首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MOTIVATION: Our goal is to construct a model for genetic regulatory networks such that the model class: (i) incorporates rule-based dependencies between genes; (ii) allows the systematic study of global network dynamics; (iii) is able to cope with uncertainty, both in the data and the model selection; and (iv) permits the quantification of the relative influence and sensitivity of genes in their interactions with other genes. RESULTS: We introduce Probabilistic Boolean Networks (PBN) that share the appealing rule-based properties of Boolean networks, but are robust in the face of uncertainty. We show how the dynamics of these networks can be studied in the probabilistic context of Markov chains, with standard Boolean networks being special cases. Then, we discuss the relationship between PBNs and Bayesian networks--a family of graphical models that explicitly represent probabilistic relationships between variables. We show how probabilistic dependencies between a gene and its parent genes, constituting the basic building blocks of Bayesian networks, can be obtained from PBNs. Finally, we present methods for quantifying the influence of genes on other genes, within the context of PBNs. Examples illustrating the above concepts are presented throughout the paper.  相似文献   

2.
Driven by the desire to understand genomic functions through the interactions among genes and gene products, the research in gene regulatory networks has become a heated area in genomic signal processing. Among the most studied mathematical models are Boolean networks and probabilistic Boolean networks, which are rule-based dynamic systems. This tutorial provides an introduction to the essential concepts of these two Boolean models, and presents the up-to-date analysis and simulation methods developed for them. In the Analysis section, we will show that Boolean models are Markov chains, based on which we present a Markovian steady-state analysis on attractors, and also reveal the relationship between probabilistic Boolean networks and dynamic Bayesian networks (another popular genetic network model), again via Markov analysis; we dedicate the last subsection to structural analysis, which opens a door to other topics such as network control. The Simulation section will start from the basic tasks of creating state transition diagrams and finding attractors, proceed to the simulation of network dynamics and obtaining the steady-state distributions, and finally come to an algorithm of generating artificial Boolean networks with prescribed attractors. The contents are arranged in a roughly logical order, such that the Markov chain analysis lays the basis for the most part of Analysis section, and also prepares the readers to the topics in Simulation section.  相似文献   

3.
A hardware architecture of a Probabilistic Logic Neuron (PLN) is presented. The suggested model facilitates the on-chip learning of pyramidal Weightless Neural Networks using a modified probabilistic search reward/penalty training algorithm. The penalization strategy of the training algorithm depends on a predefined parameter called the probabilistic search interval. A complete Weightless Neural Network (WNN) learning system is modeled and implemented on Xilinx XC4005E Field Programmable Gate Array (FPGA), allowing its architecture to be configurable. Various experiments have been conducted to examine the feasibility and performance of the WNN learning system. Results show that the system has a fast convergence rate and good generalization ability.  相似文献   

4.
Boolean networks are a simple but efficient model for describing gene regulatory systems. A number of algorithms have been proposed to infer Boolean networks. However, these methods do not take full consideration of the effects of noise and model uncertainty. In this paper, we propose a full Bayesian approach to infer Boolean genetic networks. Markov chain Monte Carlo algorithms are used to obtain the posterior samples of both the network structure and the related parameters. In addition to regular link addition and removal moves, which can guarantee the irreducibility of the Markov chain for traversing the whole network space, carefully constructed mixture proposals are used to improve the Markov chain Monte Carlo convergence. Both simulations and a real application on cell-cycle data show that our method is more powerful than existing methods for the inference of both the topology and logic relations of the Boolean network from observed data.  相似文献   

5.
Inferring genetic regulatory logic from expression data   总被引:1,自引:0,他引:1  
MOTIVATION: High-throughput molecular genetics methods allow the collection of data about the expression of genes at different time points and under different conditions. The challenge is to infer gene regulatory interactions from these data and to get an insight into the mechanisms of genetic regulation. RESULTS: We propose a model for genetic regulatory interactions, which has a biologically motivated Boolean logic semantics, but is of a probabilistic nature, and is hence able to confront noisy biological processes and data. We propose a method for learning the model from data based on the Bayesian approach and utilizing Gibbs sampling. We tested our method with previously published data of the Saccharomyces cerevisiae cell cycle and found relations between genes consistent with biological knowledge.  相似文献   

6.
Reconstruction of genetic regulatory networks from time series data of gene expression patterns is an important research topic in bioinformatics. Probabilistic Boolean Networks (PBNs) have been proposed as an effective model for gene regulatory networks. PBNs are able to cope with uncertainty, corporate rule-based dependencies between genes and discover the sensitivity of genes in their interactions with other genes. However, PBNs are unlikely to use directly in practice because of huge amount of computational cost for obtaining predictors and their corresponding probabilities. In this paper, we propose a multivariate Markov model for approximating PBNs and describing the dynamics of a genetic network for gene expression sequences. The main contribution of the new model is to preserve the strength of PBNs and reduce the complexity of the networks. The number of parameters of our proposed model is O(n2) where n is the number of genes involved. We also develop efficient estimation methods for solving the model parameters. Numerical examples on synthetic data sets and practical yeast data sequences are given to demonstrate the effectiveness of the proposed model.  相似文献   

7.
Probabilistic Boolean Networks, which form a subclass of Markovian Genetic Regulatory Networks, have been recently introduced as a rule-based paradigm for modeling gene regulatory networks. In an earlier paper, we introduced external control into Markovian Genetic Regulatory networks. More precisely, given a Markovian genetic regulatory network whose state transition probabilities depend on an external (control) variable, a Dynamic Programming-based procedure was developed by which one could choose the sequence of control actions that minimized a given performance index over a finite number of steps. The control algorithm of that paper, however, could be implemented only when one had perfect knowledge of the states of the Markov Chain. This paper presents a control strategy that can be implemented in the imperfect information case, and makes use of the available measurements which are assumed to be probabilistically related to the states of the underlying Markov Chain.  相似文献   

8.
Probabilistic Boolean networks (PBNs) have recently been introduced as a promising class of models of genetic regulatory networks. The dynamic behaviour of PBNs can be analysed in the context of Markov chains. A key goal is the determination of the steady-state (long-run) behaviour of a PBN by analysing the corresponding Markov chain. This allows one to compute the long-term influence of a gene on another gene or determine the long-term joint probabilistic behaviour of a few selected genes. Because matrix-based methods quickly become prohibitive for large sizes of networks, we propose the use of Monte Carlo methods. However, the rate of convergence to the stationary distribution becomes a central issue. We discuss several approaches for determining the number of iterations necessary to achieve convergence of the Markov chain corresponding to a PBN. Using a recently introduced method based on the theory of two-state Markov chains, we illustrate the approach on a sub-network designed from human glioma gene expression data and determine the joint steadystate probabilities for several groups of genes.  相似文献   

9.
This paper is concerned with the statistical analysis of single ion channel records. Single channels are modelled by using hidden Markov models and a combination of Bayesian statistics and Markov chain Monte Carlo methods. The techniques presented here provide a straightforward generalization to those in Rosales et al. (2001, Biophys. J., 80, 1088–1103), allowing to consider constraints imposed by a gating mechanism such as the aggregation of states into classes. This paper also presents an extension that allows to consider correlated background noise and filtered data, extending the scope of the analysis toward real experimental conditions. The methods described here are based on a solid probabilistic basis and are less computationally intensive than alternative Bayesian treatments or frequentist approaches that consider correlated data.  相似文献   

10.
External control of a genetic regulatory network is used for the purpose of avoiding undesirable states, such as those associated with a disease. To date, intervention has mainly focused on the external control of probabilistic Boolean networks via the associated discrete-time discrete-space Markov processes. Implementation of an intervention policy derived for probabilistic Boolean networks requires nearly continuous observation of the underlying biological system since precise application requires the observation of all transitions. In medical applications, as in many engineering problems, the process is sampled at discrete time intervals and a decision to intervene or not must be made at each sample point. In this work, sampling-rate-dependent probabilistic Boolean network is proposed as an extension of probabilistic Boolean network. The proposed framework is capable of capturing the sampling rate of the underlying system.  相似文献   

11.
Bayesian inference is a powerful statistical paradigm that has gained popularity in many fields of science, but adoption has been somewhat slower in biophysics. Here, I provide an accessible tutorial on the use of Bayesian methods by focusing on example applications that will be familiar to biophysicists. I first discuss the goals of Bayesian inference and show simple examples of posterior inference using conjugate priors. I then describe Markov chain Monte Carlo sampling and, in particular, discuss Gibbs sampling and Metropolis random walk algorithms with reference to detailed examples. These Bayesian methods (with the aid of Markov chain Monte Carlo sampling) provide a generalizable way of rigorously addressing parameter inference and identifiability for arbitrarily complicated models.  相似文献   

12.
This paper presents a new statistical techniques — Bayesian Generalized Associative Functional Networks (GAFN), to model the dynamical plant growth process of greenhouse crops. GAFNs are able to incorporate the domain knowledge and data to model complex ecosystem. By use of the functional networks and Bayesian framework, the prior knowledge can be naturally embedded into the model, and the functional relationship between inputs and outputs can be learned during the training process. Our main interest is focused on the Generalized Associative Functional Networks (GAFNs), which are appropriate to model multiple variable processes. Three main advantages are obtained through the applications of Bayesian GAFN methods to modeling dynamic process of plant growth. Firstly, this approach provides a powerful tool for revealing some useful relationships between the greenhouse environmental factors and the plant growth parameters. Secondly, Bayesian GAFN can model Multiple-Input Multiple-Output (MIMO) systems from the given data, and presents a good generalization capability from the final single model for successfully fitting all 12 data sets over 5-year field experiments. Thirdly, the Bayesian GAFN method can also play as an optimization tool to estimate the interested parameter in the agro-ecosystem. In this work, two algorithms are proposed for the statistical inference of parameters in GAFNs. Both of them are based on the variational inference, also called variational Bayes (VB) techniques, which may provide probabilistic interpretations for the built models. VB-based learning methods are able to yield estimations of the full posterior probability of model parameters. Synthetic and real-world examples are implemented to confirm the validity of the proposed methods.  相似文献   

13.
In quantitative genetics, Markov chain Monte Carlo (MCMC) methods are indispensable for statistical inference in non-standard models like generalized linear models with genetic random effects or models with genetically structured variance heterogeneity. A particular challenge for MCMC applications in quantitative genetics is to obtain efficient updates of the high-dimensional vectors of genetic random effects and the associated covariance parameters. We discuss various strategies to approach this problem including reparameterization, Langevin-Hastings updates, and updates based on normal approximations. The methods are compared in applications to Bayesian inference for three data sets using a model with genetically structured variance heterogeneity.  相似文献   

14.
Boolean networks and, more generally, probabilistic Boolean networks, as one class of gene regulatory networks, model biological processes with the network dynamics determined by the logic-rule regulatory functions in conjunction with probabilistic parameters involved in network transitions. While there has been significant research on applying different control policies to alter network dynamics as future gene therapeutic intervention, we have seen less work on understanding the sensitivity of network dynamics with respect to perturbations to networks, including regulatory rules and the involved parameters, which is particularly critical for the design of intervention strategies. This paper studies this less investigated issue of network sensitivity in the long run. As the underlying model of probabilistic Boolean networks is a finite Markov chain, we define the network sensitivity based on the steady-state distributions of probabilistic Boolean networks and call it long-run sensitivity. The steady-state distribution reflects the long-run behavior of the network and it can give insight into the dynamics or momentum existing in a system. The change of steady-state distribution caused by possible perturbations is the key measure for intervention. This newly defined long-run sensitivity can provide insight on both network inference and intervention. We show the results for probabilistic Boolean networks generated from random Boolean networks and the results from two real biological networks illustrate preliminary applications of sensitivity in intervention for practical problems.  相似文献   

15.
Luo JX  Turner MS 《PloS one》2012,7(5):e36010
We investigate the sensitivity of Boolean Networks (BNs) to mutations. We are interested in Boolean Networks as a model of Gene Regulatory Networks (GRNs). We adopt Ribeiro and Kauffman's Ergodic Set and use it to study the long term dynamics of a BN. We define the sensitivity of a BN to be the mean change in its Ergodic Set structure under all possible loss of interaction mutations. In silico experiments were used to selectively evolve BNs for sensitivity to losing interactions. We find that maximum sensitivity was often achievable and resulted in the BNs becoming topologically balanced, i.e. they evolve towards network structures in which they have a similar number of inhibitory and excitatory interactions. In terms of the dynamics, the dominant sensitivity strategy that evolved was to build BNs with Ergodic Sets dominated by a single long limit cycle which is easily destabilised by mutations. We discuss the relevance of our findings in the context of Stem Cell Differentiation and propose a relationship between pluripotent stem cells and our evolved sensitive networks.  相似文献   

16.
An approximate representation for the state space of a context-sensitive probabilistic Boolean network has previously been proposed and utilized to devise therapeutic intervention strategies. Whereas the full state of a context-sensitive probabilistic Boolean network is specified by an ordered pair composed of a network context and a gene-activity profile, this approximate representation collapses the state space onto the gene-activity profiles alone. This reduction yields an approximate transition probability matrix, absent of context, for the Markov chain associated with the context-sensitive probabilistic Boolean network. As with many approximation methods, a price must be paid for using a reduced model representation, namely, some loss of optimality relative to using the full state space. This paper examines the effects on intervention performance caused by the reduction with respect to various values of the model parameters. This task is performed using a new derivation for the transition probability matrix of the context-sensitive probabilistic Boolean network. This expression of transition probability distributions is in concert with the original definition of context-sensitive probabilistic Boolean network. The performance of optimal and approximate therapeutic strategies is compared for both synthetic networks and a real case study. It is observed that the approximate representation describes the dynamics of the context-sensitive probabilistic Boolean network through the instantaneously random probabilistic Boolean network with similar parameters.  相似文献   

17.
MacNab YC 《Biometrics》2003,59(2):305-315
We present Bayesian hierarchical spatial models for spatially correlated small-area health service outcome and utilization rates, with a particular emphasis on the estimation of both measured and unmeasured or unknown covariate effects. This Bayesian hierarchical model framework enables simultaneous modeling of fixed covariate effects and random residual effects. The random effects are modeled via Bayesian prior specifications reflecting spatial heterogeneity globally and relative homogeneity among neighboring areas. The model inference is implemented using Markov chain Monte Carlo methods. Specifically, a hybrid Markov chain Monte Carlo algorithm (Neal, 1995, Bayesian Learning for Neural Networks; Gustafson, MacNab, and Wen, 2003, Statistics and Computing, to appear) is used for posterior sampling of the random effects. To illustrate relevant problems, methods, and techniques, we present an analysis of regional variation in intraventricular hemorrhage incidence rates among neonatal intensive care unit patients across Canada.  相似文献   

18.
Discrete Markovian models can be used to characterize patterns in sequences of values and have many applications in biological sequence analysis, including gene prediction, CpG island detection, alignment, and protein profiling. We present ToPS, a computational framework that can be used to implement different applications in bioinformatics analysis by combining eight kinds of models: (i) independent and identically distributed process; (ii) variable-length Markov chain; (iii) inhomogeneous Markov chain; (iv) hidden Markov model; (v) profile hidden Markov model; (vi) pair hidden Markov model; (vii) generalized hidden Markov model; and (viii) similarity based sequence weighting. The framework includes functionality for training, simulation and decoding of the models. Additionally, it provides two methods to help parameter setting: Akaike and Bayesian information criteria (AIC and BIC). The models can be used stand-alone, combined in Bayesian classifiers, or included in more complex, multi-model, probabilistic architectures using GHMMs. In particular the framework provides a novel, flexible, implementation of decoding in GHMMs that detects when the architecture can be traversed efficiently.
This is a PLOS Computational Biology Software Article.
  相似文献   

19.
Sensitivity analyses (SAs) identify how an output variable of a model is modified by changes in the input variables. These analyses are a good way for assessing the performance of probabilistic models, like Bayesian Networks (BN). However, there are several commonly used SAs in BN literature, and formal comparisons about their outcomes are scarce. We used four previously developed BNs which represent ecosystem services provision in Pampean agroecosystems (Argentina) in order to test two local sensitivity approaches widely used. These SAs were: 1) One-at-a-time, used in BNs but more commonly in linear modelling; and 2) Sensitivity to findings, specific to BN modelling. Results showed that both analyses provided an adequate overview of BN behaviour. Furthermore, analyses produced a similar influence ranking of input variables over each output variable. Even though their interchangeably application could be an alternative in our bayesian models, we believe that OAT is the suitable one to implement here because of its capacity to demonstrate the relation (positive or negative) between input and output variables. In summary, we provided insights about two sensitivity techniques in BNs based on a case study which may be useful for ecological modellers.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号