首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
Kim SJ  Han YH  Kim IH  Kim HK 《IUBMB life》1999,48(2):215-218
To explore the oxygen response regulators involved in thiol peroxidase gene (tpx) expression in Escherichia coli, we constructed a single-copy tpx-lacZ operon fusion and monitored tpx-lacZ expression in various genetic backgrounds. Expression of the tpx-lacZ fusion was increased 4-fold by aerobic growth. Anaerobic expression of tpx-lacZ in either (delta)arcA or delta(fnr) strains was 2.5-fold depressed compared with that of the wild-type strain. The results of immunoblotting experiments also demonstrated that ArcA and Fnr regulatory proteins repressed thiol peroxidase gene expression during anaerobic growth. Inspection of the tpx promoter region revealed putative binding sites for ArcA and Fnr. It thus appears that ArcA and Fnr function as repressors by blocking the binding of RNA polymerase to the tpx promoter in E. coli under anaerobic growth conditions.  相似文献   

5.
6.
Shewanella oneidensis strain MR-1 is well known for its respiratory versatility, yet little is understood about how it regulates genes involved in anaerobic respiration. The Arc two-component system plays an important role in this process in Escherichia coli; therefore, we determined its function in S. oneidensis. arcA from S. oneidensis complements an E. coli arcA mutant, but the Arc regulon in S. oneidensis constitutes a different suite of genes. For example, one of the strongest ArcA-regulated gene clusters in E. coli, sdh, is not regulated by the Arc system in S. oneidensis, and the cyd locus, which is induced by ArcA in E. coli under microaerobic conditions, is repressed by ArcA in S. oneidensis under anaerobic conditions. One locus that we identified as being potentially regulated by ArcA in S. oneidensis contains genes predicted to encode subunits of a dimethyl sulphoxide (DMSO) reductase. We demonstrate that these genes encode a functional DMSO reductase, and that an arcA mutant cannot fully induce their expression and is defective in growing on DMSO under anaerobic conditions. While S. oneidensis lacks a highly conserved full-length ArcB homologue, ArcA is partially activated by a small protein homologous to the histidine phosphotransfer domain of ArcB from E. coli, HptA. This protein alone is unable to compensate for the lack of arcB in E. coli, indicating that another protein is required in addition to HptA to activate ArcA in S. oneidensis.  相似文献   

7.
Escherichia coli has two terminal oxidases for its respiratory chain: cytochrome o (low O2 affinity) and cytochrome d (high O2 affinity). Expression of the cyo operon, encoding cytochrome o, is decreased by anaerobic growth, whereas expression of the cyd operon, encoding cytochrome d, is increased by anaerobic growth. We show by the use of lac gene fusion that the expressions of cyo and cyd are under the control of the two-component arc system. In a cyo+ cyd+ background, expression of phi(cyo-lac) is higher when the organism is grown aerobically than when it is grown anaerobically. A mutation in either the sensor gene arcB or the pleiotropic regulator gene arcA almost abolishes the anaerobic repression. In the same background, expression of phi(cyd-lac) is higher under anaerobic growth conditions than under aerobic growth conditions. A mutation in arcA or arcB lowers both the aerobic and anaerobic expressions, suggesting that ArcA plays an activating role instead of the typical repressing role. Under aerobic growth conditions, double deletions of cyo and cyd lower phi(cyo-lac) expression but enhance phi(cyd-lac) expression. The double deletions also prevent elevated aerobic induction of the lct operon (encoding L-lactate dehydrogenase), another target operon of the arc system. In contrast, these deletions do not circumvent aerobic repression of the nar operon (encoding the anaerobic respiratory enzyme nitrate reductase) under the control of the pleiotropic fnr gene product. It thus appears that ArcB senses the presence of O2 by level of an electron transport component in reduced form or that of an nonautoxidizable compound linked to the process by a redox reaction, whereas Fnr senses O2 by a different mechanism.  相似文献   

8.
9.
The ArcAB two-component system of Escherichia coli regulates the aerobic/anaerobic expression of genes that encode respiratory proteins whose synthesis is coordinated during aerobic/anaerobic cell growth. A genomic study of E. coli was undertaken to identify other potential targets of oxygen and ArcA regulation. A group of 175 genes generated from this study and our previous study on oxygen regulation (Salmon, K., Hung, S. P., Mekjian, K., Baldi, P., Hatfield, G. W., and Gunsalus, R. P. (2003) J. Biol. Chem. 278, 29837-29855), called our gold standard gene set, have p values <0.00013 and a posterior probability of differential expression value of 0.99. These 175 genes clustered into eight expression patterns and represent genes involved in a large number of cell processes, including small molecule biosynthesis, macromolecular synthesis, and aerobic/anaerobic respiration and fermentation. In addition, 119 of these 175 genes were also identified in our previous study of the fnr allele. A MEME/weight matrix method was used to identify a new putative ArcA-binding site for all genes of the E. coli genome. 16 new sites were identified upstream of genes in our gold standard set. The strict statistical analyses that we have performed on our data allow us to predict that 1139 genes in the E. coli genome are regulated either directly or indirectly by the ArcA protein with a 99% confidence level.  相似文献   

10.
Microbial cells possess numerous sensing/regulator systems in order to respond rapidly to environmental changes. Escherichia coli has several elaborate sensing mechanisms for response to the availability of oxygen and the presence of other electron acceptors. A group of global regulators, which include the one component Fnr protein and the two-component Arc system, coordinate the adaptive responses. To quantitate the contribution of Arc and FNR-dependent regulation under microaerobic conditions, the gene expression pattern of the electron transfer chain genes and the TCA cycle genes in wild-type E. coli, an arcA mutant, an fnr mutant, and a double arcA, fnr mutant, in glucose limited cultures and different oxygen concentrations was studied in chemostat cultures at steady state using QRT-PCR. It was found that the TCA cycle genes, icd, gltA, sucC, and sdhC are repressed by ArcA while Fnr has a minor or no effect on the expression of these genes under microaerobic conditions. The expression levels of the electron transfer chain genes, nuoA, ndh, and ubiE, were not significantly affected by either ArcA or Fnr regulation proteins, while a lower expression of cydA (up to 9-fold lower) and a higher expression of cyoA (up to 31-fold higher) were observed in cultures of the arcA mutant strain compared to those of the wild type. Since significantly higher NADH/NAD+ ratios were previously observed in cultures of the arcA mutant strain compared to the wild type it seems that the cytochrome o oxidase (the product of cyoABCDE) cannot efficiently support aerobic respiration when the cells are grown under microaerobic conditions.  相似文献   

11.
Escherichia coli has several elaborate sensing mechanisms for response to the availability of oxygen and the presence of other electron acceptors. The adaptive responses are coordinated by a group of global regulators, which include the one-component Fnr protein, and the two-component Arc system. To quantitate the contribution of Arc and FNR dependent regulation under microaerobic conditions, the gene expression pattern of the fnr the arcA and arcB regulator genes, and the glycolysis related genes in a wild-type E. coli, an arcA mutant, an fnr mutant, and a double arcA, fnr mutant, in glucose limited cultures and different oxygen concentrations was studied in chemostat cultures at steady state using QRT-PCR. It was found that ArcA has a negative effect on fnr expression under microaerobic conditions. Moreover, the expression levels of the FNR regulated genes, yfiD and frdA, were higher in cultures of the arcA mutant strain compared to the wild-type. These imply that a higher level of the FNR regulator is in the activated form in cultures of the arcA mutant strain compared to the wild-type during the transition from aerobic to microanaerobic growth. The results also show that the highest expression level of aceE, pflB, and adhE were obtained in cultures of the arcA mutant strain under microaerobic growth while higher levels of ldhA expression were obtained in cultures of the arcA mutant strain and the arcA, fnr double mutant strain compared to the wild-type and the fnr mutant strain. While the highest expression of adhE and pflB in cultures of the arcA mutant strain can explain the previous report of high ethanol flux and flux through pyruvate formate lyase (PFL) in cultures of this strain, the higher level of ldhA expression was not sufficient to explain the trend in lactate fluxes. The results indicate that lower conversion of pyruvate to acetyl-CoA is the main reason for high fluxes through lactate dehydrogenase (LDH) in cultures of the arcA, fnr double mutant strain.  相似文献   

12.
The arcA (dye) and arcB genes of Escherichia coli are responsible for anaerobic repression of target operons and regulons of aerobic function (the arc modulon). The amino acid sequence of ArcA (Dye) indicated that it is the regulator protein of a two-component control system. Here we show that ArcB is a membrane sensor protein on the basis of its deduced amino acid sequence (778 residues), hydropathicity profile, and cellular distribution. On the carboxyl end of the ArcB sequence there is an additional domain showing homology with conserved regions of regulator proteins. Deletion into this domain destroyed ArcB function. ArcB conserved a histidine residue for autophosphorylation of the sensor proteins, and aspartic residues important for the regulator proteins.  相似文献   

13.
14.
Escherichia coli has several elaborate sensing mechanisms for response to the availability of oxygen and the presence of other electron acceptors. The adaptive responses are coordinated by a group of global regulators, which include the one-component Fnr protein, and the two-component Arc system. To quantitate the contribution of Arc and Fnr-dependent regulation in catabolism, arcA and fnr mutant strains were constructed using the recently developed lambda derived recombination system. The metabolic activity of wildtype E. coli, an arcA mutant, an fnr mutant, and a double arcA-fnr mutant, via the fermentative pathways in glucose-limited cultures and different oxygen concentrations was studied in chemostat cultures at steady state. It was found that the most significant role of ArcA is under microaerobic conditions, while that of FNR is under more strictly anaerobic conditions. The FNR protein is normally inactive during microaerobic conditions. However, our results indicate that in the arcA mutant strain the cells behave as if a higher level of the FNR regulator is in the activated form compared to the wildtype strain during the transition from aerobic to microanaerobic growth. The results show a significant increase in the flux through pyruvate formate lyase (PFL) in the presence of oxygen. The activity of FNR-regulated pathways in the arcA mutant strain is correlated with the high redox potential obtained under microaerobic growth.  相似文献   

15.
We have investigated the mechanisms of killing of Escherichia coli by HOCl by identifying protective functions. HOCl challenges were performed on cultures arrested in stationary phase and in exponential phase. Resistance to HOCl in both cases was largely mediated by genes involved in resistance to hydrogen peroxide (H2O2). In stationary phase, a mutation in rpoS, which controls the expression of starvation genes including those which protect against oxidative stress, renders the cells hypersensitive to killing by HOCl. RpoS-regulated genes responsible for this sensitivity were dps, which encodes a DNA-binding protein, and, to a lesser extent, katE and katG, encoding catalases; all three are involved in resistance to H2O2. In exponential phase, induction of the oxyR regulon, an adaptive response to H2O2, protected against HOCl exposure, and the oxyR2 constitutive mutant is more resistant than the wild-type strain. The genes involved in this oxyR-dependent resistance have not yet been identified, but they differ from those primarily involved in resistance to H2O2, including katG, ahp, and dps. Pretreatment with HOCl conferred resistance to H2O2 in an OxyR-independent manner, suggesting a specific adaptive response to HOCl. fur mutants, which have an intracellular iron overload, were more sensitive to HOCl, supporting the generation of hydroxyl radicals upon HOCl exposure via a Fenton-type reaction. Mutations in recombinational repair genes (recA or recB) increased sensitivity to HOCl, indicative of DNA strand breaks. Sensitivity was visible in the wild type only at concentrations above 0.6 mg/liter, but it was observed at much lower concentrations in dps recA mutants.  相似文献   

16.
Adaptive responses to oxygen limitation in Escherichia coli   总被引:19,自引:0,他引:19  
  相似文献   

17.
The Escherichia coli arcA gene product regulates chromosomal gene expression in response to deprivation of oxygen (Arc function; Arc stands for aerobic respiration control) and is required for expression of the F plasmid DNA transfer (tra) genes (Sfr function; Sfr stands for sex factor regulation). Using appropriate lacZ fusions, we have examined the relationship between these two genetic regulatory functions. Arc function in vivo was measured by anaerobic repression of a chromosomal sdh-lacZ operon fusion (sdh stands for succinate dehydrogenase). Sfr function was measured by activation of a plasmid traY-lacZ gene fusion. An eight-codon insertion near the 5' terminus of arcA, designated arcA1, abolished Arc function, as previously reported by S. Iuchi and E.C.C. Lin (Proc. Natl. Acad. Sci. USA 85:1888-1892, 1988), but left Sfr function largely (greater than or equal to 60%) intact. Similarly, the arcB1 mutation, which depressed sdh expression and is thought to act by abolishing the signal input that elicits ArcA function, had little effect (less than or equal to 20%) on the Sfr function of the arcA+ gene product. Conversely, a valine-to-methionine mutation at codon 203 (the sfrA5 allele) essentially abolished Sfr activity without detectably altering Arc activity. These data indicate that Sfr and Arc functions are separately expressed and regulated properties of the same protein.  相似文献   

18.
Clostridia belong to those bacteria which are considered as obligate anaerobe, e.g. oxygen is harmful or lethal to these bacteria. Nevertheless, it is known that they can survive limited exposure to air, and often eliminate oxygen or reactive derivatives via NAD(P)H-dependent reduction. This system does apparently contribute to survival after oxidative stress, but is insufficient to establish long-term tolerance of aerobic conditions. Here we show that manipulation of the regulatory mechanism of this defence mechanism can trigger aerotolerance in the obligate anaerobe Clostridium acetobutylicum. Deletion of a peroxide repressor (PerR)-homologous protein resulted in prolonged aerotolerance, limited growth under aerobic conditions and rapid consumption of oxygen from an aerobic environment. The mutant strain also revealed higher resistance to H2O2 and activities of NADH-dependent scavenging of H2O2 and organic peroxides in cell-free extracts increased by at least one order of magnitude. Several genes encoding the putative enzymes were upregulated and identified as members of the clostridial PerR regulon, including the heat shock protein Hsp21, a reverse rubrerythrin which was massively produced and became the most abundant protein in the absence of PerR. This multifunctional protein is proposed to play the crucial role in the oxidative stress defence.  相似文献   

19.
20.
As an enzyme of the tricarboxylic acid cycle pathway, citrate synthase participates in the generation of a variety of cellular biosynthetic intermediates and in that of reduced purine nucleotides that are used in energy generation via electron transport-linked phosphorylation reactions. It catalyzes the condensation of oxaloacetate and acetyl coenzyme A to produce citrate plus coenzyme A. In Escherichia coli this enzyme is encoded by the gltA gene. To investigate how gltA expression is regulated, a gltA-lacZ operon fusion was constructed and analyzed following aerobic and anaerobic cell growth on various types of culture media. Under aerobic culture conditions, expression was elevated to a level twofold higher than that reached under anaerobic culture conditions. ArcA functions as a repressor of gltA expression under each set of conditions: in a delta arcA strain, gltA-lacZ expression was elevated to levels two- and eightfold higher than those seen in a wild-type strain under aerobic and anaerobic conditions, respectively. This control is independent of the fnr gene product, an alternative anaerobic gene regulator in E. coli. When the richness or type of carbon compound used for cell growth was varied, gltA-lacZ expression varied by 10- to 14-fold during aerobic and anaerobic growth. This regulation was independent of both the crp and fruR gene products, suggesting that another regulatory element in E. coli is responsible for the observed control. Finally, gltA-lacZ expression was shown to be inversely proportional to the cell growth rate. These findings indicate that the regulation of gltA gene expression is complex in meeting the differential needs of the cell for biosynthesis and energy generation under various cell culture conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号