首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 209 毫秒
1.
The cytokine interleukin-6 (IL-6) exerts it actions via the IL-6 receptor (IL-6R) in conjunction with the ubiquitously expressed gp130 receptor. IL-6 is tightly regulated in response to exercise, being affected by factors such as exercise intensity and duration, as well as energy availability. Although the IL-6 response to exercise has been extensively studied, little is known about the regulation of the IL-6R response. In the present study, we aimed to investigate the effect of exercise, training, and glycogen availability, factors known to affect IL-6, on the regulation of gene expression of the IL-6R in human skeletal muscle. Human subjects performed either 10 wk of training with an acute exercise bout before and after the training period, or a low-glycogen vs. normal-glycogen acute exercise trial. The IL-6R mRNA response was evaluated in both trials. In response to acute exercise, an increase in IL-6R mRNA levels was observed. Neither training nor intramuscular glycogen levels had an effect on the IL-6R mRNA response to exercise. However, after 10 wk of training, the skeletal muscle expressed a higher mRNA level of IL-6R compared with before training. The present study demonstrated that the IL-6R gene expression levels in skeletal muscle are increased in response to acute exercise, a response that is very well conserved, being affected by neither training status nor intramuscular glycogen levels, as opposed to IL-6. However, after the training period, IL-6R mRNA production was increased in skeletal muscle, suggesting a sensitization of skeletal muscle to IL-6 at rest.  相似文献   

2.
Antioxidants attenuate the plasma cytokine response to exercise in humans.   总被引:12,自引:0,他引:12  
Exercise increases plasma TNF-alpha, IL-1beta, and IL-6, yet the stimuli and sources of TNF-alpha and IL-1beta remain largely unknown. We tested the role of oxidative stress and the potential contribution of monocytes in this cytokine (especially IL-1beta) response in previously untrained individuals. Six healthy nonathletes performed two 45-min bicycle exercise sessions at 70% of Vo(2 max) before and after a combination of antioxidants (vitamins E, A, and C for 60 days; allopurinol for 15 days; and N-acetylcysteine for 3 days). Blood was drawn at baseline, end-exercise, and 30 and 120 min postexercise. Plasma cytokines were determined by ELISA and monocyte intracellular cytokine level by flow cytometry. Before antioxidants, TNF-alpha increased by 60%, IL-1beta by threefold, and IL-6 by sixfold secondary to exercise (P < 0.05). After antioxidants, plasma IL-1beta became undetectable, the TNF-alpha response to exercise was abolished, and the IL-6 response was significantly blunted (P < 0.05). Exercise did not increase the percentage of monocytes producing the cytokines or their mean fluorescence intensity. We conclude that in untrained humans oxidative stress is a major stimulus for exercise-induced cytokine production and that monocytes play no role in this process.  相似文献   

3.
Plasma interleukin-6 during strenuous exercise: role of epinephrine   总被引:6,自引:0,他引:6  
Exercise induces increased levels of plasmainterleukin-6 (IL-6) as well as changes in the concentration oflymphocytes and neutrophils. The aim of this study was to investigate apossible role for epinephrine. Seven healthy men participated in anexercise experiment. One month later they received an epinephrineinfusion. The exercise consisted of treadmill running at 75% ofmaximal O2 consumption for 2.5 h. The infusion trialconsisted of 2.5 h of epinephrine infusion calculated to reach thesame plasma epinephrine levels seen during the exercise experiment. Theplasma concentration of IL-6 increased 29-fold during exercise, with peak levels at the end of exercise. The increase in plasma IL-6 duringepinephrine infusion was only sixfold, with the peak value at 1 hafter infusion. The lymphocyte concentration increased to the samelevels during exercise and epinephrine infusion. The lymphocyte countdecreased more in the postexercise period than after epinephrineinfusion. The neutrophil concentration was elevated threefold inresponse to exercise, whereas no change was found in response toepinephrine infusion. In conclusion, the exercise-induced increase inplasma IL-6 could not be mimicked by epinephrine infusion. However,epinephrine induced a small increase in IL-6 and may, therefore, partlyinfluence the plasma levels of IL-6 during exercise. In addition, theresults support the idea that epinephrine plays a role inexercise-induced changes in lymphocyte number, whereas epinephrine doesnot mediate exercise-induced neutrocytosis.

  相似文献   

4.
Regular exercise lowers indicators of disease risk including some inflammatory cytokines; however, the relationship between different modes of acute exercise, cytokine levels, and subsequent glucose tolerance is unclear. The purpose was to determine the effects of resistance (RES) and aerobic (AER) exercises on interleukin-6 (IL-6) and its association with glucose tolerance 24 hours after exercise. After testing for 1 repetition maximum (1RM) and VO2peak, 10 obese (body mass index > 30 kg · m(-2)), untrained men aged 18-26 years completed 3 protocols: 60 minutes of RES, AER, and a resting (CON) condition. The RES was 2 sets of 8 repetitions and a third set to fatigue at 80% 1RM of 8 lifts using all major muscle groups. The AER was 60 minutes of cycling at 70% of VO2peak. On day 1, subjects completed the 60-minute exercise or resting protocol, and on day 2, they completed an oral glucose tolerance test (OGTT). Blood was collected before and after exercise, at 2 and 7 hour postexercise, and before and every 30 minutes during the OGTT and was analyzed for IL-6, glucose and insulin. Postexercise IL-6 was greater in RES (8.01 ± 2.08 pg · mL(-1)) vs. in AER (4.26 ± 0.27 pg · mL(-1)), and both were greater than in CON (1.61 ± 0.18 pg · mL(-1)). During the OGTT, there were no differences in glucose or insulin between conditions for single time points or as area under the curve. The RES caused greater IL-6 levels immediately after exercise that may be related to the greater active muscle mass compared to AER. Neither exercise produced enhanced glucose removal compared to control; thus, despite the greater elevation in IL-6 in RES, for these exercise conditions and this population, this cytokine did not influence glucose tolerance.  相似文献   

5.
This study tested the hypothesis that exercise elicits monocytic cytokine expression and that prolonged cold exposure modulates such responses. Nine men (age, 24.6 +/- 3.8 y; VO(2 peak), 56.8 +/- 5.6 ml. kg(-1). min(-1)) completed 7 days of exhausting exercise (aerobic, anaerobic, resistive) and underwent three cold, wet exposures (CW). CW trials comprised 相似文献   

6.
Regular exercise offers protection against all-cause mortality, primarily by protection against cardiovascular disease and Type 2 diabetes mellitus. The latter disorders have been associated with chronic low-grade systemic inflammation reflected by a two- to threefold elevated level of several cytokines. Adipose tissue contributes to the production of TNF-alpha, which is reflected by elevated levels of soluble TNF-alpha receptors, IL-6, IL-1 receptor antagonist, and C-reactive protein. We suggest that TNF-alpha rather than IL-6 is the driver behind insulin resistance and dyslipidemia and that IL-6 is a marker of the metabolic syndrome, rather than a cause. During exercise, IL-6 is produced by muscle fibers via a TNF-independent pathway. IL-6 stimulates the appearance in the circulation of other anti-inflammatory cytokines such as IL-1ra and IL-10 and inhibits the production of the proinflammatory cytokine TNF-alpha. In addition, IL-6 enhances lipid turnover, stimulating lipolysis as well as fat oxidation. We suggest that regular exercise induces suppression of TNF-alpha and thereby offers protection against TNF-alpha-induced insulin resistance. Recently, IL-6 was introduced as the first myokine, defined as a cytokine that is produced and released by contracting skeletal muscle fibers, exerting its effects in other organs of the body. Here we suggest that myokines may be involved in mediating the health-beneficial effects of exercise and that these in particular are involved in the protection against chronic diseases associated with low-grade inflammation such as diabetes and cardiovascular diseases.  相似文献   

7.
Exercise and physical strenuous activity have been demonstrated to increase the serum TNF-alpha and IL-6. Regular physical training is expected to attenuate such a response. This study was undertaken to understand the impact of regular exercise training on IL-6 and TNF-alpha in athletes and non-athletes. Ten athletes, who have been on regular training for the past 6 months, and 10 age- and sex-matched subjects (non-athlete group) who had no practice of regular exercise, were recruited. Both were subjected to undergo the same frequency level of strenuous exercise. Blood samples were collected; one before strenuous exercise and the other after the exercise. Plasma cytokines, IL-6 and TNF-alpha, were estimated using Sandwich ELISA method. All participants in the study were male with the athletes' age being 18.00+/-1.3years (mean+/-SD) and the non-athletes were aged 20.00+/-0.6years (mean+/-SD). Majority of the athletes and non-athletes demonstrated a rise in IL-6 and a fall in TNF-alpha levels. Further, the athletes showed a lesser magnitude of change in the cytokine levels following a longer duration of exercise than non-athletes. Athletes appear to have an attenuated cytokine response. Regular physical training has been demonstrated to attenuate the immune response to exercise in either direction.  相似文献   

8.
We tested the hypothesis that IL-6 release from muscle during exercise may be related to muscle activity of 5'-AMP-activated protein kinase (AMPK). Eight healthy, well-trained young men completed two 60-min trials on a bicycle ergometer at 70% of their peak oxygen uptake in either a glycogen-depleted or a glycogen-loaded state. IL-6 was released from the leg already after 10 min of exercise in the glycogen-depleted state, whereas no significant release was observed at any time in the loaded state. Nevertheless, plasma IL-6 increased similarly in the two trials from approximately 0.8 pg/ml at rest to approximately 4.5 pg/ml after 60 min of exercise. Activity of alpha1-AMPK (160%) and alpha2-AMPK (145%) was increased at rest in the glycogen-depleted compared with the loaded situation. During exercise, alpha1-AMPK activity did not change from resting levels in both trials, whereas alpha2-AMPK activity increased only in the glycogen-depleted state. After 60 min of exercise in the glycogen-depleted state, individual values of alpha2-AMPK activity correlated significantly (r = 0.87, P < 0.006) with individual values of IL-6 release as well as with average IL-6 release over the entire 60 min (r = 0.86, P < 0.006). The present data are compatible with a role for AMPK in IL-6 release during exercise or a role for IL-6 in activating AMPK. Alternatively, both AMPK and IL-6 are independent sensors of a low muscle glycogen concentration during exercise. In addition, leg release of IL-6 cannot alone explain the increase in plasma IL-6 during exercise.  相似文献   

9.
10.
Interleukin (IL)-6, which is released from muscle tissue during intense exercise, possesses important metabolic and probably anti-inflammatory properties. To evaluate the IL-6 response to low-intensity exercise, we conducted two studies: 1) a control study with insertion of microdialysis catheters in muscle and determination of interstitial muscle IL-6 response over 2 h of rest and 2) an exercise study to investigate the IL-6 response to 20 min of repetitive low-force exercise. In both studies, a microdialysis catheter (cutoff: 3,000 kDa) was inserted into the upper trapezius muscle of six male subjects, and the catheters were perfused with Ringer-acetate at 5 microl/min. Venous plasma samples were taken in the exercise study. The insertion of microdialysis catheters into muscle resulted in an increase in IL-6 from 8 +/- 0 to 359 +/- 171 and 484 +/- 202 pg/ml after 65 and 110 min, respectively (P < 0.001). Similarly, in the exercise study, IL-6 increased to 289 +/- 128 pg/ml after a 55-min rest (P < 0.001). During the subsequent repetitive low-force exercise, muscle IL-6 further increased to 1,246 +/- 461 pg/ml and reached 2,132 +/- 477 pg/ml after a 30-min recovery (all P < 0.001). In contrast to this, plasma IL-6 did not significantly change in response to exercise. We conclude that upper extremity, low-intensity exercise results in a substantial increase in IL-6 in the interstitium of the stabilizing trapezius muscle, whereas no change is seen for plasma IL-6.  相似文献   

11.
12.
Interleukin-6 (IL-6), an important cytokine involved in a number of biological processes, is consistently elevated during periods of stress. The mechanisms responsible for the induction of IL-6 under these conditions remain uncertain. This study examined the effect of alpha-adrenergic blockade on the IL-6 response to acute and chronic high-altitude exposure in women both at rest and during exercise. Sixteen healthy, eumenorrheic women (aged 23.2 +/- 1.4 yr) participated in the study. Subjects received either alpha-adrenergic blockade (prazosin, 3 mg/day) or a placebo in a double-blinded, randomized fashion. Subjects participated in submaximal exercise tests at sea level and on days 1 and 12 at altitude (4,300 m). Resting plasma and 24-h urine samples were collected throughout the duration of the study. At sea level, no differences were found at rest for plasma IL-6 between groups (1.5 +/- 0.2 and 1.2 +/- 0.3 pg/ml for placebo and blocked groups, respectively). On acute ascent to altitude, IL-6 levels increased significantly in both groups compared with sea-level values (57 and 84% for placebo and blocked groups, respectively). After 12 days of acclimatization, IL-6 levels remained elevated for placebo subjects; however, they returned to sea-level values in the blocked group. alpha-Adrenergic blockade significantly lowered the IL-6 response to exercise both at sea level (46%) and at altitude (42%) compared with placebo. A significant correlation (P = 0.004) between resting IL-6 and urinary norepinephrine excretion rates was found over the course of time while at altitude. In conclusion, the results indicate a role for alpha-adrenergic regulation of the IL-6 response to the stress of both short-term moderate-intensity exercise and hypoxia.  相似文献   

13.
The pleiotropic cytokine interleukin-6 (IL-6) has been demonstrated to increase during exercise. Little is known regarding the response of the soluble IL-6 receptors (sIL-6R and sgp130) during such exercise. The aim of the current study was to investigate the response of plasma IL-6, sIL-6R and sgp130 during fatiguing submaximal exercise in humans. Twelve participants underwent an incremental exercise test to exhaustion and one week later performed a submaximal exercise bout (96 ± 6% lactate threshold) to volitional exhaustion. Blood samples taken at rest and immediately post exercise were analyzed for IL-6, sIL-6R and sgp130. IL-6 increased (P < 0.01) by 8.4 ± 8.9 pg ml−1 (75.7%) during the exercise period. sIL-6R and sgp130 also increased (P < 0.05) by 2.7 ± 3.9 ng ml−1 (9.6%) and 37.7 ± 55.6 ng ml−1 (9.6%), respectively. The current study is the first investigation to demonstrate that alongside IL-6, acute exercise stress results in an increase in both sIL-6R and sgp130.  相似文献   

14.
ABSTRACT: BACKGROUND: Aging is associated with chronic low-grade inflammatory activity with an elevation of cytokine levels. An association between regular physical activity and reduction of blood levels of anti-inflammatory cytokines is demonstrated in the literature pointing to an anti-inflammatory effect related to exercise. However, there is no consensus regarding on which type of exercise and which parameters are the most appropriate to influence inflammatory markers. Evidence indicates that the single nucleotide polymorphism (SNP) can influence the synthesis of those cytokines affecting their production. METHODS: The design is a randomized controlled trial. The aim of this study is to compare the effect of two protocols of exercises, aerobic and muscle strengthening, on the physical performance (PP) and the serum levels of sTNFR-1, sTNFR-2, IL-6, IL-10 e BDNF; and to investigate the interaction between the cytokines genes SNP and the effect of physical activity on elderly women. The main outcomes are: serum levels of sTNFR-1, sTNFR-2, IL-6, IL-10 e BDNF, measured by the ELISA method; genotyping of TNF-alpha (rs1800629), IL6 (rs1800795), IL10 (rs1800896) and BDNF (rs6265 e rs4923463) SNP by the TaqMan Method (Applied Biosystems, Foster City, CA); and PP assessed by Timed Up and Go, 5-chair sit to stand from a chair and 10-meter walk tests. Secondary outcomes include: Geriatric Depression Scale, aerobic capacity, assessed by the 6-minute walk and the Shuttle Walking tests; lower limbs muscle strength, using an isokinetic dinamometer (Biodex Medical Systems Inc, USA); cortisol awakening response and Perceived Stress Scale. Both exercise protocols will be performed three times a week for ten weeks, 30 sessions in total. DISCUSSION: Investigate the effect of both protocols of exercise on the levels of inflammatory cytokine levels can contribute to standardize and to guide clinical practice related to treatment and prevention of functional changes due to chronic inflammatory activity in elderly. This will be the first study to analyze the interaction between genetic factors and exercise effects in elderly. This approach could develop new perspectives on preventive and treatment proposals in Physical Therapy and in the management of the elderly patient. Trial Registration: RBR9v9cwf.  相似文献   

15.
16.
IL-6 is a major inflammatory cytokine that plays a central role in coordinating the acute-phase response to trauma, injury, and infection in vivo. Although IL-6 is synthesized predominantly by macrophages and lymphocytes, skeletal muscle is a newly recognized source of this cytokine. IL-6 from muscle spills into the circulation, and blood-borne IL-6 can be elevated >100-fold due to exercise and injury. The purpose of the present study was to determine whether inflammatory stimuli, such as LPS, TNF-alpha, and IL-1beta, could increase IL-6 expression in skeletal muscle and C2C12 myoblasts. Second, we investigated the role of mitogen-activated protein (MAP) kinases, and the Jun NH2-terminal kinase (JNK) in particular, as a mediator of this response. Intraperitoneal injection of LPS in mice increased the circulating concentration of IL-6 from undetectable levels to 4 ng/ml. LPS also increased IL-6 mRNA 100-fold in mouse fast-twitch skeletal muscle. Addition of LPS, IL-1beta, or TNF-alpha directly to C2C12 myoblasts increased IL-6 protein (6- to 8-fold) and IL-6 mRNA (5- to 10-fold). The response to all three stimuli was completely blocked by the JNK inhibitor SP-600125 but not as effectively by other MAP kinase inhibitors. SP-600125 blocked LPS-stimulated IL-6 synthesis dose dependently at both the RNA and protein level. SP-600125 was as effective as the synthetic glucocorticoid dexamethasone at inhibiting IL-6 expression. SP-600125 inhibited IL-6 synthesis when added to cells up to 60 min after LPS stimulation, but its inhibitory effect waned with time. LPS stimulated IL-6 mRNA in both myoblasts and myotubes, but myoblasts showed a proportionally greater LPS-induced increase in IL-6 protein expression compared with myotubes. SP-600125 and the proteasomal inhibitor MG-132 blocked LPS-induced degradation of IkappaB-alpha/epsilon and LPS-stimulated expression of IkappaB-alpha mRNA. Yet, only SP-600125 and not MG-132 blocked LPS-induced IL-6 mRNA expression. This suggests that IL-6 gene expression is a downstream target of JNK in C2C12 myoblasts.  相似文献   

17.
Physical activity has a great capacity for modulating the immune system, including the inflammatory response. However, the effects of exercise on the inflammatory response have rarely been studied in women, even though women are more susceptible than men to chronic inflammatory diseases. The aim of this study was to ascertain the effect of single sessions of exercise on the inflammatory response of sedentary women, evaluating neutrophil function and circulating concentrations of inflammatory cytokines. Exercise consisted of one session of cycling (1 h at ~70% of VO2 max) on a cycle ergometer. Blood samples were taken in the basal state and immediately after the exercise session. Neutrophil function was studied on isolated cells by evaluating their phagocytic capacity against latex beads and their oxygen-dependent microbicidal capacity as reflected in the superoxide anion (O2 ) production. Circulating inflammatory cytokines were determined using a novel antibody-based protein micro-array method. The circulating concentration of IL-8 (a stimulatory cytokine for neutrophils) was also determined by ELISA. Exercise increased the phagocytic and the oxygen-dependent microbicidal capacities of neutrophils in the sedentary women. No variations were found in IL-2, IL-3, IL-5, IL-6, IL-7, IL-8, IL-10, IL-13, IFN-γ, TNF-α and -β, TGF-β, MCP-2 and -3, MIG, G-CSF, and GM-CSF. However, while the circulating concentrations of GRO and MCP-1 increased after exercise, there was a decrease in that of RANTES, a pro-inflammatory cytokine. Exercise improves neutrophil function, possibly mediated, at least partially, by GRO (a potent neutrophil activator) but not by IL-8. This stimulation of neutrophil function does not seem to be accompanied by any harmful systemic inflammatory response since no changes in the main pro-inflammatory cytokines were observed, and there was a decrease in RANTES.  相似文献   

18.
The cytokine interleukin (IL)-6 can increase markedly in the circulation during exercise, but whether the liver is a source of this increase is unknown. The aim of this study was to measure IL-6 flux across the hepatosplanchnic tissues in humans. To elevate systemic concentrations of IL-6, six healthy male subjects performed 120 min of semirecumbent cycling, and blood samples were simultaneously obtained from a brachial artery and the hepatic vein before and during exercise for the analysis of IL-6. Hepatosplanchnic blood flow (HBF) was measured using the indocyanine green infusion technique. Net hepatosplanchnic IL-6 balance was calculated from these measures. HBF was 1.3 +/- 0.1 l/min at rest and was not reduced throughout exercise, averaging 1.1 +/- 0.2 l/min. Arterial plasma IL-6 markedly increased (P < 0.05) from 1.8 +/- 0.6 ng/l at rest to 14.3 +/- 3.2 ng/l after 120 min of exercise. The hepatosplanchnic viscera did not contribute to this increase, since there was a net hepatosplanchnic IL-6 uptake (0.8 +/- 0.3 vs. 5.5 +/- 1.9 ng/min, rest vs. 120 min; P < 0.05). These data demonstrate that the hepatosplanchnic viscera remove IL-6 from the circulation in humans. This removal may constitute a mechanism limiting the negative chronic metabolic action of chronically elevated circulating IL-6.  相似文献   

19.
Pyrogenic factors may include the proinflammatory cytokines such as interleukin (IL)-1β, IL-6, tumor necrosis factor-alpha (TNF-α), and IL-8 (chemokine). Exercise also causes cytokinemia that might result in pyrogenically mediated body temperature elevation. The aim of the present study was to determine the effect of exercise training on exercise-induced plasma concentrations of IL-1β, IL-6, TNF-α, and IL-8. Messenger RNA levels of these factors were also evaluated in peripheral blood leukocytes. We also observed the relationship between cykokines, chemokines, and sweating after exercise. Nine tennis athletes (n=9) and untrained sedentary control subjects (n=10) ran for 1 h at 75% intensity of VO2max. Venous blood samples were analyzed for plasma concentrations and mRNA expression in leukocytes of cytokines and chemokine of interest. Sweat volume was calculated by measuring body weight changes. Leukocyte mRNA expression and plasma protein levels of IL-1β, IL-6, TNF-α, and IL-8 immediately increased after exercise in both groups, but to a much greater extent in the athletic group. However, mRNA expression and plasma protein level for IL-6 and TNF-α, unlike IL-1β and IL-8, decreased more quickly in the athletic group compared to the control group during the recovery period. Compared to the control group, greater sweat loss volumes, and lower body temperatures in athletic group were observed at all time points. In conclusion, exercise training improved physical capacity and sweating function so that body temperature was more easily regulated during and after exercise. This may due to improved production of specific cytokine and chemokine in sweating during exercise.  相似文献   

20.
We examined the hypothesis that the short, intensive exercise-induced increase in circulating neutrophil counts is affected by the interaction between the endocrine and immune systems. Twelve male winter-sports athletes underwent a maximal exercise test on a treadmill. Blood samples were collected before, immediately after (Post), and 1 h (Post 1 h) and 2 h (Post 2 h) after the exercise. The neutrophil counts increased significantly at Post 1 h (P < 0.05) and remained significantly high even at Post 2 h (P < 0.05), showing a leftward shift. Plasma granulocyte colony-stimulating factor (G-CSF) increased at Post (P < 0.05), and interleukin-6 (IL-6) increased at Post 1 h (P < 0.05). Plasma G-CSF at Post significantly correlated with the numbers of both neutrophils and stab cells at Post 1 h (P < 0.05). Plasma IL-6 at Post 1 h levels also correlated significantly with the number of neutrophils at Post 2 h (P < 0.05). The increase in the levels of plasma G-CSF and IL-6 after intensive exercise may play a role in the mobilization of neutrophils into the circulatory system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号