首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
While orthostatic tachycardia is the hallmark of postural tachycardia syndrome (POTS), orthostasis also initiates increased minute ventilation (Ve) and decreased end-tidal CO(2) in many patients. We hypothesized that chemoreflex sensitivity would be increased in patients with POTS. We therefore measured chemoreceptor sensitivity in 20 POTS (16 women and 4 men) and 14 healthy controls (10 women and 4 men), 16-35 yr old by exposing them to eucapneic hyperoxia (30% O(2)), eucapneic hypoxia (10% O(2)), and hypercapnic hyperoxia (30% O(2) + 5% CO(2)) while supine and during 70° head-upright tilt. Heart rate, mean arterial pressure, O(2) saturation, end-tidal CO(2), and Ve were measured. Peripheral chemoreflex sensitivity was calculated as the difference in Ve during hypoxia compared with room air divided by the change in O(2) saturation. Central chemoreflex sensitivity was determined by the difference in Ve during hypercapnia divided by the change in CO(2). POTS subjects had an increased peripheral chemoreflex sensitivity (in l·min(-1)·%oxygen(-1)) in response to hypoxia (0.42 ± 0.38 vs. 0.19 ± 0.17) but a decreased central chemoreflex sensitivity (l·min(-1)·Torr(-1)) CO(2) response (0.49 ± 0.38 vs. 1.04 ± 0.18) compared with controls. CO(2) sensitivity was also reduced in POTS subjects when supine. POTS patients are markedly sensitized to hypoxia when upright but desensitized to CO(2) while upright or supine. The interactions between orthostatic baroreflex unloading and altered chemoreflex sensitivities may explain the hyperventilation in POTS patients.  相似文献   

2.
In the present study we investigated the involvement of the hypothalamic paraventricular nucleus (PVN) in the modulation of sympathoexcitatory reflex activated by peripheral and central chemoreceptors. We measured mean arterial blood pressure (MAP), heart rate (HR), renal sympathetic nerve activity (RSNA), and phrenic nerve activity (PNA) before and after blocking neurotransmission within the PVN by bilateral microinjection of 2% lidocaine (100 nl) during specific stimulation of peripheral chemoreceptors by potassium cyanide (KCN, 75 microg/kg iv, bolus dose) or stimulation of central chemoreceptors with hypercapnia (10% CO(2)). Typically stimulation of peripheral chemoreceptors evoked a reflex response characterized by an increase in MAP, RSNA, and PNA and a decrease in HR. Bilateral microinjection of 2% lidocaine into the PVN had no effect on basal sympathetic and cardiorespiratory variables; however, the RSNA and PNA responses evoked by peripheral chemoreceptor stimulation were attenuated (P < 0.05). Bilateral microinjection of bicuculline (50 pmol/50 nl, n = 5) into the PVN augmented the RSNA and PNA response to peripheral chemoreceptor stimulation (P < 0.05). Conversely, the GABA agonist muscimol (0.2 nmol/50 nl, n = 5) injected into the PVN attenuated these reflex responses (P < 0.05). Blocking neurotransmission within the PVN had no effect on the hypercapnia-induced central chemoreflex responses in carotid body denervated animals. These results suggest a selective role of the PVN in processing the sympathoexcitatory and ventilatory component of the peripheral, but not central, chemoreflex.  相似文献   

3.
To investigate the effects of muscle metaboreceptor activation during hypoxic static exercise, we recorded muscle sympathetic nerve activity (MSNA), heart rate, blood pressure, ventilation, and blood lactate in 13 healthy subjects (22 +/- 2 yr) during 3 min of three randomized interventions: isocapnic hypoxia (10% O(2)) (chemoreflex activation), isometric handgrip exercise in normoxia (metaboreflex activation), and isometric handgrip exercise during isocapnic hypoxia (concomitant metaboreflex and chemoreflex activation). Each intervention was followed by a forearm circulatory arrest to allow persistent metaboreflex activation in the absence of exercise and chemoreflex activation. Handgrip increased blood pressure, MSNA, heart rate, ventilation, and lactate (all P < 0.001). Hypoxia without handgrip increased MSNA, heart rate, and ventilation (all P < 0.001), but it did not change blood pressure and lactate. Handgrip enhanced blood pressure, heart rate, MSNA, and ventilation responses to hypoxia (all P < 0.05). During circulatory arrest after handgrip in hypoxia, heart rate returned promptly to baseline values, whereas ventilation decreased but remained elevated (P < 0.05). In contrast, MSNA, blood pressure, and lactate returned to baseline values during circulatory arrest after hypoxia without exercise but remained markedly increased after handgrip in hypoxia (P < 0.05). We conclude that metaboreceptors and chemoreceptors exert differential effects on the cardiorespiratory and sympathetic responses during exercise in hypoxia.  相似文献   

4.
Phenibut, a nonspecific GABA derivative, is clinically used as an anxiolytic and tranquilizer in psychosomatic conditions. A GABA-ergic inhibitory pathway is engaged in respiratory control at both central and peripheral levels. However, the potential of phenibut to affect the O2-related chemoreflexes has not yet been studied. In this study we seek to determine the ventilatory responses to changes in inspired O2 content in anesthetized, spontaneously-breathing rats. Steady-state 5-min responses to 10% O2 in N2 and 100% O2 were taken in each animal before and 1 h after phenibut administration in a dose 450 mg/kg, i.p. Minute ventilation and its frequency and tidal components were obtained from the respiratory flow signal. We found that after a period of irregular extension of the respiratory cycle, phenibut stabilized resting ventilation at a lower level [20.0±3.3 (SD) vs 31.1±5.2 ml/min before phenibut; P<0.01]. The ventilatory depressant effect of phenibut was not reflected in the hypoxic response. In relative terms, this response was actually accentuated after phenibut; the peak hypoxic ventilation increased by 164% from baseline vs the 100% increase before phenibut. Regarding hyperoxia, its inhibitory effect on breathing was more expressed after phenibut. In conclusion, the GABA-mimetic phenibut did not curtail hypoxic ventilatory responsiveness, despite the presence of GABA-ergic pathways in both central and peripheral, carotid body mechanisms mediating the hypoxic chemoreflex. Thus, GABA-mediated synaptic inhibition may be elaborated in a way to sustain the primarily defensive ventilatory chemoreflex.  相似文献   

5.
cFos expression (indicating a particular kind of neuronal activation) was examined in embryonic day (E) 18 chick embryos after exposure to 4 h of either normoxia (21% O2), modest hypoxia (15% O2), or medium hypoxia (10% O2). Eight regions of the brainstem and hypothalamus were surveyed, including seven previously shown to respond to hypoxia in late‐gestation mammalian fetuses (Breen et al., 1997; Nitsos and Walker, 1999b). Hypoxia‐related changes in chick embryo brain activation mirrored those found in fetal mammals with the exception of the medullary Raphe, which showed decreased hypoxic activation, compared with no change in mammals. This difference may be explained by the greater anapyrexic responses of chick embryos relative to mammalian fetuses. Activation in the A1/C1 region was examined in more detail to ascertain whether an O2‐sensitive subpopulation of these cells containing heme oxygenase 2 (HMOX2) may drive hypoxic brain responses before the maturation of peripheral O2‐sensing. HMOX2‐positive and ‐negative catecholaminergic cells and interdigitating noncatecholaminergic HMOX2‐positive cells all showed significant changes in cFos expression to hypoxia, with larger population responses seen in the catecholaminergic cells. Hypoxia‐induced activation of lower‐brain regions studied here was significantly better correlated with activation of the nucleus of the solitary tract (NTS) than with that of HMOX2‐containing A1/C1 neurons. Together, these observations suggest that (1) the functional circuitry controlling prenatal brain responses to hypoxia is strongly conserved between birds and mammals, and (2) NTS neurons are a more dominant driving force for prenatal hypoxic cFos brain responses than O2‐sensing A1/C1 neurons. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 64–74, 2016  相似文献   

6.
Short-term intermittent hypoxia leads to sustained sympathetic activation and a small increase in blood pressure in healthy humans. Because obstructive sleep apnea, a condition associated with intermittent hypoxia, is accompanied by elevated sympathetic activity and enhanced sympathetic chemoreflex responses to acute hypoxia, we sought to determine whether intermittent hypoxia also enhances chemoreflex activity in healthy humans. To this end, we measured the responses of muscle sympathetic nerve activity (MSNA, peroneal microneurography) to arterial chemoreflex stimulation and deactivation before and following exposure to a paradigm of repetitive hypoxic apnea (20 s/min for 30 min; O(2) saturation nadir 81.4 +/- 0.9%). Compared with baseline, repetitive hypoxic apnea increased MSNA from 113 +/- 11 to 159 +/- 21 units/min (P = 0.001) and mean blood pressure from 92.1 +/- 2.9 to 95.5 +/- 2.9 mmHg (P = 0.01; n = 19). Furthermore, compared with before, following intermittent hypoxia the MSNA (units/min) responses to acute hypoxia [fraction of inspired O(2) (Fi(O(2))) 0.1, for 5 min] were enhanced (pre- vs. post-intermittent hypoxia: +16 +/- 4 vs. +49 +/- 10%; P = 0.02; n = 11), whereas the responses to hyperoxia (Fi(O(2)) 0.5, for 5 min) were not changed significantly (P = NS; n = 8). Thus 30 min of intermittent hypoxia is capable of increasing sympathetic activity and sensitizing the sympathetic reflex responses to hypoxia in normal humans. Enhanced sympathetic chemoreflex activity induced by intermittent hypoxia may contribute to altered neurocirculatory control and adverse cardiovascular consequences in sleep apnea.  相似文献   

7.
Chemoreceptor function was studied in eight 2- to 3-day-old unanesthetized lambs to sequentially assess hypoxic chemoreflex strength during an 18-min exposure to hypoxia [inspired O2 fraction (FIO2) = 0.08]. The immediate ventilatory (VE) drop in response to five breaths of pure O2 was measured at 3, 7, and 15 min during hypoxia. Each lamb was studied again at 10-11 days of age. At 2-3 days of age VE increased, with the onset of hypoxia, from 658 +/- 133 (SD) ml.min-1 X kg-1 to a peak of 1,124 +/- 177 ml.min-1 X kg-1. A dampening of the VE response then occurred, with a mean decline in VE of 319 ml.min-1 X kg-1 over the 18-min hypoxia period. Each pure O2 test (Dejours test) resulted in an abrupt fall in VE (delta VEDejours). This VE drop was 937 +/- 163, 868 +/- 244, and 707 +/- 120 ml.min-1 X kg-1 at 3, 7, and 15 min of hypoxia, respectively. Comparing the three O2 tests, delta VEDejours was significantly decreased by 15 min, indicating a loss of about one-fourth of the O2 chemoreflex drive during hypoxia. Testing at 10-11 days of age revealed a smaller VE decline during hypoxia. O2 tests at the beginning and end of the hypoxic period were not significantly different, indicating a smaller loss of hypoxic chemoreflex drive in the more mature animals.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The paraventricular nucleus (PVN) of the hypothalamus is involved in the neural control of sympathetic drive, but the precise mechanism(s) that influences the PVN is not known. The activation of the PVN may be influenced by input from higher forebrain areas, such as the median preoptic nucleus (MnPO) and the subfornical organ (SFO). We hypothesized that activation of the MnPO or SFO would drive the PVN through a glutamatergic pathway. Neuroanatomical connections were confirmed by the recovery of a retrograde tracer in the MnPO and SFO that was injected bilaterally into the PVN in rats. Microinjection of 200 pmol of N-methyl-d-aspartate (NMDA) or bicuculline-induced activation of the MnPO and increased renal sympathetic activity (RSNA), mean arterial pressure, and heart rate in anesthetized rats. These responses were attenuated by prior microinjection of a glutamate receptor blocker AP5 (4 nmol) into the PVN (NMDA - ΔRSNA 72 ± 8% vs. 5 ± 1%; P < 0.05). Using single-unit extracellular recording, we examined the effect of NMDA microinjection (200 pmol) into the MnPO on the firing activity of PVN neurons. Of the 11 active neurons in the PVN, 6 neurons were excited by 95 ± 17% (P < 0.05), 1 was inhibited by 57%, and 4 did not respond. The increased RSNA after activation of the SFO by ANG II (1 nmol) or bicuculline (200 pmol) was also reduced by AP5 in the PVN (for ANG II - ΔRSNA 46 ± 7% vs. 17 ± 4%; P < 0.05). Prior microinjection of ANG II type 1 receptor blocker losartan (4 nmol) into the PVN did not change the response to ANG II or bicuculline microinjection into the SFO. The results from this study demonstrate that the sympathoexcitation mediated by a glutamatergic mechanism in the PVN is partially driven by the activation of the MnPO or SFO.  相似文献   

9.
This study investigated whether changes in GABA-mediated neurotransmission within the nucleus of the solitary tract (NTS) contribute to the changes in breathing (resting ventilation and the acute HVR) that occur following exposure to chronic hypoxia (CH). Rats were exposed to 9 days of hypobaric hypoxia (0.5 atm) and then subjected to acute hypoxic breathing trials before and after bilateral microinjections of GABA, bicuculline (a GABAA-receptor antagonist), or bicuculline plus CGP-35348 (a GABAB receptor antagonist) into the caudal regions of the NTS. Breathing was measured using whole body plethysmography. CH caused an increase in resting ventilation when the animals were breathing 30% O2 but did not alter ventilation during acute hypoxia (10% O2). GABA alone had no effect on breathing in either the control or chronically hypoxic rats. Bicuculline and bicuculline/CGP had no effect on breathing in control rats. Following CH, bicuculline and bicuculline/CGP reduced minute ventilation (VI) during acute exposure to 30% O2 but had no effect during acute exposure to 10% O2. The bicuculline-induced reduction in VI resulted from a decrease in breathing frequency (fR) and tidal volume (VT). The bicuculline/CGP-induced reduction in VI was due to a decrease in fR with no change in VT. The results suggest that changes in GABA receptor-mediated neurotransmission, within the NTS, are involved in the increase in resting ventilation that occurs following CH.  相似文献   

10.
11.
Ventilatory long-term facilitation (LTF; defined as gradual increase of minute ventilation following repeated hypoxic exposures) is well described in adult mammals and is hypothesized to be a protective mechanism against apnea. In newborns, LTF is absent during the first postnatal days, but its precise developmental pattern is unknown. Accordingly, this study describes this pattern of postnatal development. Additionally, we tested the hypothesis that chronic intermittent hypoxia (CIH) from birth alters this development. LTF was estimated in vivo using whole body plethysmography by exposing rat pups at postnatal days 1, 4, and 10 (P1, P4, and P10) to 10 brief hypoxic cycles (nadir 5% O2) and respiratory recordings during the following 2 h (recovery, 21% O2). Under these conditions, ventilatory LTF (gradual increase of minute ventilation during recovery) was clearly expressed in P10 rats but not in P1 and P4. In a second series of experiments, rat pups were exposed to CIH during the first 10 postnatal days (6 brief cyclic exposures at 5% O2 every 6 min followed by 1 h under normoxia, 24 h a day). Compared with P10 control rats, CIH enhanced hypoxic ventilatory response (estimated during the hypoxic cycles) specifically in male rat pups. Ventilatory LTF was drastically reduced in P10 rats exposed to CIH, which was associated with higher apnea frequency during recovery. We conclude that CIH from birth enhances hypoxic chemoreflex and disrupts LTF development, thus likely contributing to increase apnea frequency.  相似文献   

12.
Electrical stimulation of the cerebellar fastigial nucleus (FN) evokes hyperventilation and hypertension responses that are similar to those induced by stimulation of the medial region of the vestibular nucleus (VNM). Because there are mutual projections between these two nuclei morphologically, we hypothesized that the FN-mediated cardiorespiratory responses were related to the integrity of the VNM. Experiments were conducted on 21 anesthetized, tracheotomized, and spontaneously breathing rats. Electrical stimulation (approximately 10 s) of the FN was used to evoke cardiorespiratory responses, and the same stimulus was repeated 30-45 min after bilateral lesions of the VNM by local microinjection of ibotenic acid (100 mM, 100 nl). We found that FN stimulation-induced hyperventilation and hypertension were attenuated significantly by the lesions. The role of the VNM in the ventilatory responses to chemical challenges was subsequently defined. The animals were exposed to hypercapnia (10% CO2) and hypoxia (10% O2) for 1-2 min randomly before and after VNM lesions. The results showed that VNM lesions significantly attenuated the cardiorespiratory responses to hypercapnia but not to hypoxia, with little effect on baseline respiratory variables. These findings suggest that the VNM is required for full expression of the cardiorespiratory responses to electrical stimulation of the FN as well as to hypercapnia. However, neurons within the VNM do not appear to be critical for maintaining eupneic breathing and the cardiorespiratory responses to hypoxia.  相似文献   

13.
Isolated rat lungs were perfused with suspensions containing normal and stiffened erythrocytes (RBCs) during normoxic and hypoxic ventilation to assess the effect of reduced RBC deformability on the hypoxic pressor response. RBC suspensions were prepared with cells previously incubated in isotonic phosphate-buffered saline with or without 0.0125% glutaraldehyde. The washed RBCs were resuspended in isotonic bicarbonate-buffered saline (with 4% albumin) to hematocrits of approximately 35%. The lungs were perfused with control and experimental cell suspensions in succession while pulmonary arterial pressure was measured during normoxic (21% O2) and hypoxic (3% O2) ventilation. On the attainment of a peak hypoxic pressor response, flow rate was changed so that pressure-flow curves could be constructed for each suspension. RBC deformability was quantified by a filtration technique using 4.7-microns-pore filters. Glutaraldehyde treatment produced a 10% decrease in RBC deformability (P less than 0.05). Over the range of flow rates, Ppa was increased by 15-17% (P less than 0.05) and 26-31% (P less than 0.05) during normoxic and hypoxic ventilation, respectively, when stiffened cells were suspended in the perfusate. The magnitude of the hypoxic pressor response was 50-54% greater with stiffened cells over the three flow rates. In a separate set of experiments, normoxic and hypoxic arterial blood samples from conscious unrestrained rats were used to investigate the effects of acute hypoxia on RBC deformability. Deformability was measured with the same filtration technique. There was no difference in the deformability of hypoxic compared with normoxic RBCs. We conclude that the presence of stiffened RBCs enhances the hemodynamic response to hypoxia but acute hypoxia does not affect RBC deformability.  相似文献   

14.
We recently demonstrated that delta-opioid receptor (DOR) activation protects cortical neurons against glutamate-induced injury. Because glutamate is a mediator of hypoxic injury in neurons, we hypothesized that DOR is involved in neuroprotection during O2 deprivation and that its activation/inhibition may alter neuronal susceptibility to hypoxic stress. In this work, we tested the effect of opioid receptor activation and inhibition on cultured cortical neurons in hypoxia (1% O2). Cell injury was assessed by lactate dehydrogenase release, morphology-based quantification, and live/dead staining. Our results show that 1) immature neurons (days 4 and 6) were not significantly injured by hypoxia until 72 h of exposure, whereas day 8 neurons were injured after only 24-h hypoxia; 2) DOR inhibition (naltrindole) caused neuronal injury in both day 4 and day 8 normoxic cultures and further augmented hypoxic injury in these neurons; 3) DOR activation ([D-Ala2,D-Leu5]enkephalin) reduced neuronal injury in day 8 cultures after 24 h of normoxic or hypoxic exposure and attenuated naltrindole-induced injury with prolonged exposure; and 4) mu- or kappa-opioid receptor inhibition (beta-funaltrexamine or nor-binaltorphimine) had little effect on neurons in either normoxic or hypoxic conditions. Collectively, these data suggest that DOR plays a crucial role in neuroprotection in normoxic and hypoxic environments.  相似文献   

15.
It has been well known that oxytocin (OT)-ergic and arginine vasopressin (AVP)-ergic neurons located in the hypothalamic paraventricular nucleus (PVN) and super optic nucleus (SON) are two kinds of neuroendocrine cells with diverse functions. It has also been demonstrated that immune stimuli can activate these neurons to secret OT and AVP. However, the intracellular signal transduction molecules responsible for the activation of these OT-ergic and AVP-ergic neurons in PVN by immune stimuli are still unclear. In this experiment, the roles of Fos, a protein product of immediate early gene c-fos, and extracellular signal-regulated protein kinase (ERK) 1/2, a signal transduction molecule of mitogen-activated protein kinase (MAPK) family, in these processes were studied in the PVN of the rat following IL-1beta stimulation. The Sprague-Dawley rats were received either 750 ng/kg IL-1beta or equal volume normal saline (NS) injection intravenously (i.v.), and perfused transcardially by 4% paraformaldehyde 3h later. Fos and phosphorylated ERK1/2 (pERK1/2)-immunoreactivity (-ir) was observed in PVN by ABC immunohistochemical staining. Meanwhile, the double staining for OT/Fos, AVP/Fos, OT/pERK1/2 and AVP/pERK1/2 were also processed. The ABC immunohistochemical staining results showed that after an i.v. injection of IL-1beta, the expressions of Fos and pERK1/2 increased evidently in the PVN. Double-staining results showed that a large number of OT-ir cells contained strong Fos-ir products in their nuclei, while only a few of OT cells were double labeled with pERK1/2. As to AVP neurons, great quantities of AVP cells were strongly double labeled with pERK1/2 while there were nearly no Fos-ir nuclei in AVP-ir cells. We conclude from these results that the intracellular IL-1beta-induced events in OT and AVP neurons in PVN are quite different. The OT neurons are mainly activated via Fos without involvement of ERK1/2 pathway, while the latter, but not Fos, involves the intracellular event in AVP neurons activated by IL-1beta.  相似文献   

16.
Femtomole doses of angiotensin (ANG) II microinjected into nucleus tractus solitarii (nTS) decrease blood pressure and heart rate, mimicking activation of the baroreflex, whereas higher doses depress this reflex. ANG II might generate cardioinhibitory responses by augmenting cardiovascular afferent synaptic transmission onto nTS neurons. Intracellular recordings were obtained from 99 dorsal medial nTS region neurons in rat medulla horizontal slices to investigate whether ANG II modulated short-latency excitatory postsynaptic potentials (EPSPs) evoked by solitary tract (TS) stimulation. ANG II (200 fmol) increased TS-evoked EPSP amplitudes 20-200% with minimal membrane depolarization in 12 neurons excited by ANG II and glutamate, but not substance P (group A). Blockade of non-N-methyl-d-aspartate receptors eliminated TS-evoked EPSPs and responses to ANG II. ANG II did not alter TS-evoked EPSPs in 14 other neurons depolarized substantially by ANG II and substance P (group B). ANG II appeared to selectively augment presynaptic sensory transmission in one class of nTS neurons but had only postsynaptic effects on another group of cells. Thus ANG II is likely to modulate cardiovascular function by more than one nTS neuronal pathway.  相似文献   

17.
Activation of central 5-hydroxytryptamine-1A (5-HT(1A)) receptors powerfully inhibits stress-evoked cardiovascular responses mediated by the dorsomedial hypothalamus (DMH), as well as responses evoked by direct activation of neurons within the DMH. The hypothalamic paraventricular nucleus (PVN) also has a crucial role in cardiovascular regulation and is believed to regulate heart rate and renal sympathetic activity via pathways that are independent of the DMH. In this study, we determined whether cardiovascular responses evoked from the PVN are also modulated by activation of central 5-HT(1A) receptors. In anesthetized rats, the increases in heart rate and renal sympathetic nerve activity evoked by bicuculline injection into the PVN were greatly reduced (by 54% and 61%, respectively) by intravenous administration of (±)-8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT), an agonist of 5-HT(1A) receptors, but were then completely restored by subsequent administration of WAY-100635, a selective antagonist of 5-HT(1A) receptors. Microinjection of 8-OH-DPAT directly into the PVN did not significantly affect the responses to bicuculline injection into the PVN, nor did systemic administration of WAY-100635 alone. In control experiments, a large renal sympathoexcitatory response was evoked from both the PVN and DMH but not from the intermediate region in between; thus the evoked responses from the PVN were not due to activation of neurons in the DMH. The results indicate that activation of central 5-HT(1A) receptors located outside the PVN powerfully inhibits the tachycardia and renal sympathoexcitation evoked by stimulation of neurons in the PVN.  相似文献   

18.
We determined the interaction between the vestibulosympathetic reflex and the arterial chemoreflex in 12 healthy subjects. Subjects performed three trials in which continuous recordings of muscle sympathetic nerve activity (MSNA), mean arterial blood pressure (MAP), heart rate (HR), and arterial oxygen saturation were obtained. First, in prone subjects the otolith organs were engaged by use of head-down rotation (HDR). Second, the arterial chemoreflex was activated by inspiration of hypoxic gas (10% O2 and 90% N2) for 7 min with HDR being performed during minute 6. Third, hypoxia was repeated (15 min) with HDR being performed during minute 14. HDR [means +/- SE; increase (Delta)7 +/- 1 bursts/min and Delta50 +/- 11% for burst frequency and total MSNA, respectively; P < 0.05] and hypoxia (Delta6 +/- 2 bursts/min and Delta62 +/- 29%; P < 0.05) increased MSNA. Additionally, MSNA increased when HDR was performed during hypoxia (Delta11 +/- 2 bursts/min and Delta127 +/- 57% change from normoxia; P < 0.05). These increases in MSNA were similar to the algebraic sum of the individual increase in MSNA elicited by HDR and hypoxia (Delta13 +/- 1 bursts/min and Delta115 +/- 36%). Increases in MAP (Delta3 +/- 1 mmHg) and HR (Delta19 +/- 1 beats/min) during combined HDR and hypoxia generally were smaller (P < 0.05) than the algebraic sum of the individual responses (Delta5 +/- 1 mmHg and Delta24 +/- 2 beats/min for MAP and HR, respectively; P < 0.05). These findings indicate an additive interaction between the vestibulosympathetic reflex and arterial chemoreflex for MSNA. Therefore, it appears that MSNA outputs between the vestibulosympathetic reflex and arterial chemoreflex are independent of one another in humans.  相似文献   

19.
The serin/threonin-kinase, mammalian target of rapamycin (mTOR) was detected in the arcuate nucleus (ARC) and paraventricular nucleus of the hypothalamus (PVN) and suggested to play a role in the integration of satiety signals. Since cholecystokinin (CCK) plays a role in the short-term inhibition of food intake and induces c-Fos in PVN neurons, the aim was to determine whether intraperitoneally injected CCK-8S affects the neuronal activity in cells immunoreactive for phospho-mTOR in the PVN. Ad libitum fed male Sprague-Dawley rats received 6 or 10 μg/kg CCK-8S or 0.15 M NaCl ip (n = 4/group). The number of c-Fos-immunoreactive (ir) neurons was assessed in the PVN, ARC and in the nucleus of the solitary tract (NTS). CCK-8S increased the number of c-Fos-ir neurons in the PVN (6 μg: 103 ± 13 vs. 10 μg: 165 ± 14 neurons/section; p < 0.05) compared to vehicle treated rats (4 ± 1, p < 0.05), but not in the ARC. CCK-8S also dose-dependently increased the number of c-Fos neurons in the NTS. Staining for phospho-mTOR and c-Fos in the PVN showed a dose-dependent increase of activated phospho-mTOR neurons (17 ± 3 vs. 38 ± 2 neurons/section; p < 0.05), while no activated phospho-mTOR neurons were observed in the vehicle group. Triple staining in the PVN showed activation of phospho-mTOR neurons co-localized with oxytocin, corresponding to 9.8 ± 3.6% and 19.5 ± 3.3% of oxytocin neurons respectively. Our observations indicate that peripheral CCK-8S activates phospho-mTOR neurons in the PVN and suggest that phospho-mTOR plays a role in the mediation of CCK-8S's anorexigenic effects.  相似文献   

20.
Nucleobindin-2 derived nesfatin-1 in the hypothalamic paraventricular nucleus (PVN) plays a role in inhibition of feeding. The neural pathways downstream of PVN nesfatin-1 have been extensively investigated. However, regulation of the PVN nesfatin-1 neurons remains unclear. Since starvation decreases and refeeding stimulates nesfatin-1 expression specifically in the PVN, this study aimed to clarify direct effects of meal-evoked metabolic factors, glucose and insulin, on PVN nesfatin-1 neurons. High glucose (10mM) and insulin (10(-13)M) increased cytosolic calcium concentration ([Ca(2+)](i)) in 55 of 331 (16.6%) and 32 of 249 (12.9%) PVN neurons, respectively. Post [Ca(2+)](i) measurement immunocytochemistry identified that 58.2% of glucose-responsive and 62.5% of insulin-responsive neurons were immunoreactive to nesfatin-1. Furthermore, a fraction of the glucose-responsive nesfatin-1 neurons also responded to insulin, and vice versa. Some of the neurons that responded to neither glucose nor insulin were recruited to [Ca(2+)](i) increases by glucose and insulin in combination. Our data demonstrate that glucose and insulin directly interact with and increase [Ca(2+)](i) in nesfatin-1 neurons in the PVN, and that the nesfatin-1 neuron is the primary target for them in the PVN. The results suggest that high glucose- and insulin-induced activation of PVN nesfatin-1 neurons serves as a mechanism through which meal ingestion stimulates nesfatin-1 neurons in the PVN and thereby produces satiety.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号