trace amines p -tyramine ( p -TA) and β -phenylethylamine (PEA) for types A and B monoamine oxidase (MAO) in rat striatum. 5-HT was found to be a specific substrate for the type A enzyme. However, the specificity of PEA for the type B enzyme was found to be concentration-dependent. When low concentrations of PEA and 5-HT were used to measure type B and type A activities, respectively, both clorgyline and deprenyl were highly selective for the sensitive form of MAO in vivo. However, as the concentration of PEA was increased, the type B inhibitor deprenyl became less effective in preventing deamination of PEA. Conversely, the type A inhibitor clorgyline became more effective in this regard. Kinetic analysis following selective in vivo inhibition showed PEA deamination by both forms of MAO with a 13-fold greater affinity for the type B enzyme. In vivo dose-response curves obtained with the common substrates DA and p -TA showed approximately 20% deamination by the B enzyme. Kinetic values for DA and p -TA deamination in in vivo -treated tissue possessing only type A or type B MAO activity, revealed a 2.5-fold greater affinity for the type A enzyme. These studies show the importance of concentration on substrate specificity in striatal tissue. The results obtained characterize the common substrate properties of DA and p -TA as well as of PEA in rat striatum. In addition, the presence of regional specificity for 5-HT deamination by only type A MAO is demonstrated.  相似文献   

9.
Turnover of dopamine (DA), serotonin [5-hydroxytryptamine (5-HT)], and their metabolites has been measured in adult and aged rats. Turnover rates of 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), and 5-hydroxy-3-indoleacetic acid (5-HIAA) have been assayed from the disappearance rates after blocking by pargyline inhibition of monoamine oxidase (MAO) and from the accumulation rates by probenecid inhibition of the probenecid-sensitive transport system. DA and 5-HT turnover rates have been measured as accumulation rates of 3,4-dihydroxyphenylalanine and 5-hydroxytryptophan, respectively, after central decarboxylase inhibition by 3-hydroxybenzylhydrazine (NSD-1015) and as accumulation rates of DA and 5-HT after pargyline inhibition of MAO. The DA turnover rate after NSD-1015 was 23.9% lower in aged rats than in adults, whereas after pargyline there was no significant difference between the two age groups. The HVA fractional rate constant and turnover after pargyline were lower in aged rats than in adults, and HVA turnover after probenecid was higher in aged rats than in adults. The DOPAC-HVA pathway seems to be reinforced at the expense of DOPAC conjugation. In aged and adult rats whose 5-HT steady-state levels were not statistically different, the 5-HT turnover rate after pargyline and NSD-1015 treatment was lower in aged rats than in adults. An increase of 5-HIAA levels after pargyline and probenecid treatment in aged rats could be due to the handling stress.  相似文献   

10.
The objective of the present study was to examine the involvement of serotonin 5-HT(2) receptors within the rat nucleus accumbens (Acc) in the regulation of dopamine (DA) release using in vivo microdialysis. Perfusion with the 5-HT(2) agonist (+)-1-(2, 5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI), at concentrations of 25-250 microM, through microdialysis probes located in the posterior Acc increased extracellular DA levels to a maximum of 200% of baseline. DOI-induced increases in the extracellular levels of DA were Ca(2+) dependent and were inhibited by co-perfusion with the 5-HT(2) antagonist LY-53,857. DOI enhancement of the extracellular concentrations of DA was observed when probes were implanted in the Acc core and shell regions posterior to anteroposterior +1.2 mm from bregma, whereas a small reduction in the extracellular levels of DA was observed in the anterior Acc. There were no differences between core and shell subdivisions within either the anterior or the posterior Acc. These results suggest that activation of 5-HT(2) receptors within the posterior, but not anterior, Acc stimulates DA release, indicating rostral-caudal differences in the interactions of 5-HT with DA systems in the Acc.  相似文献   

11.
Concentrations of dopamine (DA), its metabolites 3-methoxytyramine and homovanillic acid (HVA), noradrenaline (NA), its metabolites normetanephrine (NM) and 3-methoxy-4-hydroxyphenylglycol (MHPG), 5-hydroxytryptamine (5-HT, serotonin), and its metabolite 5-hydroxyindoleacetic acid (5-HIAA) were measured in 14 brain regions and in CSF from the third ventricle of 27 human autopsy cases. In addition, in six cases, lumbar CSF was obtained. Monoamine concentrations were determined by reversed-phase liquid chromatography with electrochemical detection. Ventricular/lumbar CSF ratios indicated persistence of rostrocaudal gradients for HVA and 5-HIAA post mortem. Ventricular CSF concentrations of DA and HVA correlated positively with striatal DA and HVA. CSF NA correlated positively with NA in hypothalamus, and CSF MHPG with levels of MHPG in hypothalamus, temporal cortex, and pons, whereas CSF NM concentration showed positive correlations with NM in striatum, pons, cingulate cortex, and olfactory tubercle. CSF 5-HT concentrations correlated positively with 5-HT in caudate nucleus, whereas the concentration of CSF 5-HIAA correlated to 5-HIAA levels in thalamus, hypothalamus, and the cortical areas. These data suggest a specific topographic origin for monoamine neurotransmitters and their metabolites in human ventricular CSF and support the contention that CSF measurements are useful indices of central monoaminergic activity in man.  相似文献   

12.
Systemic administration of ritanserin elicited rapid changes in dopamine (DA) and serotonin (5-HT) levels in both dialysate and neuronal tissue extracts. These effects occurred in both a site-selective and a dose-related manner. Increases in extracellular levels of DA and 5-HT in the nucleus accumbens were maximal at 120-140 min after treatment. A dose of 0.63 mg/kg of ritanserin elicited larger and more prolonged increases in extracellular DA and 5-HT levels than did the 0.3 mg/kg dose. By contrast, 0.63 mg/kg of ritanserin elicited no changes in either DA or 5-HT levels with dialysate collected from the striatum. Ritanserin also induced dose-related decreases in tissue levels of DA and 5-HT from the nucleus accumbens. The site specificity of action was again noted in that there were no dose-dependent decreases in tissue levels of DA or 5-HT measured from the striatum. Ritanserin exerted little effect on metabolite levels from either dialysate or tissue extracts. Taken together, these findings show that selective 5-HT2 receptor antagonism modulates DA and 5-HT neurotransmission in a specific manner. These actions appear to involve increased release of DA and 5-HT rather than significant changes in metabolism. These findings add further weight to the importance of 5-HT2 receptor interactions as an important component of antipsychotic activity.  相似文献   

13.
Latent inhibition (LI) is a behavioral phenomenon, in which repeated presenting of a non-reinforced stimulus retards conditioning to this stimulus when it is coupled with a reinforcer. In order to find specific serotonin (5-HT- and dopamine (DA) changes mediating the LI, the 5-HT and DA metabolism was investigated in certain brain regions. Oxidative deamination of 5-HT and DA by monoamine oxidase (MAO) was determined in the prefrontal cortex, striatim, amygdala, and hippocampus at preexposure and testing stages of the LI using the passive avoidance procedure in rats. Preexposed animals demonstrated high MAO activity for 5-HT deamination in the amygdala and striatum and lower MAO activity for DA deamination in the amygdala and hippocampus. After testing the LI, a high level of 5-HT deamination by MAO was revealed in the amygdala, white the lower level of 5-HT deamination by MAO was shown in the prefrontal cortex. At the same time, no changes in DA metabolism were found in all the brain regions studied. Thus, the role of dopaminergic system in the LI effect may be limited by the preexposure stage. The obtained evidence suggests that the enhanced 5-HT activity in the amygdala and striatum induced by the preexposed stimulus is a principal biochemical mechanism underlying the LI.  相似文献   

14.
The present microdialysis study evaluated the anticonvulsant activity of extracellular hippocampal dopamine (DA) and serotonin (5-HT) with concomitant assessment of the possible mutual interactions between these monoamines. The anticonvulsant effects of intrahippocampally applied DA and 5-HT concentrations were evaluated against pilocarpine-induced seizures in conscious rats. DA or 5-HT perfusions protected the rats from limbic seizures as long as extracellular DA or 5-HT concentrations ranged, respectively, between 70-400% and 80-350% increases compared with the baseline levels. Co-perfusion with the selective D(2) blocker remoxipride or the selective 5-HT(1A) blocker WAY-100635 clearly abolished all anticonvulsant effects. These anticonvulsant effects were mediated independently since no mutual 5-HT and DA interactions were observed as long as extracellular DA and 5-HT levels remained within these protective ranges. Simultaneous D(2) and 5-HT(1A) receptor blockade significantly aggravated pilocarpine-induced seizures. High extracellular DA (> 1000% increases) or 5-HT (> 900% increases) concentrations also worsened seizure outcome. The latter proconvulsive effects were associated with significant increases in extracellular glutamate (Glu) and mutual increases in extracellular monoamines. Our results suggest that, within a certain concentration range, DA and 5-HT contribute independently to the prevention of hippocampal epileptogenesis via, respectively, D(2) and 5-HT(1A) receptor activation.  相似文献   

15.
The biogenic monoamine serotonin (5-HT) has been reported to enhance egg laying in the freshwater gastropod Biomphalaria glabrata, an intermediate host for human blood flukes. Methiothepin, a vertebrate 5-HT(1/2) receptor ligand which binds with high affinity to a 5-HT receptor (5-HTlym) in Lymnaea stagnalis was tested for its ability to block egg laying in B. glabrata as a possible target for snail control. A single 30-min application of methiothepin (1 microM) was sufficient to prevent egg laying for over 1 week and did so in a dose-dependent fashion. Furthermore, single applications of methiothepin (1 microM and 10 microM) induced penile erection in a high percentage of snails tested. Latency to erection was long (at least 8 hr), but the duration of erection was long-lasting (up to 48 hr). Despite the erections, methiothepin-treated snails failed to achieve copulations. The pharmacological effect of methiothepin on both male and female reproductive processes is similar to that produced in other molluscs, and points to the gene for the 5-HT receptor mediating or modulating both or either processes as a potential target of snail control strategies. J. Exp. Zool. 289:202-207, 2001.  相似文献   

16.
Exposure to excess glucocorticoids (GCs) during embryonic development influences offspring phenotypes and behaviors and induces epigenetic modifications of the genes in the hypothalamic–pituitary–adrenal (HPA) axis and in the serotonergic system in mammals. Whether prenatal corticosterone (CORT) exposure causes similar effects in avian species is less clear. In this study, we injected low (0.2 μg) and high (1 μg) doses of CORT into developing embryos on day 11 of incubation (E11) and tested the changes in aggressive behavior and hypothalamic gene expression on posthatch chickens of different ages. In ovo administration of high dose CORT significantly suppressed the growth rate from 3 weeks of age and increased the frequency of aggressive behaviors, and the dosage was associated with elevated plasma CORT concentrations and significantly downregulated hypothalamic expression of arginine vasotocin (AVT) and corticotropin-releasing hormone (CRH). The hypothalamic content of glucocorticoid receptor (GR) protein was significantly decreased in the high dose group (p < 0.05), whereas no changes were observed for GR mRNA. High dose CORT exposure significantly increased platelet serotonin (5-HT) uptake, decreased whole blood 5-HT concentration (p < 0.05), downregulated hypothalamic tryptophan hydroxylase 1 (TPH1) mRNA and upregulated 5-HT receptor 1A (5-HTR1A) and monoamine oxidase A (MAO-A) mRNA, but not monoamine oxidase B (MAO-B). High dose CORT also significantly increased DNA methylation of the hypothalamic GR and CRH gene promoters (p < 0.05). Our findings suggest that embryonic exposure to CORT programs aggressive behavior in the chicken through alterations of the HPA axis and the serotonergic system, which may involve modifications in DNA methylation.  相似文献   

17.
Several multifunctional iron chelators have been synthesized from hydroxyquinoline pharmacophore of the iron chelator, VK-28, possessing the monoamine oxidase (MAO) and neuroprotective N-propargylamine moiety. They have iron chelating potency similar to desferal. M30 is a potent irreversible rat brain mitochondrial MAO-A and -B inhibitor in vitro (IC50, MAO-A, 0.037 +/- 0.02; MAO-B, 0.057 +/- 0.01). Acute (1-5 mg/kg) and chronic [5-10 mg/kg intraperitoneally (i.p.) or orally (p.o.) once daily for 14 days]in vivo studies have shown M30 to be a potent brain selective (striatum, hippocampus and cerebellum) MAO-A and -B inhibitor. It has little effects on the enzyme activities of the liver and small intestine. Its N-desmethylated derivative, M30A is significantly less active. Acute and chronic treatment with M30 results in increased levels of dopamine (DA), serotonin(5-HT), noradrenaline (NA) and decreases in DOPAC (dihydroxyphenylacetic acid), HVA (homovanillic acid) and 5-HIAA (5-hydroxyindole acetic acid) as determined in striatum and hypothalamus. In the mouse MPTP (N-methy-4-phenyl-1,2,3,6-tetrahydropyridine) model of Parkinson's disease (PD) it attenuates the DA depleting action of the neurotoxin and increases striatal levels of DA, 5-HT and NA, while decreasing their metabolites. As DA is equally well metabolized by MAO-A and -B, it is expected that M30 would have a greater DA neurotransmission potentiation in PD than selective MAO-B inhibitors, for which it is being developed, as MAO-B inhibitors do not alter brain dopamine.  相似文献   

18.
A modification of previously published fluorimetric methods for brain noradrenaline (NA), dopamine (DA), and serotonin (5-HT) assay is presented in this paper. The modification improved the sensitivity to 5-HT and resulted in a less time-consuming and less expensive method for noradrenaline and dopamine determination. The assay can be used for simultaneous estimation of NA, DA and 5-HT as well as for turnover studies, utilizing catecholamine synthesis inhibition or monoaminoxidase inhibition.  相似文献   

19.
In our previous studies a rather substantial difference between the initial values of the cerebral blood flow was found. On the other hand the brain monoamine content varies in different months of the year when studied. Comparative analysis of these parameters in rabbit brain was the aim of this paper. The content of noradrenaline (NA), dopamine (DA) and serotonin (5-HT) in cortical and subcortical structures and the local cerebral blood flow (ICBF), the systemic arterial pressure (SAP) and pulse rate (PR) were studied. There were found seasonal variations in all parameters. A certain LCBF retardation in subcortical structures and cortex and the weakest effect of the stimulation was observed in May. There was a drop in SAP and some PR increase in the spring (April-May). Brain NA and 5-HT content showed seasonal changes with the lowest values near the winter months and reaching maximum in May as the PR does. Content of DA was low in May. So it seams possible that the ion ICBF in May can be explained by the decrease of brain DA at that time. The ICBF and the reactivity of cerebral microvessels seem to depend on the monoamine content and show seasonal variability.  相似文献   

20.
The amygdaloid complex (AMY) is implicated in emotional and motivational aspects of behavior, including the formation of positive reinforcement association. AMY may also associated with brain rewarding circuitry. In the present study, the effect of ethanol (EtOH) on the release of dopamine (DA) and serotonin (5-HT) was studied in the central amygdaloid nucleus (CeAMY), and projecting excitatory afferents to the ventral tegmental area (VTA), of freely moving Wistar rats by brain microdialysis. Within 20 min of i.p. injection of EtOH (2 g/kg), the levels of DA and 5-HT in the CeAMY dialysate increased over the baseline value by 270 and 160% (N = 6-7), respectively. Addition of EtOH (25, 50 and 100 mM) to the microdialysis perfusion medium for 1 h caused a 115-150% dose-related increase in the extracellular level of DA in the CeAMY. 100 mM EtOH-induced CeAMY DA release continued to increase for 1 h after the perfusion medium was returned to normal perfusion medium. In contrast, the CeAMY 5-HT level was increased only by the addition of 100 mM EtOH for 1 h to 130% for 80 min. The stimulation of the CeAMY by EtOH through the microdialysis membrane showed delayed responses of DA and 5-HT compared with the i.p. injection of EtOH. Overall, the present findings are not sufficient to conclude whether EtOH acts directly or indirectly on the major monoamine nerve cells in the CeAMY, but the degree of acute EtOH action affected the differences in time at the peak response on EtOH-induced DA and 5-HT releases in the CeAMY via VTA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号