首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Secco D  Wang C  Shou H  Whelan J 《FEBS letters》2012,586(4):289-295
In the yeast Saccharomyces cerevisiae, a working model for nutrient homeostasis in eukaryotes, inorganic phosphate (Pi) homeostasis is regulated by the PHO pathway, a set of phosphate starvation induced genes, acting to optimize Pi uptake and utilization. Among these, a subset of proteins containing the SPX domain has been shown to be key regulators of Pi homeostasis. In this review, we summarize the recent progresses in elucidating the mechanisms controlling Pi homeostasis in yeast, focusing on the key roles of the SPX domain-containing proteins in these processes, as well as describing the future challenges and opportunities in this fast-moving field.  相似文献   

2.
3.
4.
5.
To cope with low phosphate (Pi) availability, plants have to adjust its gene expression profile to facilitate Pi acquisition and remobilization. Sensing the levels of Pi is essential for reprogramming the gene expression profile to adapt to the fluctuating Pi environment. AtPHR1 in Arabidopsis and OsPHR2 in rice are central regulators of Pi signaling, which regulates the expression of phosphate starvation-induced (PSI) genes by binding to the P1BS elements in the promoter of PSI genes. However, how the Pi level affects the central regulator to regulate the PSI genes have puzzled us for a decade. Recent progress in SPX proteins indicated that the SPX proteins play important role in regulating the activity of central regulator AtPHR1/OsPHR2 in a Pi dependent manner at different subcellular levels.  相似文献   

6.
刘栋 《植物学报》2021,56(6):647-650
磷是植物生长发育必需的大量矿质营养元素, 但自然界大部分土壤都存在严重缺磷的问题。为了适应这一营养逆境, 植物演化出一系列低磷胁迫应答反应。通过改变基因的转录水平调控低磷胁迫应答反应, 而转录因子PHR1在调控植物对低磷胁迫的转录响应中起关键作用。此外, 大部分陆生植物还能与丛枝菌根真菌建立共生关系, 通过丛枝菌根真菌更有效地从土壤中获取磷元素。最近, 中国科学院分子植物科学卓越创新中心王二涛研究组发现, 以PHR为中心的转录调控网络控制植物-丛枝菌根真菌共生的建立。因此, PHR不但在维持植物细胞自身的磷稳态中发挥作用, 而且参与植物与外界微生物的相互作用, 为植物有效地从环境中获得磷元素提供了另外一条途径。  相似文献   

7.
8.
9.
Wang Y  Secco D  Poirier Y 《Plant physiology》2008,146(2):646-656
PHO1 was previously identified in Arabidopsis (Arabidopsis thaliana) as a protein involved in loading inorganic phosphate (Pi) into the xylem of roots and its expression was associated with the vascular cylinder. Seven genes homologous to AtPHO1 (PpPHO1;1-PpPHO1;7) have been identified in the moss Physcomitrella patens. The corresponding proteins harbor an SPX tripartite domain in the N-terminal hydrophilic portion and an EXS domain in the conserved C-terminal hydrophobic portion, both common features of the plant PHO1 family. Northern-blot analysis showed distinct expression patterns for the PpPHO1 genes, both at the tissue level and in response to phosphate deficiency. Transgenic P. patens expressing the beta-glucuronidase reporter gene under three different PpPHO1 promoters revealed distinct expression profiles in various tissues. Expression of PpPHO1;1 and PpPHO1;7 was specifically induced by Pi starvation. P. patens homologs to the Arabidopsis PHT1, DGD2, SQD1, and APS1 genes also responded to Pi deficiency by increased mRNA levels. Morphological changes associated with Pi deficiency included elongation of caulonemata with inhibition of the formation of side branches, resulting in colonies with greater diameter, but reduced mass compared to Pi-sufficient plants. Under Pi-deficient conditions, P. patens also increased the synthesis of ribonucleases and of an acid phosphatase, and increased the ratio of sulfolipids over phospholipids. These results indicate that P. patens and higher plants share some common strategies to adapt to Pi deficiency, although morphological changes are distinct, and that the PHO1 proteins are well conserved in bryophyte despite the lack of a developed vascular system.  相似文献   

10.
11.
12.
Kant S  Peng M  Rothstein SJ 《PLoS genetics》2011,7(3):e1002021
Plants need abundant nitrogen and phosphorus for higher yield. Improving plant genetics for higher nitrogen and phosphorus use efficiency would save potentially billions of dollars annually on fertilizers and reduce global environmental pollution. This will require knowledge of molecular regulators for maintaining homeostasis of these nutrients in plants. Previously, we reported that the NITROGEN LIMITATION ADAPTATION (NLA) gene is involved in adaptive responses to low-nitrogen conditions in Arabidopsis, where nla mutant plants display abrupt early senescence. To understand the molecular mechanisms underlying NLA function, two suppressors of the nla mutation were isolated that recover the nla mutant phenotype to wild type. Map-based cloning identified these suppressors as the phosphate (Pi) transport-related genes PHF1 and PHT1.1. In addition, NLA expression is shown to be regulated by the low-Pi induced microRNA miR827. Pi analysis revealed that the early senescence in nla mutant plants was due to Pi toxicity. These plants accumulated over five times the normal Pi content in shoots specifically under low nitrate and high Pi but not under high nitrate conditions. Also the Pi overaccumulator pho2 mutant shows Pi toxicity in a nitrate-dependent manner similar to the nla mutant. Further, the nitrate and Pi levels are shown to have an antagonistic crosstalk as displayed by their differential effects on flowering time. The results demonstrate that NLA and miR827 have pivotal roles in regulating Pi homeostasis in plants in a nitrate-dependent fashion.  相似文献   

13.
14.
15.
Phosphorus (P) is an essential macronutrient for all living organisms. In plants, P is taken up from the rhizosphere by the roots mainly as inorganic phosphate (Pi), which is required in large and sufficient quantities to maximize crop yields. In today’s agricultural society, crop yield is mostly ensured by the excessive use of Pi fertilizers, a costly practice neither eco-friendly or sustainable. Therefore, generating plants with improved P use efficiency (PUE) is of major interest. Among the various strategies employed to date, attempts to engineer genetically modified crops with improved capacity to utilize phytate (PA), the largest soil P form and unfortunately not taken up by plants, remains a key challenge. To meet these challenges, we need a better understanding of the mechanisms regulating Pi sensing, signaling, transport and storage in plants. In this review, we summarize the current knowledge on these aspects, which are mainly gained from investigations conducted in Arabidopsis thaliana, and we extended it to those available on an economically important crop, wheat. Strategies to enhance the PA use, through the use of bacterial or fungal phytases and other attempts of reducing seed PA levels, are also discussed. We critically review these data in terms of their potential for use as a technology for genetic manipulation of PUE in wheat, which would be both economically and environmentally beneficial.  相似文献   

16.
Orthophosphate (H2PO4?, Pi) is an essential macronutrient integral to energy metabolism as well as a component of membrane lipids, nucleic acids, including ribosomal RNA, and therefore essential for protein synthesis. The Pi concentration in the solution of most soils worldwide is usually far too low for maximum growth of crops, including rice. This has prompted the massive use of inefficient, polluting, and nonrenewable phosphorus (P) fertilizers in agriculture. We urgently need alternative and more sustainable approaches to decrease agriculture's dependence on Pi fertilizers. These include manipulating crops by (a) enhancing the ability of their roots to acquire limiting Pi from the soil (i.e. increased P‐acquisition efficiency) and/or (b) increasing the total biomass/yield produced per molecule of Pi acquired from the soil (i.e. increased P‐use efficiency). Improved P‐use efficiency may be achieved by producing high‐yielding plants with lower P concentrations or by improving the remobilization of acquired P within the plant so as to maximize growth and biomass allocation to developing organs. Membrane lipid remodelling coupled with hydrolysis of RNA and smaller P‐esters in senescing organs fuels P remobilization in rice, the world's most important cereal crop.  相似文献   

17.
18.
19.
Phosphorus (P) is one of the most important major mineral elements for plant growth and metabolism. Plants have evolved adaptive regulatory mechanisms to maintain phosphate (Pi) homeostasis by improving phosphorus uptake, translocation, remobilization and efficiency of use. Here we review recent advances in our understanding of the OsPHR2-mediated phosphate-signaling pathway in rice. OsPHR2 positively regulates the low-affinity Pi transporter OsPT2 through physical interaction and reciprocal regulation of OsPHO2 in roots. OsPT2 is responsible for most of the OsPHR2-mediated accumulation of excess Pi in shoots. OsSPX1 acts as a repressor in the OsPHR2-mediated phosphate-signaling pathway. Some mutants screened from ethyl methanesulfonate (EMS)-mutagenized M2 population of OsPHR2 overexpression transgenic line removed the growth inhibition, indicating that some unknown factors are crucial for Pi utilization or plant growth under the regulation of OsPHR2.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号