首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.

Background

Rhizobium leguminosarum bv. viciae establishes symbiotic nitrogen fixing partnerships with plant species belonging to the Tribe Vicieae, which includes the genera Vicia, Lathyrus, Pisum and Lens. Motility and chemotaxis are important in the ecology of R. leguminosarum to provide a competitive advantage during the early steps of nodulation, but the mechanisms of motility and flagellar assembly remain poorly studied. This paper addresses the role of the seven flagellin genes in producing a functional flagellum.

Results

R. leguminosarum strains 3841 and VF39SM have seven flagellin genes (flaA, flaB, flaC, flaD, flaE, flaH, and flaG), which are transcribed separately. The predicted flagellins of 3841 are highly similar or identical to the corresponding flagellins in VF39SM. flaA, flaB, flaC, and flaD are in tandem array and are located in the main flagellar gene cluster. flaH and flaG are located outside of the flagellar/motility region while flaE is plasmid-borne. Five flagellin subunits (FlaA, FlaB, FlaC, FlaE, and FlaG) are highly similar to each other, whereas FlaD and FlaH are more distantly related. All flagellins exhibit conserved amino acid residues at the N- and C-terminal ends and are variable in the central regions. Strain 3841 has 1-3 plain subpolar flagella while strain VF39SM exhibits 4-7 plain peritrichous flagella. Three flagellins (FlaA/B/C) and five flagellins (FlaA/B/C/E/G) were detected by mass spectrometry in the flagellar filaments of strains 3841 and VF39SM, respectively. Mutation of flaA resulted in non-motile VF39SM and extremely reduced motility in 3841. Individual mutations of flaB and flaC resulted in shorter flagellar filaments and consequently reduced swimming and swarming motility for both strains. Mutant VF39SM strains carrying individual mutations in flaD, flaE, flaH, and flaG were not significantly affected in motility and filament morphology. The flagellar filament and the motility of 3841 strains with mutations in flaD and flaG were not significantly affected while flaE and flaH mutants exhibited shortened filaments and reduced swimming motility.

Conclusion

The results obtained from this study demonstrate that FlaA, FlaB, and FlaC are major components of the flagellar filament while FlaD and FlaG are minor components for R. leguminosarum strains 3841 and VF39SM. We also observed differences between the two strains, wherein FlaE and FlaH appear to be minor components of the flagellar filaments in VF39SM but these flagellin subunits may play more important roles in 3841. This paper also demonstrates that the flagellins of 3841 and VF39SM are possibly glycosylated.  相似文献   

3.
4.
5.
Motility is a critical function needed for nutrient acquisition, biofilm formation, and the avoidance of harmful chemicals and predators. Flagellar motility is one of the most pressure-sensitive cellular processes in mesophilic bacteria; therefore, it is ecologically relevant to determine how deep-sea microbes have adapted their motility systems for functionality at depth. In this study, the motility of the deep-sea piezophilic bacterium Photobacterium profundum SS9 was investigated and compared with that of the related shallow-water piezosensitive strain Photobacterium profundum 3TCK, as well as that of the well-studied piezosensitive bacterium Escherichia coli. The SS9 genome contains two flagellar gene clusters: a polar flagellum gene cluster (PF) and a putative lateral flagellum gene cluster (LF). In-frame deletions were constructed in the two flagellin genes located within the PF cluster (flaA and flaC), the one flagellin gene located within the LF cluster (flaB), a component of a putative sodium-driven flagellar motor (motA2), and a component of a putative proton-driven flagellar motor (motA1). SS9 PF flaA, flaC, and motA2 mutants were defective in motility under all conditions tested. In contrast, the flaB and motA1 mutants were defective only under conditions of high pressure and high viscosity. flaB and motA1 gene expression was strongly induced by elevated pressure plus increased viscosity. Direct swimming velocity measurements were obtained using a high-pressure microscopic chamber, where increases in pressure resulted in a striking decrease in swimming velocity for E. coli and a gradual reduction for 3TCK which proceeded up to 120 MPa, while SS9 increased swimming velocity at 30 MPa and maintained motility up to a maximum pressure of 150 MPa. Our results indicate that P. profundum SS9 possesses two distinct flagellar systems, both of which have acquired dramatic adaptations for optimal functionality under high-pressure conditions.  相似文献   

6.
7.
8.
Genome predictions based on selected genes would be a very welcome approach for taxonomic studies. We analyzed three genes, recN, flaA, and ftsY, for determining if these genes are useful tools for systematic analyses in the genus Anoxybacillus. The genes encoding a DNA repair and genetic recombination protein (recN), the flagellin protein (flaA), and GTPase signal docking protein (ftsY) were sequenced for ten Anoxybacillus species. The sequence comparisons revealed that recN sequence similarities range between 61% and 99% in the genus Anoxybacillus. Comparisons to other bacterial recN genes indicated that levels of similarity did not differ from the levels within genus Anoxybacillus. These data showed that recN is not a useful marker for the genus Anoxybacillus. A 550–600-bp region of the flagellin gene was amplified for all Anoxybacillus strains except for Anoxybacillus contaminans. The sequence similarity of flaA gene varies between 61% and 76%. Comparisons to other bacterial flagellin genes obtained from GenBank (Bacillus, Pectinatus, Proteus, and Vibrio) indicated that the levels of similarity were lower (3–42%). Based on these data, we concluded that the variability in this single gene makes it a particularly useful marker. Another housekeeping gene ftsY suggested to reflect the G+C (mol/mol) content of whole genome was analyzed for Anoxybacillus strains. A mean difference of 1.4% was observed between the G+C content of the gene ftsY and the G+C content of the whole genome. These results showed that the gene ftsY can be used to represent whole G+C content of the Anoxybacillus species.  相似文献   

9.
Citrus huanglongbing (HLB) is the most devastating citrus disease worldwide. ‘Candidatus Liberibacter asiaticus’ (Las) is the most prevalent HLB causal agent that is yet to be cultured. Here, we analysed the flagellar genes of Las and Rhizobiaceae and observed two characteristics unique to the flagellar proteins of Las: (i) a shorter primary structure of the rod capping protein FlgJ than other Rhizobiaceae bacteria and (ii) Las contains only one flagellin-encoding gene flaA (CLIBASIA_02090), whereas other Rhizobiaceae species carry at least three flagellin-encoding genes. Only flgJAtu but not flgJLas restored the swimming motility of Agrobacterium tumefaciens flgJ mutant. Pull-down assays demonstrated that FlgJLas interacts with FlgB but not with FliE. Ectopic expression of flaALas in A. tumefaciens mutants restored the swimming motility of ∆flaA mutant and ∆flaAD mutant, but not that of the null mutant ∆flaABCD. No flagellum was observed for Las in citrus and dodder. The expression of flagellar genes was higher in psyllids than in planta. In addition, western blotting using flagellin-specific antibody indicates that Las expresses flagellin protein in psyllids, but not in planta. The flagellar features of Las in planta suggest that Las movement in the phloem is not mediated by flagella. We also characterized the movement of Las after psyllid transmission into young flush. Our data support a model that Las remains inside young flush after psyllid transmission and before the flush matures. The delayed movement of Las out of young flush after psyllid transmission provides opportunities for targeted treatment of young flush for HLB control.  相似文献   

10.
The enterohepatic Helicobacter species Helicobacter hepaticus colonizes the murine intestinal and hepatobiliary tract and is associated with chronic intestinal inflammation, gall stone formation, hepatitis, and hepatocellular carcinoma. Thus far, the role of H. hepaticus motility and flagella in intestinal colonization is unknown. In other, closely related bacteria, late flagellar genes are mainly regulated by the sigma factor FliA (σ28). We investigated the function of the H. hepaticus FliA in gene regulation, flagellar biosynthesis, motility, and murine colonization. Competitive microarray analysis of the wild type versus an isogenic fliA mutant revealed that 11 genes were significantly more highly expressed in wild-type bacteria and 2 genes were significantly more highly expressed in the fliA mutant. Most of these were flagellar genes, but four novel FliA-regulated genes of unknown function were identified. H. hepaticus possesses two identical copies of the gene encoding the FliA-dependent major flagellin subunit FlaA (open reading frames HH1364 and HH1653). We characterized the phenotypes of mutants in which fliA or one or both copies of the flaA gene were knocked out. flaA_1 flaA_2 double mutants and fliA mutants did not synthesize detectable amounts of FlaA and possessed severely truncated flagella. Also, both mutants were nonmotile and unable to colonize mice. Mutants with either flaA gene knocked out produced flagella morphologically similar to those of wild-type bacteria and expressed FlaA and FlaB. flaA_1 mutants which had flagella but displayed reduced motility did not colonize mice, indicating that motility is required for intestinal colonization by H. hepaticus and that the presence of flagella alone is not sufficient.  相似文献   

11.
Type III secretion systems identified in bacterial pathogens of animals and plants transpose effectors and toxins directly into the cytosol of host cells or into the extracellular milieu. Proteins of the type III secretion apparatus are conserved among diverse and distantly related bacteria. Many type III apparatus proteins have homologues in the flagellar export apparatus, supporting the notion that type III secretion systems evolved from the flagellar export apparatus. No type III secretion apparatus genes have been found in the complete genomic sequence of Campylobacter jejuni NCTC11168. In this study, we report the characterization of a protein designated FlaC of C. jejuni TGH9011. FlaC is homologous to the N- and C-terminus of the C. jejuni flagellin proteins, FlaA and FlaB, but lacks the central portion of these proteins. flaC null mutants form a morphologically normal flagellum and are highly motile. In wild-type C. jejuni cultures, FlaC is found predominantly in the extracellular milieu as a secreted protein. Null mutants of the flagellar basal rod gene (flgF) and hook gene (flgE) do not secrete FlaC, suggesting that a functional flagellar export apparatus is required for FlaC secretion. During C. jejuni infection in vitro, secreted FlaC and purified recombinant FlaC bind to HEp-2 cells. Invasion of HEp-2 cells by flaC null mutants was reduced to a level of 14% compared with wild type, suggesting that FlaC plays an important role in cell invasion.  相似文献   

12.
Differential Regulation of Multiple Flagellins in Vibrio cholerae   总被引:4,自引:0,他引:4       下载免费PDF全文
Vibrio cholerae, the causative agent of the human diarrheal disease cholera, is a motile bacterium with a single polar flagellum. Motility has been implicated as a virulence determinant in some animal models of cholera, but the relationship between motility and virulence has not yet been clearly defined. We have begun to define the regulatory circuitry controlling motility. We have identified five V. cholerae flagellin genes, arranged in two chromosomal loci, flaAC and flaEDB; all five genes have their own promoters. The predicted gene products have a high degree of homology to each other. A strain containing a single mutation in flaA is nonmotile and lacks a flagellum, while strains containing multiple mutations in the other four flagellin genes, including a flaCEDB strain, remain motile. Measurement of fla promoter-lacZ fusions reveals that all five flagellin promoters are transcribed at high levels in both wild-type and flaA strains. Measurement of the flagellin promoter-lacZ fusions in Salmonella typhimurium indicates that the promoter for flaA is transcribed by the ς54 holoenzyme form of RNA polymerase while the flaE, flaD, and flaB promoters are transcribed by the ς28 holoenzyme. These results reveal that the V. cholerae flagellum is a complex structure with multiple flagellin subunits including FlaA, which is essential for flagellar synthesis and is differentially regulated from the other flagellins.  相似文献   

13.
Three out of 10 Helicobacter pylori clinical isolates were found to be naturally competent for genetic transformation to streptomycin resistance by chromosomal DNA extracted from a spontaneous streptomycin-resistant H. pylori mutant. The frequency of transformation varied between 5 × 10?4 and 4 × 10?6, depending on the H. pylori isolate used. Transposon shuttle mutagenesis based on this natural competence was established using the flagellin gene flaA as the target. The cloned flaA gene was interrupted by insertion of TnMax1, a mini-Tn1721 transposon carrying a modified chloramphenicol-acetyltransferase gene, the catGC cassette. Natural transformation of competent H. pylori strains with plasmid constructs harbouring a catGC-inactivated flaA gene resulted in chloramphenicol-resistant transformants at an average frequency of 4 × 10?5. Southern hybridization experiments confirmed the replacement of the chromosomal H. pylori flaA gene by the cat-inactivated cloned gene copy via homologous recombination resulting in allelic exchange. Phenotypic characterization of the mutants demonstrated the absence of flagella under the electron microscope and the loss of bacterial motility. Immunoblots of cell lysates of the H. pylori mutants with an antiserum raised against the C-terminal portion of recombinant H. pylori major flagellin (FlaA) confirmed the absence of the 54kDa FlaA protein. This efficient transposon shuttle mutagenesis procedure for H. pylori based on natural competence opens up new possibilities for the genetic assessment of putative H. pylori virulence determinants.  相似文献   

14.
Aim: To evaluate the association of the polar and lateral flagella with biofilm formation on plastic surfaces in 76 Aeromonas caviae strains isolated from environment (lagoon water), food (vegetables, fish and cheese) and human source (faeces). Methods and Results: Both polar (flaA) and lateral (lafA) flagellin genes have been investigated by means of PCR and colony blot hybridization assays. The ability to form biofilm in polystyrene microtitre plates was evaluated and correlated with the presence and absence from these genes. The flaA and lafA genes had a frequency of 94% and 71%, respectively. All lafA+ strains were also flaA+. Biofilm formation was observed in 72% of strains. Ninety‐four per cent of flaA+lafA+ strains could form biofilm and those that presented an intense biofilm production harboured both genes. All flaA?lafA? isolates, as well as 76% of flaA+lafA? strains, were incapable of forming biofilm. All the fish strains were flaA+lafA+ and displayed higher biofilm formation (88%). Lagoon water samples exhibited lower positivity rate for the lafA gene (57%) and decreased ability to produce biofilm (39%). Conclusions: Both polar and lateral flagellar function contribute to biofilm formation in Aer. caviae strains. Significance and Impact of the Study: This study provides evidence for the association of both flagella with biofilm formation, a factor required for pathogenicity of Aer. caviae strains of varied sources, especially food and human.  相似文献   

15.
16.
The highly conserved nature of the 5′-termini of all archaeal flagellin genes was exploited by polymerase chain reaction (PCR) techniques to amplify the sequence of a portion of a flagellin gene family from the archaeon Methanococcus vannielii. Subsequent inverse PCR experiments generated fragments that permitted the sequencing of a total of three flagellin genes, which, by comparison with flagellin genes that have been sequenced, from other archaea appear to be equivalent to flaB1, flaB2, and flaB3 of M. voltae. Analysis of purified M. vannielii flagellar filaments by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) revealed two major flagellins (Mr= 30 800 and 28 600), whose N-terminal sequences identified them as the products of the flaB1 and flaB2 genes, respectively. The gene product of flaB3 could not be detected in flagellar filaments by SDS-PAGE. The protein sequence data, coupled with the DNA sequences, demonstrated that both FlaB1 and FlaB2 flagellins are translated with a 12-amino acid signal peptide which is absent from the mature protein incorporated into the flagellar filament. These data suggest that archaeal flagellin export differs significantly from that of bacterial flagellins. Received: 27 November 1997 / Accepted: 19 March 1998  相似文献   

17.
18.
19.
20.
FliS chaperone binds to flagellin FliC in the cytoplasm and transfers FliC to a sorting platform of the flagellar type III export apparatus through the interaction between FliS and FlhA for rapid and efficient protein export during flagellar filament assembly. FliS also suppresses the secretion of an anti‐σ factor, FlgM. Loss of FliS results in a short filament phenotype although the expression levels of FliC are increased considerably due to an increase in the secretion level of FlgM. Here to clarify the rate limiting step of FliC export in the absence of FliS, we isolated bypass mutants from a Salmonella ΔfliS mutant. All the bypass mutations were identified in FliC. These bypass mutations increased the export rate of FliC by ca. twofold, allowing the bypass mutant cells to produce longer filaments than the parental ΔfliS cells. Both far‐UV CD measurements and limited proteolysis revealed that the bypass mutations significantly destabilize the folded structure of FliC monomer. These results suggest that an unfolding step of FliC limits the export rate of FliC in the ΔfliS mutant, thereby producing short filaments. We propose that FliS promotes FliC docking at the FlhA platform to facilitate subsequent unfolding of FliC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号