首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Regulation of the endogenous NO pathway by prolonged inhaled NO in rats   总被引:1,自引:0,他引:1  
Nitric oxide(NO) modulates the endogenous NO-cGMP pathway. We determined whetherprolonged inhaled NO downregulates the NO-cGMP pathway, which mayexplain clinically observed rebound pulmonary hypertension. Rats wereplaced in a normoxic (N; 21%O2) or hypoxic (H; 10%O2) environment with and withoutinhaled NO (20 parts/million) for 1 or 3 wk. Subsequently, nitric oxidesynthase (NOS) and soluble guanylate cyclase (GC) activity andendothelial NOS (eNOS) protein levels were measured. Perfusate cGMPlevels and endothelium-dependent and -independent vasodilation weredetermined in isolated lungs. eNOS protein levels and NOS activity werenot altered by inhaled NO in N or H rats. GC activity was decreased by60 ± 10 and 55 ± 11% in N and H rats, respectively, after 1 wkof inhaled NO but was not affected after 3 wk. Inhaled NO had no effecton perfusate cGMP in N lungs. Inhaled NO attenuated the increase incGMP levels caused by 3 wk of H by 57 ± 11%, but there was norebound in cGMP after 24 h of recovery. Endothelium-dependentvasodilation was not altered, and endothelium-independent vasodilationwas not altered (N) or slightly increased (H, 10 ± 3%) byprolonged inhaled NO. In conclusion, inhaled NO did not alter theendogenous NO-cGMP pathway as determined by eNOS protein levels, NOSactivity, or endothelium-dependent vasodilation under N and Hconditions. GC activity was decreased after 1 wk; however, GC activitywas not altered by 3 wk of inhaled NO and endothelium-independentvasodilation was not decreased.

  相似文献   

2.
Hydrogen sulfide (H(2)S) has recently been shown to have a signaling role in vascular cells. Similar to nitric oxide (NO), H(2)S is enzymatically produced by amino acid metabolism and can cause posttranslational modification of proteins, particularly at thiol residues. Molecular targets for H(2)S include ATP-sensitive K(+) channels, and H(2)S may interact with NO and heme proteins such as cyclooxygenase. It is well known that the reactions of NO in the vasculature are O(2) dependent, but this has not been addressed in most studies designed to elucidate the role of H(2)S in vascular function. This is important, since H(2)S reactions can be dramatically altered by the high concentrations of O(2) used in cell culture and organ bath experiments. To test the hypothesis that the effects of H(2)S on the vasculature are O(2) dependent, we have measured real-time levels of H(2)S and O(2) in respirometry and vessel tension experiments, as well as the associated vascular responses. A novel polarographic H(2)S sensor developed in our laboratory was used to measure H(2)S levels. Here we report that, in rat aorta, H(2)S concentrations that mediate rapid contraction at high O(2) levels cause rapid relaxation at lower physiological O(2) levels. At high O(2), the vasoconstrictive effect of H(2)S suggests that it may not be H(2)S per se but, rather, a putative vasoactive oxidation product that mediates constriction. These data are interpreted in terms of the potential for H(2)S to modulate vascular tone in vivo.  相似文献   

3.
Hypoxia and amino acid deprivation downregulate expression of extracellular matrix genes in lung fibroblasts. We examined the effect of hypoxia on amino acid uptake and protein formation in human lung fibroblasts. Low O(2) tension (0% O(2)) suppressed incorporation of [(3)H]proline into type I collagen without affecting [(35)S]methionine labeling of other proteins. Initial decreases in intracellular [(3)H]proline incorporation occurred after 2 h of exposure to 0% O(2), with maximal suppression of intracellular [(3)H]proline levels at 6 h of treatment. Hypoxia significantly inhibited the uptake of radiolabeled proline, 2-aminoisobutyric acid (AIB), and 2-(methylamino)isobutyric acid (methyl-AIB) while inducing minor decreases in leucine transport. Neither cycloheximide nor indomethacin abrogated hypoxia-related suppression of methyl-AIB uptake. Efflux studies demonstrated that hypoxia inhibited methyl-AIB transport in a bidirectional fashion. The downregulation of amino acid transport was not due to a toxic effect; function recovered on return to standard O(2) conditions. Kinetic analysis of AIB transport revealed a 10-fold increase in K(m) accompanied by a small increase in maximal transport velocity among cells exposed to 0% O(2). These data indicate that low O(2) tension regulates the system A transporter by decreasing transporter substrate affinity.  相似文献   

4.
Bovine pulmonary artery endothelial cells in culture were used to assess the influence of oxygen tension on proteoglycan synthesis. Cells exposed to 3% O2 (hypoxia) for 72 h and then labeled with [35S]sulfate for 5 h accumulated significantly less [35S]proteoglycan in medium than cells exposed to 20% O2 (control). This decrease was due primarily to a reduction in heparan sulfate. Cells exposed to 80% O2 (hyperoxia) for 72 h secreted slightly more [35S]proteoglycan into medium than controls. Greater accumulation of chondroitin sulfate was responsible for the increase. The amount of cell-associated proteoglycan did not change significantly in cells cultured in 3% or 80% O2 as compared with control cells cultured in 20% O2. Proteoglycans produced by hypoxia- or hyperoxia-treated cells were found to be similar in size to proteoglycans produced by cells cultured at 20% O2. Glycosaminoglycan sulfation, as measured by ion-exchange chromatography, did not appear to change with varying oxygen tensions. Our results demonstrate that production of proteoglycans secreted by endothelial cells in culture is sensitive to oxygen tension.  相似文献   

5.
Inhaled nitric oxide (NO) and inhaled prostacyclin (PGI2) produce selective reductions in pulmonary vascular resistance (PVR) through differing mechanisms. NO decreases PVR via cGMP, and PGI2 produces pulmonary vasodilation via cAMP. As a general pharmacological principle, two drugs that produce similar effects via different mechanisms should have additive or synergistic effects when combined. We designed this study to investigate whether combined inhaled NO and PGI2 therapy results in additive effects during chronic pulmonary hypertension in the rat. Monocrotaline injected 4 wk before study produced pulmonary hypertension in all animals. Inhaled NO (20 parts/million) reversibly and selectively decreased pulmonary artery pressure (Ppa) with a mean reduction of 18%. Four concentrations of PGI2 were administered via inhalation (5, 10, 20, and 80 microg/ml), both alone and combined with inhaled NO. Inhaled PGI2 alone decreased Ppa in a dose-dependent manner with no change in mean systemic arterial pressure. Combined inhaled NO and PGI2 selectively and significantly decreased Ppa more did than either drug alone. The effects were additive at the lower concentrations of PGI2 (5, 10, and 20 microg/ml). The combination of inhaled NO and inhaled PGI2 may be useful in the management of pulmonary hypertension.  相似文献   

6.
Previous research has shown that hypoxia-acclimated Atlantic cod (Gadus morhua) have significantly reduced cardiac function but can consume more oxygen for a given cardiac output (Q). However, it is not known (1) which physiological changes permit a greater "oxygen pulse" (oxygen consumed per mL of blood pumped) in hypoxia-acclimated individuals or (2) whether chronic exposure to low-oxygen conditions improves the hypoxia tolerance of cod. Thus, we exposed normoxia- and hypoxia-acclimated (> 6 wk at a water oxygen partial pressure [P(w)O(2)] ~8-9 kPa) cod to a graded normoxia challenge until loss of equilibrium occurred while recording the following cardiorespiratory variables: oxygen consumption (MO(2)), ventilatory rate, cardiac function (Q, heart rate f(H), and stroke volume S(V)), ventral aortic blood pressure (P(VA)), venous oxygen partial pressure (P(v)O(2)) and oxygen content (C(v)O(2)), plasma catecholamines, and blood hemoglobin ([Hb]) and hematocrit (Hct). In addition, we performed in vitro hemoglobin oxygen binding curves to examine whether hypoxia acclimation influences hemoglobin functional properties. Numerous physiological adjustments occurred in vivo during the > 6 wk of hypoxia acclimation: that is, increased f(H), decreased S(V) and Q, elevated [Hb], enhanced tissue oxygen extraction (by 10% at a P(w)O(2) of 20 kPa), and a more robust stress response as evidenced by circulating catecholamine levels that were two to eight times higher when fish were acutely exposed to severe hypoxia. In contrast, chronic hypoxia had no significant effect on the affinity of hemoglobin for oxygen, on in vitro hemoglobin oxygen carrying capacity, or on the cod's hypoxia tolerance (H(crit); the P(w)O(2) at which the fish lost equilibrium, which was 4.3 ± 0.2 and 4.8 ± 0.3 kPa in normoxia- and hypoxia-acclimated fish, respectively). These data suggest that while chronic hypoxia results in numerous physiological adjustments, these changes do not improve the cod's capacity to tolerate low-oxygen conditions.  相似文献   

7.
8.
The hypothesis that oxidative stress can be induced by hypoxia was tested by measuring the concentration of hydrogen peroxide by a luminometric technique in the breath samples of rats exposed to hypoxia and paraquat. The group of animals (n=15) exposed to normobaric hypoxia (10% O2) for three days had an increased amount of H2O2 (200%, P<0.001) in their breath in comparison to control animals. After 7 days of recovery in air, the exposed animals still produced significantly increased levels of H2O2 (152%, P<0.001). Paraquat administration was used as a positive control, since it is a redox cycling compound producing free radicals. In the animals treated with a toxic dose of paraquat, the peak H2O2 production was observed 5 h after i.p. injection (156%, P<0.02). Within the next 2 h it decreased to the control level and stayed constant for 48 h, when the animals began to die. It is suggested that H2O2, observed in the breath samples, is a product of a metabolic pathway that could itself be sensitive to oxidative damage.  相似文献   

9.
The 20 S proteasome core purified from Saccharomyces cerevisiae is inhibited by reduced glutathione (GSH), cysteine (Cys), or the GSH precursor gamma-glutamylcysteine. Chymotrypsin-like activity was more affected by GSH than trypsin-like activity, whereas the peptidylglutamyl-hydrolyzing activity (caspase-like) was not inhibited by GSH. Cys-sulfenic acid formation in the 20 S core was demonstrated by spectral characterization of the Cys-S(O)-4-nitrobenzo-2-oxa-1,3-diazole adduct, indicating that 20 S proteasome Cys residues might react with reduced sulfhydryls (GSH, Cys, and gamma-glutamylcysteine) through the oxidized Cys-sulfenic acid form. S-Glutahionylation of the 20 S core was demonstrated in vitro by GSH-biotin incorporation and by decreased alkylation with monobromobimane. Compounds such as N-ethylmaleimide (-S-sulfhydril H alkylating), dimedone (-SO sulfenic acid H reactant), or 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (either -SH or -SOH reactant) highly inhibited proteasomal chymotrypsin-like activity. In vivo experiments revealed that 20 S proteasome extracted from H(2)O(2)-treated cells showed decreased chymotrypsin-like activity accompanied by S-glutathionylation as demonstrated by GSH release from the 20 S core after reduction with NaBH(4). Moreover, cells pretreated with H(2)O(2) showed decreased reductive capacity assessed by determination of the GSH/oxidized glutathione ratio and increased protein carbonyl levels. The present results indicate that at the physiological level the yeast 20 S proteasome is regulated by its sulfhydryl content, thereby coupling intracellular redox signaling to proteasome-mediated proteolysis.  相似文献   

10.
The aim of this study was to compare levels of stress proteins in four Trichinella species when exposed to different stressors. Heat shock protein (HSP) 60, 70 and 90 responses were evaluated in infective larvae (L(1)) of four classic Trichinella species following exposure to oxidative, anthelminthic and thermal stress. Larvae of T. nativa, T nelsoni, T. pseudospiralis and T. spiralis were exposed to peroxide shock (0.2%, 1%, or 2% H(2)O(2)for 2h), high temperatures (40 degrees C or 45 degrees C for 2h), or 0.1 microg/ml of the benzimidazole anthelminthics: mebendazole (MBZ), albendazole (ALB) or thiabendazole (TBZ) for 4h. Following exposures, the L(1) were tested for induced morphological changes. Those observed were: (i) no change (in all species exposed to 40 degrees C) (ii) aberrant forms (in all species exposed to anthelminthics, in T. nativa, T. nelsoni and T. spiralis exposed to 45 degrees C, and in T. spiralis and T. nelsoni exposed to 0.2% H(2)O(2)) and (iii) severe degradation or death (in T. nativa and T. pseudospiralis exposed to 0.2% H(2)O(2), and in all species at 1% and 2% H(2)O(2)). In Western blot analyses, L(1) proteins were probed with monoclonal antibodies (mAbs) specific for the three HSPs. Greater changes in HSP levels occurred following H(2)O(2) exposure than with other stresses in all Trichinella species, while accumulation of a 50 kDa HSP was only observed in T. spiralis and T. pseudospiralis. Anthelminthic stress only caused decreased HSP levels in T. nativa. Thermal stress caused no significant changes in the HSP response of any species. It is suggested that other stress proteins (e.g., glucose-regulated proteins) may be involved in adaptation to thermal stress.  相似文献   

11.
When exposed continuously to hyperoxia (100% O2, 760 Torr barometric pressure), rats pretreated with polyethylene glycol (PEG)-attached superoxide dismutase and catalase (PEG-SOD + PEG-CAT) lived longer (79.1 + 7.6 h) than rats pretreated with saline (60.7 +/- 2.1 h) or PEG-inactivated-SOD + PEG-inactivated-CAT (62.3 +/- 1.6 h). Rats pretreated with PEG-SOD + PEG-CAT also had less hyperoxia-induced acute oxidative edematous lung injury, as assessed by increases in lung oxidized glutathione (GSSG) contents, pleural effusions, and lung lavage albumin concentrations than saline-pretreated rats. Rats pretreated with the long-lived conjugates PEG-inactivated-SOD + PEG-inactivated-CAT or PEG-albumin also had decreased acute oxidative edematous lung injury compared with rats pretreated with PEG, SOD + CAT + PEG, SOD + CAT, or saline. In vitro studies suggested that PEG itself may have contributed to protection by scavenging hydroxyl radical (.OH) but not superoxide (O2-.) or H2O2. Compared with more effective endogenous (via preexposure to hypoxia) or exogenous (via liposomes) means for increasing lung antioxidant enzymes, PEG enzymes are less protective against lung injury from continuous hyperoxia.  相似文献   

12.
The gray mouse lemur (Microcebus murinus) is one of few primate species that is able to enter daily torpor or prolonged hibernation in response to environmental stresses. With an emerg-ing significance...  相似文献   

13.
14.
Preexposure to hypoxia increased survival and lung reduced glutathione-to-oxidized glutathione ratios (GSH/GSSG) and decreased pleural effusions in rats subsequently exposed to continuous hyperoxia. In addition, lungs from hypoxia-preexposed rats developed less acute edematous injury (decreased lung weight gains and lung lavage albumin concentrations) than lungs from normoxia-preexposed rats when isolated and perfused with hydrogen peroxide (H2O2) generated by xanthine oxidase (XO) or glucose oxidase (GO). In contrast, when perfused with elastase or exposed to a hydrostatic left atrial pressure challenge, lungs isolated from hypoxia-preexposed rats developed the same acute edematous injury as lungs from normoxia-preexposed rats. The mechanism by which hypoxia preexposure conferred protection against H2O2 appeared to depend on hexose monophosphate shunt (HMPS)-dependent increases in lung glutathione redox cycle activity. First, before perfusion with GO, lungs from hypoxia-preexposed rats had increased glutathione peroxidase and glucose 6-phosphate dehydrogenase (but not catalase or glutathione reductase) activities compared with lungs from normoxia-preexposed rats. Second, after perfusion with GO, lungs from hypoxia-preexposed rats had increased H2O2 reducing equivalents, as reflected by increased GSH/GSSG and NADPH/NADPH+, compared with lungs from normoxia-preexposed rats. Third, pretreatment of rats with an HMPS inhibitor, (6-aminonicotinamide) or a glutathione reductase inhibitor, [1,3-bis(2-chloroethyl)-1-nitrosourea] prevented hypoxia-conferred protection against H2O2-mediated acute edematous injury in isolated lungs. These findings suggest that increased detoxification of H2O2 by glutathione redox cycle and HMPS-dependent mechanisms contributes to tolerance to hyperoxia and resistance to H2O2 of lungs from hypoxia-preexposed rats.  相似文献   

15.
The objective of this study was to characterize the influence of peroxisome proliferation on the metabolism of physiological concentrations of Se. In an initial series of experiments hepatocytes in primary cultures and isolated from ordinary-fed rats, were used. The cells were exposed to 75Se-selenite (30 nM) and after 24 h the labelling of selenoproteins was analysed with SDS-PAGE. Treatments with mono(2-ethylhexyl)phthalate (MEHP; a metabolite of di(2-ethylhexyl)phthalate (DEHP)), nafenopin, decreased oxygen tension and a H2O2 generating system decreased the labelling of a 23-kDa and a 15-kDa protein. The decreased labelling of the 23- and the 15-kDa proteins was usually accompanied by an increased labelling of a 58-kDa protein. Increased oxygen tension induced uncertain effects, possibly due to toxicity. In order to further evaluate the validity of the model, the labelling was also studied in hepatocytes isolated from Se-deficient and torula yeast-fed rats. In these cells there was a decreased labelling of the 23-kDa protein as compared to cells from Se-supplemented controls when 100 nM selenite was used. In in vivo experiments it was found that a DEHP-induced decrease in glutathione peroxidase (GSH-Px) activity was potentiated by high doses of selenite. To a large extent, the labelling data are compatible with enzyme activity data and in vivo data. For example, the decreased labelling of the 23-kDa protein may reflect the decreased GSH-Px activity. It is concluded that the effects induced by MEHP on Se-labelling can be explained by an increase in the steady state level of H2O2.  相似文献   

16.

Background

Lung ischemia–reperfusion injury (LIRI) may occur in the region of the affected lung after reperfusion therapy. Inhaled NO may be useful in treating acute and chronic pulmonary thromboembolism (PTE) due to the biological effect property of NO.

Methods

A PTE canine model was established through selectively embolizing blood clots to an intended right lower lobar pulmonary artery. PaO2/FiO2, the mPAP and PVR were investigated at the time points of 2, 4, 6 hours after inhaled NO. Masson’s trichrome stain, apoptotic pneumocytes and lung sample ultrastructure were also investigated among different groups.

Results

The PaO2/FiO2 in the Inhaled NO group increased significantly when compared with the Reperfusion group at time points of 4 and 6 hours after reperfusion, mPAP decreased significantly at point of 2 hours and the PVR decreased significantly at point of 6 hours after reperfusion. The amounts of apoptotic type II pneumocytes in the lower lobar lung have negative correlation trend with the arterial blood PaO2/FiO2 in Reperfusion group and Inhaled NO group. Inhaled nitric oxide given at 20 ppm for 6 hours can significantly alleviate the LIRI in the model.

Conclusions

Dramatic physiological improvements are seen during the therapeutic use of inhaled NO in pulmonary thromboembolism canine model. Inhaled NO may be useful in treating LIRI in acute or chronic PTE by alleviating apoptotic type II pneumocytes. This potential application warrants further investigation.
  相似文献   

17.
Oxidative stress is a likely contributor to the pathogenesis of cystic fibrosis (CF) lung disease. However, hydrogen peroxide (H(2)O(2)), a physiological oxidant, is not elevated in CF exhalates. H(2)O(2) may be neutralized by antioxidants in CF airway secretions. The H(2)O(2)-detoxifying capacity of CF airway secretions, obtained via sputum induction, was studied in an in vitro H(2)O(2) cytotoxicity model. 16HBE14o- cells were exposed to H(2)O(2) in culture medium containing either 0 or 10% fetal bovine serum (FBS) or 10% CF sputum supernatant (extracted without use of dithiothreitol). The efficiency of H(2)O(2) neutralization was estimated by measuring intracellular oxidant levels (dihydrorhodamine 123) after 2 h and cell viability (propidium iodide) after 24 h of H(2)O(2) exposure. Furthermore, the presence of reduced thiols (DTNB assay) and reduced glutathione (recycling assay) in CF sputum samples was evaluated. CF sputum extracts completely prevented intracellular oxidant accumulation seen in cells incubated with H(2)O(2) in both control media (i.e., 0 or 10% FBS). Furthermore, CF sputum abolished cell death in 16HBE14o- cells exposed to up to 1 mM H(2)O(2). In contrast, there was 100% cytotoxicity in cells exposed to 600 microM H(2)O(2) in both control media. The H(2)O(2)-detoxifying potential of CF sputum was sustained after catalase and heme peroxidases were inactivated by sodium azide, which does not affect glutathione peroxidase. In addition, reduced protein thiols were found in abundance in CF sputum. In conclusion, CF sputum is capable to neutralize H(2)O(2) and abundant reduced thiols and/or glutathione peroxidase are fully sufficient to detoxify H(2)O(2).  相似文献   

18.
Hydrogen sulfide (H(2)S), an endogenous gaseous mediator, has been shown to exert protective effects against damage to different organs in the human body caused by various stimuli. However, the potential effects of H(2)S on hypoxia-induced neuronal apoptosis and its mechanisms remain unclear. Here, we exposed mouse hippocampal neurons to hypoxic conditions (2% O(2), 5% CO(2) and 93% N(2) at 37°C) to establish a hypoxic cell model. We found that 4-h hypoxia treatment significantly increased intracellular reactive oxygen species (ROS) levels, and pretreatment with NaHS (a source of H(2)S) for 30min suppressed hypoxia-induced intracellular ROS elevation. The hypoxia treatment significantly increased cytosolic calcium ([Ca(2+)](i)), and pretreatment with NaHS prevented the increase in [Ca(2+)](i). Additionally, polyethylene glycol (PEG)-catalase (a H(2)O(2) scavenger) but not PEG-SOD (an O(2)(-) scavenger) conferred an inhibitory effect similar to H(2)S on the hypoxia-induced increase in [Ca(2+)](i). Furthermore, we found that pretreatment with NaHS could significantly inhibit hypoxia-induced neuronal apoptosis, which was also inhibited by PEG-catalase or the inositol 1,4,5-triphosphate (IP(3)) receptor blocker xestospongin C. Taken together, these findings suggest that H(2)S inhibits hypoxia-induced apoptosis through inhibition of a ROS (mainly H(2)O(2))-activated Ca(2+) signaling pathway in mouse hippocampal neurons.  相似文献   

19.
Peroxiredoxin-3 (Prdx3) is a mitochondrial member of the antioxidant family of thioredoxin peroxidases that uses mitochondrial thioredoxin-2 (Trx2) as a source of reducing equivalents to scavenge hydrogen peroxide (H(2)O(2)). Low levels of H(2)O(2) produced by the mitochondria regulate physiological processes, including cell proliferation, while high levels of H(2)O(2) are toxic to the cell and cause apoptosis. WEHI7.2 thymoma cells with stable overexpression of Prdx3 displayed decreased levels of cellular H(2)O(2) and decreased cell proliferation without a change in basal levels of apoptosis. Prdx3-transfected cells showed a marked resistance to hypoxia-induced H(2)O(2) formation and apoptosis. Prdx3 overexpression also protected the cells against apoptosis caused by H(2)O(2), t-butylhydroperoxide, and the anticancer drug imexon, but not by dexamethasone. Thus, mitochondrial Prdx3 is an important cellular antioxidant that regulates physiological levels of H(2)O(2), leading to decreased cell growth while protecting cells from the apoptosis-inducing effects of high levels of H(2)O(2).  相似文献   

20.
The production of NO by heart mitochondria was 0.7-1.1 nmol NO/min.mg protein, an activity similar to the ones observed in mitochondrial membranes from other organs. Heart mtNOS seems to contribute with about 56% of the total cellular NO production. The immunological nature of the mtNOS isoform of cardiac tissue remains unclear; in our laboratory, heart mtNOS reacted with an anti-iNOS anti-body. Heart mtNOS expression and activity are regulated by physiological and pharmacological effectors. The state 4/state 3 transition regulates heart mtNOS activity and NO release in intact respiring mitochondria: NO production rates in state 3 were 40% lower than in state 4. Heart mtNOS expression was selectively regulated by O(2) availability in hypobaric conditions and the activity was 20-60% higher in hypoxic rats than in control animals, depending on age. In contrast, NADH-cytochrome c reductase and cytochrome oxidase activities were not affected by hypoxia. The activity of rat heart mtNOS decreased 20% on aging from 12 to 72 weeks of age. On the pharmacological side, mitochondrial NO production was increased after enalapril treatment (the inhibitor of the angiotensin converting enzyme) with modification of heart mtNOS functional activity in the regulation of mitochondrial O(2) uptake and H(2)O(2) production. Thus, heart mtNOS is a highly regulated mitochondrial enzyme, which in turn, plays a regulatory role through mitochondrial NO steady state levels that modulate O(2) uptake and O(2)(-) and H(2)O(2) production rates. Nitric oxide and H(2)O(2) constitute signals for metabolic control that are involved in the regulation of cellular processes, such as proliferation and apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号