首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
冠状病毒感染调控细胞凋亡机制研究进展   总被引:3,自引:0,他引:3  
冠状病毒是常见的感染人类和动物并造成健康危害的主要病原性微生物之一,冠状病毒感染细胞后,细胞产生免疫应答,病毒为了在细胞内转录翻译和装配下一代,应对细胞免疫应答的同时,还参与到许多细胞活动中,当细胞特定受体与病毒蛋白结合后,细胞即启动凋亡程序。冠状病毒的许多蛋白在细胞凋亡程序中起促进或抑制凋亡的不同作用,如病毒S蛋白与细胞膜死亡受体作用诱导细胞启动外在凋亡途径,病毒感染细胞后产生的M、S蛋白引起细胞内质网应激、Ca2+失衡,诱导细胞启动内在凋亡途径,而E蛋白则抑制细胞凋亡的发生。本文综述了冠状病毒对侵染细胞的促凋亡或抑制凋亡作用及其作用机制,通过了解病毒不同蛋白在各种凋亡途径中的不同作用,希望为人工干预调控细胞研究提供思路,为冠状病毒感染防控提供理论支持。  相似文献   

2.
3.
Heat shock genes — integrating cell survival and death   总被引:14,自引:0,他引:14  
  相似文献   

4.
Viral infection constitutes an unwanted intrusion that needs to be eradicated by host cells. On one hand, one of the first protective barriers set up to prevent viral replication, spread or persistence involves the induction of apoptotic cell death that aims to limit the availability of the cellular components for viral amplification. On the other hand, while they completely depend on the host molecular machinery, viruses also need to evade the cellular responses that are meant to destroy them. The existence of numerous antiapoptotic products within the viral kingdom proves that apoptosis constitutes a major threat that should better be bypassed. Among the different strategies developed to deal with apoptosis, one is based on what viruses do best: backfiring the cell on itself. Several unrelated viruses have been described to take advantage of apoptosis induction by expressing proteins targeted by caspases, the key effectors of apoptotic cell death. Caspase cleavage of these proteins results in various consequences, from logical apoptosis inhibition to more surprising enhancement or attenuation of viral replication. The present review aims at discussing the characterization and relevance of this post-translational modification that adds a new complexity in the already intricate host–apoptosis–virus triangle.  相似文献   

5.
Enhanced oxidative stress is implicated in the pathogenesis of Parkinson's disease. The catecholaminergic neurotoxin 6-hydroxydopamine (6-OHDA) induces the production of reactive oxygen species (ROS), leading to neuronal cell death. On the other hand, apomorphine, a dopamine D1/D2 receptor agonist and known as a potent antioxidant, has been reported to have a neuroprotective effect. In the present study, we investigated the effect of apomorphine on 6-OHDA-induced apoptotic cell death using the human dopaminergic neuroblastoma cell line, SH-SY5Y. The co-treatment of cells with apomorphine significantly attenuated 6-OHDA-induced ROS generation, the phosphorylation of c-Jun N-terminal kinase (JNK), DNA fragmentation and subsequent apoptotic cell death. In addition, pretreatment with apomorphine for 24 h and the following concomitant treatment enhanced the protective effects against 6-OHDA-induced toxicity except for the attenuation of JNK phosphorylation. We also demonstrated that pretreatment alone with apomorphine for 24 h prior to the exposure confers resistance against 6-OHDA-induced cell toxicity. These findings suggested that apomorphine acts principally as a radical scavenger to suppress the level of ROS and ROS-stimulated apoptotic signaling pathway, whereas the other mechanisms might be involved in the protective effects.  相似文献   

6.
Mitochondria and cell death. Mechanistic aspects and methodological issues.   总被引:31,自引:0,他引:31  
Mitochondria are involved in cell death for reasons that go beyond ATP supply. A recent advance has been the discovery that mitochondria contain and release proteins that are involved in the apoptotic cascade, like cytochrome c and apoptosis inducing factor. The involvement of mitochondria in cell death, and its being cause or consequence, remain issues that are extremely complex to address in situ. The response of mitochondria may critically depend on the type of stimulus, on its intensity, and on the specific mitochondrial function that has been primarily perturbed. On the other hand, the outcome also depends on the integration of mitochondrial responses that cannot be dissected easily. Here, we try to identify the mechanistic aspects of mitochondrial involvement in cell death as can be derived from our current understanding of mitochondrial physiology, with special emphasis on the permeability transition and its consequences (like onset of swelling, cytochrome c release and respiratory inhibition); and to critically evaluate methods that are widely used to monitor mitochondrial function in situ.  相似文献   

7.
In HPB-ALL cells, a human thymus-derived T-cell line, Fas (CD95)-mediated cell death was inhibited by about only 50% as a result of treatment with an amount of benzyloxycarbonyl-Val-Ala-Asp-(O-methyl)-CH(2)F (zVAD-fmk) sufficient to block the caspase activity. Fas-mediated caspase-independent cell death was not observed in other lymphoblast cell lines or mouse activated splenocytes, but this type of cell death was observed in mouse and rat thymocytes, the same as for HPB-ALL cells. This suggests that Fas-mediated caspase-independent cell death is a common feature in thymocytes. The signaling pathway of caspase-independent cell death has not yet been fully elucidated. In HPB-ALL cells, DNA fragmentation, one of the features of apoptotic cells, did not occur in the caspase-independent cell death after Fas ligation. On the other hand, this type of cell death and the surface exposure of phosphatidylserine were recovered by pretreatment with geldanamycin, which brought about a decrease in receptor interacting protein (RIP) kinase expression. These results suggested that HPB-ALL cells have a caspase-independent RIP kinasedependent pathway for Fas ligation.  相似文献   

8.
Abstract

Enhanced oxidative stress is implicated in the pathogenesis of Parkinson's disease. The catecholaminergic neurotoxin 6-hydroxydopamine (6-OHDA) induces the production of reactive oxygen species (ROS), leading to neuronal cell death. On the other hand, apomorphine, a dopamine D1/D2 receptor agonist and known as a potent antioxidant, has been reported to have a neuroprotective effect. In the present study, we investigated the effect of apomorphine on 6-OHDA-induced apoptotic cell death using the human dopaminergic neuroblastoma cell line, SH-SY5Y. The co-treatment of cells with apomorphine significantly attenuated 6-OHDA-induced ROS generation, the phosphorylation of c-Jun N-terminal kinase (JNK), DNA fragmentation and subsequent apoptotic cell death. In addition, pretreatment with apomorphine for 24 h and the following concomitant treatment enhanced the protective effects against 6-OHDA-induced toxicity except for the attenuation of JNK phosphorylation. We also demonstrated that pretreatment alone with apomorphine for 24 h prior to the exposure confers resistance against 6-OHDA-induced cell toxicity. These findings suggested that apomorphine acts principally as a radical scavenger to suppress the level of ROS and ROS-stimulated apoptotic signaling pathway, whereas the other mechanisms might be involved in the protective effects.  相似文献   

9.
While Ca2+/calmodulin-dependent protein kinase II (CaMKII) has been suggested to be an important protein regulating heart function upon ischemia/reperfusion (I/R), the mechanisms responsible are not fully known. Furthermore, it is not known whether CaMKII activation can modulate necroptosis, a recently described form of programmed cell death. In order to investigate these issues, Langendroff-perfused rat hearts were subjected to global ischemia and reperfusion, and CaMKII inhibition was achieved by adding the CaMKII inhibitor KN-93 (0.5 μmol/dm3) to the perfusion solution before the induction of ischemia. Immunoblotting was used to detect changes in expression of proteins modulating both necroptotic and apoptotic cell death. CaMKII inhibition normalized I/R induced increases in expression of necroptotic RIP1 and caspase-8 along with proteins of the intrinsic apoptotic pathway, namely cytochrome c and caspase-9. In addition, it increased the Bcl-2/Bax ratio and reduced caspase-3 and cleaved PARP1 content suggesting reduction of cell death. These changes coexisted with improvement of postischemic contractile function. On the other hand, there was no correlation between levels of pT287-CaMKIIδ and LVDP recovery after I/R. These results demonstrate for the first time that CaMKII inhibition may mitigate cardiac contractile dysfunction, at least partially, by limiting the contents of not only apoptotic, but also necroptotic proteins. Phosphorylation of CaMKII seems unlikely to determine the degree of postischemic recovery of contractile function.  相似文献   

10.
Apoptosis-inducing activity of vitamin C and vitamin K.   总被引:5,自引:0,他引:5  
Apoptosis-inducing activity of vitamins C and K and of their analogs are reviewed. Vitamin C shows both reducing and oxidizing activities, depending on the environment in which this vitamin is present. Higher concentrations of vitamin C induce apoptotic cell death in various tumor cell lines including oral squamous cell carcinoma and salivary gland tumor cell lines, possibly via its prooxidant action. The apoptosis-inducing activity of ascorbate is stimulated by Cu2+, lignin and ion chelator, and inhibited by catalase, Fe3+, Co2+ and saliva. On the other hand, at lower concentrations, ascorbic acid displays an antioxidant property, preventing the spontaneous and stress or antitumor agent-induced apoptosis. Sodium 5,6-benzylidene-L-ascorbate, intravenous administration of which induces degeneration of human inoperable tumors and rat hepatocellular carcinoma in vivo, induces apoptotic or non-apoptotic cell death, depending on the types of target cells. On the other hand, elevation of intracellular concentration of ascorbic acid by treatment with ascorbate 2-phosphate or dehydroascorbic acid makes the cells resistant to the oxidative stress-induced apoptosis. Vitamin K2, which has a geranylgeranyl group as a side chain,and vitamin K3 induces apoptosis of various cultured cells including osteoclasts and osteoblasts, by elevating peroxide and superoxide radicals. Synergistic apoptosis-inducing actions have been found between vitamins C and K, and between these vitamins and antiproliferative agents. The possible therapeutic application of these vitamins is discussed.  相似文献   

11.
Autophagy and apoptosis: where do they meet?   总被引:2,自引:0,他引:2  
Autophagy and apoptosis are two important cellular processes with complex and intersecting protein networks; as such, they have been the subjects of intense investigation. Recent advances have elucidated the key players and their molecular circuitry. For instance, the discovery of Beclin-1’s interacting partners has resulted in the identification of Bcl-2 as a central regulator of autophagy and apoptosis, which functions by interacting with both Beclin-1 and Bax/Bak respectively. When localized to the endoplasmic reticulum and mitochondria, Bcl-2 inhibits autophagy. Cellular stress causes the displacement of Bcl-2 from Beclin-1 and Bax, thereby triggering autophagy and apoptosis, respectively. The induction of autophagy or apoptosis results in disruption of complexes by BH3-only proteins and through post-translational modification. The mechanisms linking autophagy and apoptosis are not fully defined; however, recent discoveries have revealed that several apoptotic proteins (e.g., PUMA, Noxa, Nix, Bax, XIAP, and Bim) modulate autophagy. Moreover, autophagic proteins that control nucleation and elongation regulate intrinsic apoptosis through calpain- and caspase-mediated cleavage of autophagy-related proteins, which switches the cellular program from autophagy to apoptosis. Similarly, several autophagic proteins are implicated in extrinsic apoptosis. This highlights a dual cellular role for autophagy. On one hand, autophagy degrades damaged mitochondria and caspases, and on the other hand, it provides a membrane-based intracellular platform for caspase processing in the regulation of apoptosis. In this review, we highlight the crucial factors governing the crosstalk between autophagy and apoptosis and describe the mechanisms controlling cell survival and cell death.  相似文献   

12.
Role of Bcl-2 family members in invertebrates   总被引:4,自引:0,他引:4  
Proteins belonging to the Bcl-2 family function as regulators of 'life-or-death' decisions in response to various intrinsic and extrinsic stimuli. In mammals, cell death is controlled by pro- and anti-apoptotic members of the Bcl-2 family, which function upstream of the caspase cascade. Structural and functional homologues of the Bcl-2 family proteins also exist in lower eukaryotes, such as nematodes and flies. In nematodes, an anti-apoptotic Bcl-2 family protein, CED-9, functions as a potent cell death inhibitor, and a BH3-only protein, EGL-1, acts as an inhibitor of CED-9 to facilitate the spatio-temporal regulation of programmed cell death. On the other hand, the Drosophila genome encodes two Bcl-2 family proteins, Drob-1/Debcl/dBorg-1/dBok and Buffy/dBorg-2, both of which structurally belong to the pro-apoptotic group, despite abundant similarities in the cell death mechanisms between flies and vertebrates. Drob-1 acts as a pro-apoptotic factor in vitro and in vivo, and Buffy/dBorg-2 exhibits a weak anti-apoptotic function. The ancestral role of the Bcl-2 family protein may be pro-apoptotic, and the evolution of the functions of this family of proteins may be closely linked with the contribution of mitochondria to the cell death pathway.  相似文献   

13.
In a series of discoveries over the preceding decade, a number of laboratories have unequivocally established that apoptotic proteins and pathways are well conserved cell fate determinants, which act independent of a cell death response. Within this context, the role for apoptotic proteins in the induction of cell differentiation has been widely documented. Despite these discoveries, little information has been forthcoming regarding a conserved mechanism by which apoptotic proteins achieve this non-death outcome. In the following discussion, we will explore the premise that the penultimate step in apoptosis, genome wide DNA damage/strand breaks act as a conserved genomic reprogramming event necessary for cell differentiation (Larsen et al., Proc Natl Acad Sci USA 2010; 107 (9):4230-5). Moreover, we hypothesis that directed DNA damage, as mediated by known apoptotic proteins, may participate in numerous forms of regulated gene expression.  相似文献   

14.
Radiation affects several cellular and molecular processes, including double strand breakage and modifications of sugar moieties and bases. In outer space, protons are the primary radiation source that poses a range of potential health risks to astronauts. On the other hand, the use of proton irradiation for tumor radiation therapy is increasing, as it largely spares healthy tissues while killing tumor tissues. Although radiation-related research has been conducted extensively, the molecular toxicology and cellular mechanisms affected by proton irradiation remain poorly understood. Therefore, in this study, we irradiated rat lung epithelial cells with different doses of protons and investigated their effects on cell proliferation and death. Our data show an inhibition of cell proliferation in proton-irradiated cells with a significant dose-dependent activation and repression of reactive oxygen species and antioxidants glutathione and superoxide dismutase, respectively, compared with control cells. In addition, the activities of apoptosis-related genes such as caspase-3 and -8 were induced in a dose-dependent manner with corresponding increased levels of DNA fragmentation in proton-irradiated cells compared with control cells. Together, our results show that proton irradiation alters oxidant and antioxidant levels in cells to activate the apoptotic pathway for cell death.  相似文献   

15.
We have previously reported that ricin, a toxic lectin that inhibits protein synthesis induced apoptotic cell death. In this study, we have found that isolated ricin CM-B-chain, which has no effect on cellular protein synthesis, induced DNA fragmentation in U937 cells in a dose- and time-dependent manner, albeit it required a longer incubation time and higher concentration than those of holotoxin ricin. Z-Asp-CH2-DCB, a caspase family inhibitor and serine protease inhibitor, 3,4-dichloroisocoumarine (DCI) effectively inhibited the CM-B-chain-mediated DNA fragmentation as well as in ricin. Thus, like ricin, multiple proteases with different substrate specificity may also be involved in the CM-B-chain-mediated apoptotic pathway. Furthermore, BFA inhibited both ricin- and CM-B-chain-mediated DNA fragmentation, suggesting an intracellular vesicle transport system through the Golgi complex may be involved in the apoptotic induction by these proteins as a common feature. On the other hand, cycloheximide (CHA) strongly increased the CM-B-chain-mediated DNA fragmentation, but inhibited ricin-mediated DNA fragmentation. The opposite effects of CHA may reflect the difference in the apoptotic mechanism between ricin and CM-B-chain. In conclusion, our results suggest that ricin-B-chain can induce apoptosis through its lectin activity, but the underlying mechanism may be distinct from that of ricin in which the A-chain contributes profoundly to the apoptotic induction.  相似文献   

16.
Mitochondrial membrane permeabilization can be a rate limiting step of apoptotic as well as necrotic cell death. Permeabilization of the outer mitochondrial membrane (OM) and/or inner membrane (IM) is, at least in part, mediated by the permeability transition pore complex (PTPC). The PTPC is formed in the IM/OM contact site and contains the two most abundant IM and OM proteins, adenine nucleotide translocator (ANT, in the IM) and voltage-dependent anion channel (VDAC, in the OM), the matrix protein cyclophilin D, which can interact with ANT, as well as apoptosis-regulatory proteins from the Bax/Bcl-2 family. Here we discuss that ANT has two opposite functions. On the one hand, ANT is a vital, specific antiporter which accounts for the exchange of ATP and ADP on IM. On the other hand, ANT can form a non-specific pore, as this has been shown by electrophysiological characterization of purified ANT reconstituted into synthetic lipid bilayers or by measuring the permeabilization of proteoliposomes containing ANT. Pore formation by ANT is induced by a variety of different agents (e.g. Ca(2+), atractyloside, thiol oxidation, the pro-apoptotic HIV-1 protein Vpr, etc.) and is enhanced by Bax and inhibited by Bcl-2, as well as by ADP. In isolated mitochondria, pore formation by ANT leads to an increase in IM permeability to solutes up to 1500 Da, swelling of the mitochondrial matrix, and OM permeabilization, presumably due to physical rupture of OM. Although alternative mechanisms of mitochondrial membrane permeabilization may exist, ANT emerges as a major player in the regulation of cell death. Cell Death and Differentiation (2000) 7, 1146 - 1154  相似文献   

17.
Hu X 《Cytokine》2003,21(6):286-294
Following binding its death receptor on the plasma membrane, tumor necrosis factor (TNF) induces the receptor trimerization and recruits a number of death domain-containing molecules to form the receptor complex. The complex promotes activation of downstream caspase cascade and induces degradation of IkappaBalpha. Caspases are activated using mechanisms of oligomeration and 'self-controlled proteolysis'. According to their structures and functions, apoptosis related caspases can be divided into upstream and downstream caspases. In general, upstream caspases cleave and activate downstream caspases by proteolysis of the Asp-X site. Activated caspases then cleaved target substrates. To date, more than 70 proteins have been identified to be substrates of caspases in mammalian cells. Caspases can alter the function of their target proteins by destroying structural components of the cytoskeleton and nuclear scaffold or by removing their regulatory domains. Activation of NF-kappaB is dependent on the degradation of IkappaBalpha. IkappaB kinase (IKK) phosphorylates IkappaBalpha at the residues 32 and 36 followed by polyubiquitination at lysine 21 and 22 and subsequent degradation of the molecules by 26S proteasome. There is extensive crosstalk between the apoptotic and NF-kappaB signaling pathways that emanate from TNF-R1. On the one hand, activation of NF-kappaB can inactivate caspases; on the other hand, activated caspases can inhibit the activation of NF-kappaB. Both processes involve in proteolysis. This crosstalk may be important for maintaining the balance between the two pathways and for determining whether a cell should live or die.  相似文献   

18.
19.
20.
Squamous cell carcinoma antigen 1 (SCCA1) is a member of the serine protease inhibitor (serpin) family of proteins, whose target proteases include the cathepsins. Initially identified as a serological marker for advanced squamous cell carcinomas of the cervix, SCCA1 has also been found to be associated with other cancer types of epithelial or endodermal origins such as lung cancer, head and neck cancer, melanoma, and hepatocellular carcinoma. While the biological function of SCCA1 remains largely unclear, it is believed to limit cellular damage resulting from lysosomal cathepsin release. Here, we show that SCCA1 acts as a molecular switch that inhibits cell death induced by lysosomal injury resulting from DNA alkylating agents and hypotonic shock, whereas it promotes a caspase-8-mediated apoptosis in response to endoplasmic reticulum (ER) stress. In response to ER stress, SCCA1 blocks both lysosomal and proteasomal protein degradation pathways and enhances the interaction between sequestosome 1/p62 and caspase-8, which leads to the aggregation of intracellular caspase-8 and its subsequent cleavage and activation. Hence, on one hand, SCCA1 inhibits cell death induced by lysosomal injury while, on the other hand, it sensitizes cells to ER stress by activating caspase-8 independently of the death receptor apoptotic pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号