首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
We previously showed that immunization of guinea pigs with reductively glucosylated guinea pig low density lipoprotein (LDL) or albumin resulted in the formation of antibodies specific for the glucosylated protein. The present studies were done to determine if modifications of homologous LDL or albumin, other than addition of carbohydrate, would also render these proteins immunogenic. We found that derivatization of lysine residues of guinea pig LDL or albumin by carbamylation, acetylation, ethylation, or even methylation rendered them immunogenic in guinea pigs. In addition, the specificity of the antibodies was strikingly influenced by whether modified homologous LDL or modified homologous albumin was used as the immunogen. Antibodies generated against modified LDL were directed almost exclusively against the derivatized lysine residues (i.e., carbamyllysine, acetyllysine, or methyllysine) and hence reacted equivalently with other modified proteins that contained the same lysine derivative. However, antibodies generated against guinea pig albumin (or fibrinogen) modified in the same ways reacted primarily with the modified protein used as immunogen, and not with the free lysine derivative, or with other similarly modified proteins. Each of the modifications referred to above could potentially occur in vivo. Therefore, the findings presented may be relevant to autoantibody formation and immunopathogenetic mechanisms in certain diseases.  相似文献   

2.
3.
4.
Methylation of lysine 20 in histone H4 has been proven to play important roles in chromatin structure and gene regulation. SET8 is one of the methyltransferases identified to be specific for this modification. In this study, the minimal active SET domain of SET8 has been mapped to the region of amino acids 195-352. This region completely retains the same methylation activity and substrate specificity as the full-length SET8. The SET domain recognizes a stretch of specific amino acid sequence around lysine 20 of H4 for its methylation activity. Methylation assays with N terminus mutants of H4 that contain deletions and single alanine or glutamine substitutions of charged residues revealed that SET8 requires the sequence RHRK20VLRDN for methylation at lysine 20. The individual mutation of any charged residue in this sequence to alanine or glutamine abolished or greatly decreased levels of methylation of lysine 20 of H4 by SET8. Interestingly, mutation of lysine 16 to alanine, arginine, glutamine, or methionine did not affect methylation of lysine 20 by the SET domain. Mass spectrometric analysis of synthesized H4 N-terminal peptides modified by SET8 showed that SET8 selectively mono-methylates lysine 20 of H4. Taken together, our results suggested that the coordination between the amino acid sequence RHRK20VLRDN and the SET domain of SET8 determines the substrate specificity and multiplicity of methylation of lysine 20 of H4.  相似文献   

5.
BackgroundThe post-translational protein modification via lysine residues can significantly alter its function. α2-antiplasmin, a key inhibitor of fibrinolysis, contains 19 lysine residues.AimWe sought to identify sites of glycation and acetylation in human α2-antiplasmin and test whether the competition might occur on the lysine residues of α2-antiplasmin.MethodsWe analyzed human α2-antiplasmin (1) untreated; (2) incubated with increasing concentrations of β-d-glucose (0, 5, 10, 50 mM); (3) incubated with 1.6 mM acetylsalicylic acid (ASA) and (4) incubated with 1.6 mM ASA and 50 mM β-d-glucose, using the ultraperformance liquid chromatography system coupled to mass spectrometer.ResultsEleven glycation sites and 10 acetylation sites were found in α2-antiplasmin. Incubation with β-d-glucose was associated with glycation of 4 (K-418, K-427, K-434, K-441) out of 6 lysine residues, known to be important for mediating the interaction with plasmin. Glycation and acetylation overlapped at 9 sites in samples incubated with β-d-glucose or ASA. Incubation with concomitant ASA and β-d-glucose was associated with the decreased acetylation at all sites overlapping with glycation sites. At K-182 and K-448, decreased acetylation was associated with increased glycation when compared with α2-antiplasmin incubated with 50 mM β-d-glucose alone. Although K-24 located in the proximity of the α2-antiplasmin cleavage site, was found to be only acetylated, incubation with ASA and 50 mM β-d-glucose was associated the absence of acetylation at that site.ConclusionHuman α2-antiplasmin is glycated and acetylated at several sites, with the possible competition between acetylation and glycation at K-182 and K-448. Our finding suggests possibly relevant alterations to α2-antiplasmin function at high glycemia and during aspirin use.  相似文献   

6.
The molecular interactions resulting in specific binding of trans-acting factors to distinct cis-acting elements is not well understood. Here we report our attempt to understand the involvement of distinct amino acid residues of the basic domain of cAMP-responsive element-binding protein (delta CREB) in the determination of binding toward the cAMP-responsive element (CRE). Using in vitro mutagenesis, we constructed site-directed mutants of distinct amino acid residues within the DNA contact region of delta CREB. The activities of the mutant proteins were analyzed by gel retardation, methylation interference, and CRE competition analyses. We demonstrate that a single lysine to glutamine substitution at positions 289 and 291 of delta CREB alters the methylation interference pattern of the mutant protein for the CRE site. Additional mutants constructed at these positions demonstrate that only identical basic residues at both positions 289 and 291 of delta CREB can restore the wild type methylation interference pattern of the mutant delta CREB protein for the CRE site. These observations point to the importance of the lysine residues at positions 289 and 291 in the process of CRE binding. In addition, this observation suggests that the symmetrical nature of the CRE site is reflected in the DNA contact region of the protein.  相似文献   

7.
The covalent attachment of ubiquitin to proteins regulates numerous processes in eukaryotic cells. Here we report the identification of 753 unique lysine ubiquitylation sites on 471 proteins using higher-energy collisional dissociation on the LTQ Orbitrap Velos. In total 5756 putative ubiquitin substrates were identified. Lysine residues targeted by the ubiquitin-ligase system show no unique sequence feature. Surface accessible lysine residues located in ordered secondary regions, surrounded by smaller and positively charged amino acids are preferred sites of ubiquitylation. Lysine ubiquitylation shows promiscuity at the site level, as evidenced by low evolutionary conservation of ubiquitylation sites across eukaryotic species. Among lysine modifications a significant overlap (20%) between ubiquitylation and acetylation at site level highlights extensive competitive crosstalk among these modifications. This site-specific crosstalk is not prevalent among cell cycle ubiquitylations. Between SUMOylation and ubiquitylation the preferred interaction is through mixed-chain conjugation. Overall these data provide novel insights into the site-specific selection and regulatory function of lysine ubiquitylation.  相似文献   

8.
9.
Lysine acetylation and ubiquitination are two primary post-translational modifications (PTMs) in most eukaryotic proteins. Lysine residues are targets for both types of PTMs, resulting in different cellular roles. With the increasing availability of protein sequences and PTM data, it is challenging to distinguish the two types of PTMs on lysine residues. Experimental approaches are often laborious and time consuming. There is an urgent need for computational tools to distinguish between lysine acetylation and ubiquitination. In this study, we developed a novel method, called DAUFSA (distinguish between lysine acetylation and lysine ubiquitination with feature selection and analysis), to discriminate ubiquitinated and acetylated lysine residues. The method incorporated several types of features: PSSM (position-specific scoring matrix) conservation scores, amino acid factors, secondary structures, solvent accessibilities, and disorder scores. By using the mRMR (maximum relevance minimum redundancy) method and the IFS (incremental feature selection) method, an optimal feature set containing 290 features was selected from all incorporated features. A dagging-based classifier constructed by the optimal features achieved a classification accuracy of 69.53%, with an MCC of .3853. An optimal feature set analysis showed that the PSSM conservation score features and the amino acid factor features were the most important attributes, suggesting differences between acetylation and ubiquitination. Our study results also supported previous findings that different motifs were employed by acetylation and ubiquitination. The feature differences between the two modifications revealed in this study are worthy of experimental validation and further investigation.  相似文献   

10.
Lu Z  Cheng Z  Zhao Y  Volchenboum SL 《PloS one》2011,6(12):e28228
Recent proteomics studies suggest high abundance and a much wider role for lysine acetylation (K-Ac) in cellular functions. Nevertheless, cross influence between K-Ac and other post-translational modifications (PTMs) has not been carefully examined. Here, we used a variety of bioinformatics tools to analyze several available K-Ac datasets. Using gene ontology databases, we demonstrate that K-Ac sites are found in all cellular compartments. KEGG analysis indicates that the K-Ac sites are found on proteins responsible for a diverse and wide array of vital cellular functions. Domain structure prediction shows that K-Ac sites are found throughout a wide variety of protein domains, including those in heat shock proteins and those involved in cell cycle functions and DNA repair. Secondary structure prediction proves that K-Ac sites are preferentially found in ordered structures such as alpha helices and beta sheets. Finally, by mutating K-Ac sites in silico and predicting the effect on nearby phosphorylation sites, we demonstrate that the majority of lysine acetylation sites have the potential to impact protein phosphorylation, methylation, and ubiquitination status. Our work validates earlier smaller-scale studies on the acetylome and demonstrates the importance of PTM crosstalk for regulation of cellular function.  相似文献   

11.
The SET8 histone lysine methyltransferase, which monomethylates the histone 4 lysine 20 residue plays important roles in cell cycle control and genomic stability. By employing peptide arrays we have shown that it has a long recognition sequence motif covering seven amino acid residues, viz. R17–H18–(R19KY)–K20–(V21ILFY)–(L22FY)–R23. Celluspots peptide array methylation studies confirmed specific monomethylation of H4K20 and revealed that the symmetric and asymmetric methylation on R17 of the H4 tail inhibits methylation on H4K20. Similarly, dimethylation of the R located at the −3 position also reduced methylation of p53 K382 which had been shown previously to be methylated by SET8. Based on the derived specificity profile, we identified 4 potential non-histone substrate proteins. After relaxing the specificity profile, we identified several more candidate substrates and showed efficient methylation of 20 novel non-histone peptides by SET8. However, apart from H4 and p53 none of the identified novel peptide targets was methylated at the protein level. Since H4 and p53 both contain the target lysine in an unstructured part of the protein, we conclude that the long recognition sequence of SET8 makes it difficult to methylate a lysine in a folded region of a protein, because amino acid side chains essential for recognition will be buried.  相似文献   

12.
13.
Hu LL  Li Z  Wang K  Niu S  Shi XH  Cai YD  Li HP 《Biopolymers》2011,95(11):763-771
Protein methylation, one of the most important post-translational modifications, typically takes place on arginine or lysine residue. The reversible modification involves a series of basic cellular processes. Identification of methyl proteins with their sites will facilitate the understanding of the molecular mechanism of methylation. Besides the experimental methods, computational predictions of methylated sites are much more desirable for their convenience and fast speed. Here, we propose a method dedicated to predicting methylated sites of proteins. Feature selection was made on sequence conservation, physicochemical/biochemical properties, and structural disorder by applying maximum relevance minimum redundancy and incremental feature selection methods. The prediction models were built according to nearest the neighbor algorithm and evaluated by the jackknife cross-validation. We built 11 and 9 predictors for methylarginine and methyllysine, respectively, and integrated them to predict methylated sites. As a result, the average prediction accuracies are 74.25%, 77.02% for methylarginine and methyllysine training sets, respectively. Feature analysis suggested evolutionary information, and physicochemical/biochemical properties play important roles in the recognition of methylated sites. These findings may provide valuable information for exploiting the mechanisms of methylation. Our method may serve as a useful tool for biologists to find the potential methylated sites of proteins.  相似文献   

14.
To investigate the effect of mutations in the p53 C-terminal domain on MDM2-mediated degradation, we introduced single and multiple point mutations into a human p53 cDNA at four putative acetylation sites (amino acid residues 372, 373, 381, and 382). Substitution of all four lysine residues by alanines (the A4 mutant) and single lysine-to-alanine substitutions were functional in sequence-specific DNA binding and transactivation; however, the A4 mutant protein was resistant to MDM2-mediated degradation, whereas the single lysine substitutions were not. Although the A4 mutant protein and the single lysine substitutions both bound MDM2 reasonably well, the single lysine substitutions underwent normal MDM2-dependent ubiquitination, whereas the A4 protein was inefficiently ubiquitinated. In addition, the A4 mutant protein was found in the cytoplasm as well as in the nucleus of a subpopulation of cells, unlike wild-type p53, which is mostly nuclear. The partially cytoplasmic distribution of A4 mutant protein was not due to a defect in nuclear import because inhibition of nuclear export by leptomycin B resulted in nuclear accumulation of the protein. Taken together, the data suggest that mutations in the putative acetylation sites of the p53 C-terminal domain interfere with ubiquitination, thereby regulating p53 degradation.  相似文献   

15.
Heparin-binding histidine and lysine residues of rat selenoprotein P   总被引:3,自引:0,他引:3  
Selenoprotein P is a plasma protein that has oxidant defense properties. It binds to heparin at pH 7.0, but most of it becomes unbound as the pH is raised to 8.5. This unusual heparin binding behavior was investigated by chemical modification of the basic amino acids of the protein. Diethylpyrocarbonate (DEPC) treatment of the protein abolished its binding to heparin. DEPC and [(14)C]DEPC modification, coupled with amino acid sequencing and matrix-assisted laser desorption ionization-time of flight mass spectrometry of peptides, identified several peptides in which histidine and lysine residues had been modified by DEPC. Two peptides from one region (residues 80-95) were identified by both methods. Moreover, the two peptides that constituted this sequence bound to heparin. Finally, when DEPC modification of the protein was carried out in the presence of heparin, these two peptides did not become modified by DEPC. Based on these results, the heparin-binding region of the protein sequence was identified as KHAHLKKQVSDHIAVY. Two other peptides (residues 178-189 and 194-234) that contain histidine-rich sequences met some but not all of the criteria of heparin-binding sites, and it is possible that they and the histidine-rich sequence between them bind to heparin under some conditions. The present results indicate that histidine is a constituent of the heparin-binding site of selenoprotein P. The presence of histidine, the pK(a) of which is 7.0, explains the release of selenoprotein P from heparin binding as pH rises above 7.0. It can be speculated that this property would lead to increased binding of selenoprotein P in tissue regions that have low pH.  相似文献   

16.
The reversible acetylation of lysine to form N6‐acetyllysine in the regulation of protein function is a hallmark of epigenetics. Acetylation of the positively charged amino group of the lysine side chain generates a neutral N‐alkylacetamide moiety that serves as a molecular “switch” for the modulation of protein function and protein–protein interactions. We now report the analysis of 381 N6‐acetyllysine side chain amide conformations as found in 79 protein crystal structures and 11 protein NMR structures deposited in the Protein Data Bank (PDB) of the Research Collaboratory for Structural Bioinformatics. We find that only 74.3% of N6‐acetyllysine residues in protein crystal structures and 46.5% in protein NMR structures contain amide groups with energetically preferred trans or generously trans conformations. Surprisingly, 17.6% of N6‐acetyllysine residues in protein crystal structures and 5.3% in protein NMR structures contain amide groups with energetically unfavorable cis or generously cis conformations. Even more surprisingly, 8.1% of N6‐acetyllysine residues in protein crystal structures and 48.2% in NMR structures contain amide groups with energetically prohibitive twisted conformations that approach the transition state structure for cistrans isomerization. In contrast, 109 unique N‐alkylacetamide groups contained in 84 highly accurate small molecule crystal structures retrieved from the Cambridge Structural Database exclusively adopt energetically preferred trans conformations. Therefore, we conclude that cis and twisted N6‐acetyllysine amides in protein structures deposited in the PDB are erroneously modeled due to their energetically unfavorable or prohibitive conformations. Proteins 2013; © 2012 Wiley Periodicals, Inc.  相似文献   

17.
Heat shock or arsenite treatment alter the pattern of histone methylation in Drosophila cells. Both types of stress induce a rapid increase in the methylation level of histone H2B. The methylated amino acid residue of H2B has been identified by thin layer chromatography and electrophoresis as methylproline and is located at the N-terminal end of H2B. Heat shock also induces a decrease in the level of methylation of histone H3. Under normal growth temperature conditions, histone H3 is shown to be methylated on lysine residues. However under heat shock conditions, there is a decrease in the extent of methylation of lysine residues and the appearance of new methylation on arginine residues in H3. These new heat shock-induced methylated residues have been identified as the symmetrical and asymmetrical forms of dimethylarginine. The methylated amino acid residue of histone H4 is lysine with mono-, di-, and trimethyl forms found in both control and heat or chemically stressed cells. These stress-induced changes in the methylation level of the N-terminal proline residue of histone H2B and shift in the methylation sites of histone H3 may be involved in the restructuration of chromatin accompanying the inactivation of normal genes in response to stress. Moreover, we suggest that the hypermethylation of H2B may also be involved in its protection from increased ubiquitin-mediated proteolytic activity under these conditions of cellular stress.  相似文献   

18.
《Epigenetics》2013,8(4):199-209
The oocyte is remarkable in its ability to remodel parental genomes following fertilization and to reprogram somatic nuclei after nuclear transfer (NT). To characterise the patterns of histone H4 acetylation and DNA methylation during development of bovine gametogenesis and embryogenesis, specific antibodies for histone H4 acetylated at lysine 5 (K5), K8, K12 and K16 residues and for methylated cytosine of CpG dinucleotides were used. Oocytes and sperm lacked the staining for histone acetylation, when DNA methylation staining was intense. In IVF zygotes, both pronuclei were transiently hyper-acetylated. However, the male pronucleus was faster in acquiring acetylated histones, and concurrently it was rapidly demethylated. Both pronuclei were equally acetylated during the S to G2-phase transition, while methylation staining was only still observed in the female pronucleus. In parthenogenetically activated oocytes, acetylation of the female pronucleus was enriched faster, while DNA remained methylated. A transient de-acetylation was observed in NT embryos reconstructed using a non-activated ooplast of a metaphase second arrested oocyte. Remarkably, the intensity of acetylation staining of most H4 lysine residues peaked at the 8-cell stage in IVF embryos, which coincided with zygotic genome activation and with lowest DNA methylation staining. At the blastocyst stage, trophectodermal cells of IVF and parthenogenetic embryos generally demonstrated more intense staining for most acetylated H4 lysine, whilst ICM cells stained very weakly. In contrast methylation of the DNA stained more intensely in ICM. NT blastocysts showed differential acetylation of blastomeres but not methylation. The inverse association of histone lysine acetylation and DNA methylation at different vital embryo stages suggests a mechanistically significant relationship. The complexities of these epigenetic interactions are discussed.  相似文献   

19.
Post-translational modifications (PTMs) of histones play important roles in regulating the structure and function of chromatin in eukaryotes. Although histone PTMs were considered to mainly occur at the N-terminal tails of histones, recent studies have revealed that PTMs also exist in the histone-fold domains, which are commonly shared among the core histones H2A, H2B, H3, and H4. The lysine residue is a major target for histone PTM, and the lysine to glutamine (KQ) substitution is known to mimic the acetylated states of specific histone lysine residues in vivo. Human histones H3 and H4 contain 11 lysine residues in their histone-fold domains (five for H3 and six for H4), and eight of these lysine residues are known to be targets for acetylation. In the present study, we prepared 11 mutant nucleosomes, in which each of the lysine residues of the H3 and H4 histone-fold domains was replaced by glutamine: H3 K56Q, H3 K64Q, H3 K79Q, H3 K115Q, H3 K122Q, H4 K31Q, H4 K44Q, H4 K59Q, H4 K77Q, H4 K79Q, and H4 K91Q. The crystal structures of these mutant nucleosomes were determined at 2.4-3.5 ? resolutions. Some of these amino acid substitutions altered the local protein-DNA interactions and the interactions between amino acid residues within the nucleosome. Interestingly, the C-terminal region of H2A was significantly disordered in the nucleosome containing H4 K44Q. These results provide an important structural basis for understanding how histone modifications and mutations affect chromatin structure and function.  相似文献   

20.
We report here on the existence of a new gene for lysine decarboxylase in Escherichia coli K-12. The hybridization experiments with a cadA probe at low stringency showed that the homologous region of cadA was located in lambda Kohara phage clone 6F5 at 4.7 min on the E. coli chromosome. We cloned the 5.0-kb HindIII fragment of this phage clone and sequenced the homologous region of cadA. This region contained a 2,139-nucleotide open reading frame encoding a 713-amino-acid protein with a calculated molecular weight of 80,589. Overexpression of the protein and determination of its N-terminal amino acid sequence defined the translational start site of this gene. The deduced amino acid sequence showed 69.4% identity to that of lysine decarboxylase encoded by cadA at 93.7 min on the E. coli chromosome. In addition, the level of lysine decarboxylase activity increased in strains carrying multiple copies of the gene. Therefore, the gene encoding this lysine decarboxylase was designated Idc. Analysis of the lysine decarboxylase activity of strains containing cadA, ldc, or cadA ldc mutations indicated that ldc was weakly expressed under various conditions but is a functional gene in E. coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号