首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Over the last decades medicine has developed tremendously, but still many diseases are incurable. The last years, cellular (gene) therapy has become a hot topic in biomedical research for the potential treatment of cancer, AIDS and diseases involving cell loss or degeneration. Here, we will focus on two major areas within cellular therapy, cellular immunotherapy and stem cell therapy, that could benefit from the introduction of neo-expressed genes through mRNA electroporation for basic research as well as for clinical applications. For cellular immunotherapy, we will provide a state-of-the-art on loading antigen-presenting cells with antigens in the mRNA format for manipulation of T cell immunity. In the area of stem cell research, we will highlight current gene transfer methods into adult and embryonic stem cells and discuss the use of mRNA electroporation for controlling guided differentiation of stem cells into specialized cell lineages.  相似文献   

2.
Lee-Pullen TF  Grounds MD 《IUBMB life》2005,57(11):731-736
Stem cells have been proposed as a wonder solution for tissue repair in many situations and have attracted much attention in the media for both their therapeutic potential and ethical implications. In addition to the excitement generated by embryonic stem cells, research has now identified a number of stem cells within adult tissues which pose much more realistic targets for therapeutic interventions. Myoblast transfer therapy (MTT) has long been viewed as a potential therapy for the debilitating muscle-wasting disorder Duchenne Muscular Dystrophy. This technique relies on the transplantation of committed muscle precursor cells directly into the muscle fibres but has had little success in clinical trials. The recent discovery of a population of cells within adult muscle with stem cell-like characteristics has interesting implications for the future of such putative cell transplantation therapies. This review focuses on the characterization and application of these potential muscle-derived stem cells (MDSC) to MTT.  相似文献   

3.
The discovery of induced pluripotent stem (iPS) cells in 2006 was heralded as a major breakthrough in stem cell research. Since then, progress in iPS cell technology has paved the way towards clinical application, particularly cell replacement therapy, which has refueled debate on the ethics of stem cell research. However, much of the discourse has focused on questions of moral status and potentiality, overlooking the ethical issues which are introduced by the clinical testing of iPS cell replacement therapy. First‐in‐human trials, in particular, raise a number of ethical concerns including informed consent, subject recruitment and harm minimisation as well as the inherent uncertainty and risks which are involved in testing medical procedures on humans for the first time. These issues, while a feature of any human research, become more complex in the case of iPS cell therapy, given the seriousness of the potential risks, the unreliability of available animal models, the vulnerability of the target patient group, and the high stakes of such an intensely public area of science. Our paper will present a detailed case study of iPS cell replacement therapy for Parkinson's disease to highlight these broader ethical and epistemological concerns. If we accept that iPS cell technology is fraught with challenges which go far beyond merely refuting the potentiality of the stem cell line, we conclude that iPS cell research should not replace, but proceed alongside embryonic and adult somatic stem cell research to promote cross‐fertilisation of knowledge and better clinical outcomes.  相似文献   

4.
In this research, we used RNA sequencing (RNA-seq) to analyze 23 single cell samples and 2 bulk cells sample from human adult bone mesenchyme stem cell line and human fetal bone mesenchyme stem cell line. The results from the research demonstrated that there were big differences between two cell lines. Adult bone mesenchyme stem cell lines showed a strong trend on the blood vessel differentiation and cell motion, 48/49 vascular related differential expressed genes showed higher expression in adult bone mesenchyme stem cell lines (Abmsc) than fetal bone mesenchyme stem cell lines (Fbmsc). 96/106 cell motion related genes showed the same tendency. Further analysis showed that genes like ANGPT1, VEGFA, FGF2, PDGFB and PDGFRA showed higher expression in Abmsc. This work showed cell heterogeneity between human adult bone mesenchyme stem cell line and human fetal bone mesenchyme stem cell line. Also the work may give an indication that Abmsc had a better potency than Fbmsc in the future vascular related application.  相似文献   

5.
The discovery of stem cells in the adult human brain has revealed new possible scenarios for treatment of the sick or injured brain. Both clinical use of and preclinical research on human adult neural stem cells have, however, been seriously hampered by the fact that it has been impossible to passage these cells more than a very few times and with little expansion of cell numbers. Having explored a number of alternative culturing conditions we here present an efficient method for the establishment and propagation of human brain stem cells from whatever brain tissue samples we have tried. We describe virtually unlimited expansion of an authentic stem cell phenotype. Pluripotency proteins Sox2 and Oct4 are expressed without artificial induction. For the first time multipotency of adult human brain-derived stem cells is demonstrated beyond tissue boundaries. We characterize these cells in detail in vitro including microarray and proteomic approaches. Whilst clarification of these cells’ behavior is ongoing, results so far portend well for the future repair of tissues by transplantation of an adult patient’s own-derived stem cells.  相似文献   

6.
Mesenchymal stromal/stem cells(MSCs) are adult stem cells of stromal origin that possess self-renewal capacity and the ability to differentiate into multiple mesodermal cell lineages. They play a critical role in tissue homeostasis and wound healing, as well as in regulating the inflammatory microenvironment through interactions with immune cells. Hence, MSCs have garnered great attention as promising candidates for tissue regeneration and cell therapy. Because the inflammatory niche plays a key role in triggering the reparative and immunomodulatory functions of MSCs, priming of MSCs with bioactive molecules has been proposed as a way to foster the therapeutic potential of these cells. In this paper, we review how soluble mediators of the inflammatory niche(cytokines and alarmins) influence the regenerative and immunomodulatory capacity of MSCs, highlighting the major advantages and concerns regarding the therapeutic potential of these inflammatory primed MSCs. The data summarized in this review may provide a significant starting point for future research on priming MSCs and establishing standardized methods for the application of preconditioned MSCs in cell therapy.  相似文献   

7.
成体干细胞多能性研究进展   总被引:9,自引:0,他引:9  
黄海霞  汤雪明 《生命科学》2002,14(3):129-134
成体干细胞是存在于机体组织的一类原始状态细胞,它们能够进行自我复制和特异分化,用于维持新陈代谢和创伤修复,年珲来越来越多的实验表明成体干细胞多向分化潜能,一种组织的干细胞可以分化成其他组织类型的细胞。作者介绍了国际上对成体干细胞概念的新看法,讨论了成体干细胞多能性的调控机理及与之相关的研究方法,还简要概括了成体干细胞在理论和临床应用上的重要意义。  相似文献   

8.
The achievement of novel findings in stem cell research were the subject of the meeting organized by Stem Cell Research Italy (SCR Italy) and by the International Society for Cellular Therapy-Europe (ISCT). Stem cell therapy represents great promise for the future of molecular and regenerative medicine. The use of several types of stem cells is a real opportunity to provide a valid approach to curing several untreatable human diseases. Before it is suitable for clinical applications, stem cell biology needs to be investigated further and in greater detail. Basic stem cell research could provide exact knowledge regarding stem cell action mechanisms, and pre-clinical research on stem cells on an in vivo model of disease provides scientific evidence for future human applications. Applied stem cell research is a promising new approach to handling several diseases. Along with tissue engineering, it offers a new and promising discipline that can help to manage human pathologies through stem cell therapy. All of these themes were discussed in this meeting, covering stem cell subtypes with their newest basic and applied research.  相似文献   

9.
Adult neurogenesis is a widespread trait of vertebrates; however, the degree of this ability and the underlying activity of the adult neural stem cells differ vastly among species. In contrast to mammals that have limited neurogenesis in their adult brains,zebrafish can constitutively produce new neurons along the whole rostrocaudal brain axis throughout its life.This feature of adult zebrafish brain relies on the presence of stem/progenitor cells that continuously proliferate,and the permissive environment of zebrafish brain for neurogenesis. Zebrafish has also an extensive regenerative capacity, which manifests itself in responding to central nervous system injuries by producing new neurons to replenish the lost ones. This ability makes zebrafish a useful model organism for understanding the stem cell activity in the brain, and the molecular programs required for central nervous system regeneration.In this review, we will discuss the current knowledge on the stem cell niches, the characteristics of the stem/progenitor cells, how they are regulated and their involvement in the regeneration response of the adult zebrafish brain. We will also emphasize the open questions that may help guide the future research.  相似文献   

10.
Recent findings concerning adult neurogenesis in two selected structures of the mammalian brain, the olfactory bulb and dentate gyrus of the hippocampus, present the possibility that this mechanism of neurogenesis applies for all brain regions, including the cerebral neocortex. In this way, a small number of potential neural precursor cells may exist in the cerebral neocortex, but they do not normally differentiate into cortical neurons in vivo. It has, however, been reported recently that cycling cells isolated from non-neurogenic areas of adult rat cerebral cortex could generate neurons in vitro. In this study, we analyzed the lineage potential of cycling cells from the adult mouse neocortex. For the dissection of the cerebral cortex from the adult mouse, which is significantly smaller than that of the adult rat, we have modified the previous dissection protocol developed for the rat neocortex. As a result, cycling cells from adult mouse neocortex gave rise to neurons and oligodendrocytes, but not to astrocytes, whereas when the previous dissection method was used, cycling cells gave rise to neurons, oligodendrocytes and astrocytes. This discrepancy might stem from slight contamination of the dissected mouse neocortical tissue in the previous protocol used for the dissection of rat neocortex by cells from the surrounding subependymal zone, where typical adult neural stem cells exist. The results presented here will contribute to our understanding of the nature of cycling cells in the adult mammalian neocortex, and for which future stem cell research will provide new possibilities for cell replacement therapy to be used in the treatment of neurodegenerative conditions.  相似文献   

11.
Heart disease including myocardial infarction and ischemia is associated with the irreversible loss of cardiomyocytes and vasculature, both via apoptosis or necrosis. However, the native capacity for the renewal and repair of myocardial tissue is inadequate as have been current therapeutic measures to prevent left ventricular remodeling. Cell transplantation has emerged as a potentially viable therapeutic approach to directly repopulate and repair the damaged myocardium. A detailed analysis and a vision for future progress in stem cell applications, both in research and clinical cardiology are presented in this review, highlighting the use of a wide spectrum of stem/progenitor cell types including embryonic or fetal stem cells, myoblasts, and adult bone marrow stem cells. An up-to-date comparison of donor cell-types used, and evaluation of the myocardial disorders that might be most amenable to stem cell therapy are discussed. The roles that myocardial cell fusion and transdifferentiation play in stem cell transplantation, the specific shortcomings of available technologies, and recommendations for practical ways that these concerns might be overcome, are also presented.  相似文献   

12.
Regenerative medicine and cell therapy are emerging clinical disciplines in the field of stem cell biology. The most important sources for cell transplantation are human embryonic and adult stem cells. The future use of these human stem cell lines in humans requires a guarantee of exhaustive control with respect to quality control, safety and traceability. Genetic instability and chromosomal abnormalities represent a potential weakness in basic studies and future therapeutic applications based on these stem cell lines, and may explain, at least in part, their usual tumourigenic properties. So, the introduction of the cytogenetic programme in the determination of the chromosomal stability is a key point in the establishment of the stem cell lines. The aim of this review is to provide readers with an up-to-date overview of all the cytogenetic techniques, both conventional methods and molecular fluorescence methods, to be used in a stem cell bank or other stem cell research centres. Thus, it is crucial to optimize and validate their use in the determination of the chromosomal stability of these stem cell lines, and assess the advantages and limitations of these cutting-edge cytogenetic technologies.  相似文献   

13.
This editorial addresses the current challenges and future directions in the use of stem cells as an approach for treating amyotrophic lateral sclerosis. A wide variety of literature has been reviewed to enlighten the reader on the many facets of stem cell research that are important to consider before using them for a cell based therapy.  相似文献   

14.
Cells resident in an organism that possess the dual capacity for self-renewal and differentiation into a spectrum of subtypes are referred to as stem cells. In the past decade, basic research performed on stem cells has shed light on the molecular pathways operating in vivo which can be harnessed in vitro for the establishment of cell lines mirroring the stem cells in the organism. The attractiveness of stem cells as in vitro models of organotypic differentiation and their potential application in a clinical context holds great promise and is only beginning to be exploited. Stem cells can be broadly grouped into two categories based on their origin from either the embryonic or the adult. Only the early embryo possesses truly pluripotent cells that can give rise to all the cell types present in the embryo proper and adult. The adult, on the other hand, possesses specialized, tissue- or organ-specific stem cell types, which can give rise to the differentiated cell types of that specific organ and have in some instances been shown to transdifferentiate. However, no stem cell obtained from an adult organism has yet been shown to exhibit developmental potential matching the breadth of that of stem cells obtained from embryos. This review focuses on the different types of stem cells that are resident in early stage mammalian embryos, detailing their derivation and propagation in addition to highlighting their developmental potential and opportunities for future applications.  相似文献   

15.
干细胞的基础研究和临床应用是近几年国内外的热点之一。但是因为没有产业化的明确途径,这个领域的产业化发展缓慢,很有可能像基因治疗和肿瘤疫苗的产业化一样无疾而终。本文探讨了干细胞治疗能够产业化之前需要解决的几个问题。从技术层面,我们比较了胚胎干细胞和成体干细胞,自体干细胞和异体干细胞的优缺点和国内外公司采取的一些途径。从政策方面,我们探讨了把干细胞治疗作为一种医疗技术还是一类医药产品的优缺点,比较了美国FDA和国内监管部门的相关政策,也提出了进一步的问题。最后,我们以美国FDA刚刚批准的Provenge为例,对细胞治疗和干细胞治疗的产业化提出了一些希望和想法。  相似文献   

16.
Adult stem cell transplantation in stroke: its limitations and prospects   总被引:1,自引:0,他引:1  
A growing number of studies have demonstrated stem cell-based therapy provides a feasible, realistic approach to the restoration of lost brain function after stroke. Moreover, adult stem cells may provide more appropriate clinical strategies. Leading candidate sources include bone marrow, peripheral blood, adipose tissue, skeletal muscle, and olfactory mucosa, which act as central repositories for multipotent stem cells that can repopulate neural tissues. The medical society is currently enthusiastic concerning the clinical applications of autologous adult stem cells in stroke, based on promising results obtained during experimental studies and initial clinical trials. However, before embracing clinical applications, several essential precautions must be properly addressed. For example, the regenerative potentials of adult stem cells decline with age, and stem cells isolated from aged patients may retain dysfunctional characteristics. Are the natures and amounts of available autologous cells appropriate for therapeutic application in stroke? Do transplanted cells remain functional in the diseased brain, and if so what are the optimal injection routes, cell doses, and timings? Thus, we believe that success in future clinical trials will depend on careful investigation at the experimental level, to allow us to understand not only the practicalities of stem cell use, but also the underlying biological principles involved. Here, we review the advantages and disadvantages of the different adult stem cell sources and discuss the challenges that must be negotiated to achieve transplantation success.  相似文献   

17.
The development of a cell therapy for the neurodegenerative disorder Parkinson's disease is a realistic ambition. It is pursued by researchers and companies alike, and spans different donor tissue types of embryonic, fetal and adult origins. In this review, we briefly outline the past and current status of research and clinical trials with cell transplantation in Parkinson's disease. We discuss studies on donor tissue derived from embryonic ventral mesencephalon and assess the current research on various forms of stem cells of both embryonic and adult origins in the quest to develop a cell-based therapy for this debilitating movement disorder.  相似文献   

18.
Although stem cell research is a rather new field in modern medicine, media soon popularized it. The reason for this hype lies in the potential of stem cells to drastically increase quality of life through repairing aging and diseased organs. Nevertheless, the essence of stem cell research is to understand how tissues are maintained during adult life. In this article, we summarize the various types of stem cells and their differentiation potential in vivo and in vitro. We review current clinical applications of stem cells and highlight problems encountered when going from animal studies to clinical practice. Furthermore, we describe the current state of induced pluripotent stem cell technology and applications for disease modelling and cell replacement therapy.  相似文献   

19.
Li L  Akashi K 《BioTechniques》2003,35(6):1233-1239
Remarkable progress in stem cell biology research over the past few years has provoked a promise for the future of tissue regeneration and gene therapies; so much so, that the use of stem cells in clinical therapy seemed to be just around the corner. However, we now realize there is still a huge task before us to improve our understanding of the nature of stem cells before utilizing them to benefit human health. Stem cell behavior is determined by specific gene products; thus, unraveling the molecular components and genetic blueprints of stem cells will provide important insight into understanding stem cell properties. Here we summarize the research of various groups using microarray technology and other approaches to determine the gene expression profiles in stem cells, particularly in hematopoietic stem cells (HSCs). These works have, to a certain degree, helped to narrow down the candidate genes predominantly expressed in HSCs, revealed a list of stemness genes, and indirectly demonstrated the wide-open chromatin state of stem cells and, with it, the molecular basis of the multipotentiality of stem cells.  相似文献   

20.
Mesenchymal stem cell(MSC)therapy is entering a challenging phase after completion of many preclinical and clinical trials.Among the major hurdles encountered in MSC therapy are inconsistent stem cell potency,poor cell engraftment and survival,and age/disease-related host tissue impairment.The recognition that MSCs primarily mediate therapeutic benefits through paracrine mechanisms independent of cell differentiation provides a promising framework for enhancing stem cell potency and therapeutic benefits.Several MSC priming approaches are highlighted,which will likely allow us to harness the full potential of adult stem cells for their future routine clinical use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号