首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neurons that synthesize the morphine modulatory peptide neuropeptide FF (NPFF; Phe-Leu-Phe-Gln-Pro-Gln-Arg-Phe-NH2) densely innervate the parabrachial nucleus (PBN), an area implicated in regulating food intake. We analyzed opioid-related actions of NPFF in feeding in adult male Sprague-Dawley rats. Unilateral infusion of 2 nmol/0.5 microl of the mu-opioid receptor agonist [d-Ala2,NMe-Phe4,glycinol5]enkephalin (DAMGO) into the lateral PBN increased 4-h food intake from 0.7 +/- 0.1 to 3.3 +/- 0.3 g. NPFF (1.25-5.0 nmol) prevented this hyperphagic mu-opioidergic action. In rats fed after 4-h deprivation (baseline = 12.3 +/- 0.3 g/2 h), 5 nmol of NPFF did not alter and larger doses (10 and 20 nmol) actually increased food intake (+36, 54%). Twenty nanomoles also elevated intake of freely feeding rats (from 0.7 +/- 0.1 to 5.1 +/- 1.0 g/4 h). The opioid receptor blocker naloxone (10 nmol) antagonized this increase. These data reveal both pro- and anti-opioid actions of NPFF in the PBN to modulate feeding. The mechanisms for the opposite actions of low and high concentrations of this neuropeptide in parabrachial regulation of food intake remain to be determined.  相似文献   

2.
A R Gintzler  J A Scalisi 《Life sciences》1982,31(20-21):2363-2366
Ilea taken from guinea pigs that had been chronically exposed to morphine exhibit a greater tolerance to morphine and normorphine than to the opioid peptides D-ala2-D-leu5-enkephalin (DADLE) or D-met2-pro5-enkephalinamide (DMPE). This differential tolerance strongly implies the existence of at least two different types of opioid receptor in the guinea pig myenteric plexus or two different mechanisms of interaction between opioids and their receptor complex. Since DADLE is considered to be the prototypic ligand for the delta receptor, the above results imply the presence of delta receptors in the guinea pig myenteric plexus and furthermore, that this subtype of opioid receptor is associated with the modulation of release of enteric acetylcholine.  相似文献   

3.
It is known that under some conditions the administration of opioid agonists will stimulate food intake. However, the lack of receptor selectivity of some of the agonists which produce this effect leaves open the question of which receptor types are actually involved. In the experiments presented here, rats were given intracerebroventricular injections of Dynorphin 1-17 (DYN), [D-ala2MePhe4,-Gly-ol5]enkephalin (DAGO), and [D-ser2, leu5]enkephalin-thr6 (DSLET); these peptides are thought to be selective agonists at kappa, mu and delta opioid receptors, respectively. All three peptides stimulated food intake in non-deprived rats at doses in the 3-10 nmol range; water intake was also increased in some cases. Generally, DYN stimulated feeding at a lower dose than DAGO or DSLET and the magnitude of the effect tended to be greater. On the other hand, DAGO more consistently increased water intake. In some cases, DYN also caused episodes of "barrel-rolling" and postural abnormalities, whereas DAGO had sedative and/or cataleptic effects. These results are interpreted as an involvement of more than one opioid receptor types in the regulation of appetite, possibly with separate opioid systems contributing to food and water intake.  相似文献   

4.
M Pairet  Y Ruckebusch 《Life sciences》1984,35(16):1653-1658
Myoelectrical activity was recorded in the proximal and distal colon of rabbits using chronically implanted electrodes. The motility in both the proximal and distal colon was inhibited by the intravenous (IV) administration of the following opioid agonists for mu receptors: morphine and fentanyl, kappa receptors: ethylketazocine (EKC) and U 50 488 H, and delta receptors: D-Ala2 D-Leu5-enkephalin (DADLE) and D-Ser2 Leu-enkephalin-Thr6 (DSLET). In contrast, the myoelectric activity in the distal colon was increased during the infusion of an endogenous kappa opioid agonist, dynorphin (DYN). All of these effects were prevented by naloxone pretreatment. During in vitro studies using extraluminal force transducers, fentanyl, U 50 488 H and DSLET inhibited spontaneous contractions of the proximal colon, but U 50 488 H and DSLET caused a substantial increase in the motility of the distal colon. The observed motor responses in the proximal and distal colon following opioid agonist administration indicate that the control of these two intestinal segments may be different. It is suggested that the stimulatory effect of dynorphin on the distal colon is peripherally-mediated while inhibition of the whole colon by opioid agonists regardless of subtypes seems to be centrally-mediated.  相似文献   

5.
Food intake and physical activity are regulated by multiple neuropeptides, including orexin and dynorphin (DYN). Orexin-A (OXA) is one of two orexin peptides with robust roles in regulation of food intake and spontaneous physical activity (SPA). DYN collectively refers to several peptides, some of which act through opioid receptors (opioid DYN) and some whose biological effects are not mediated by opioid receptors (non-opioid DYN). While opioid DYN is known to increase food intake, the effects of non-opioid DYN peptides on food intake and SPA are unknown. Neurons that co-express and release OXA and DYN are located within the lateral hypothalamus. Limited evidence suggests that OXA and opioid DYN peptides can interact to modulate some aspects of behaviors classically related to orexin peptide function. The paraventricular hypothalamic nucleus (PVN) is a brain area where OXA and DYN peptides might interact to modulate food intake and SPA. We demonstrate that injection of des-Tyr-dynorphin (DYN-A2−17, a non opioid DYN peptide) into the PVN increases food intake and SPA in adult mice. Co-injection of DYN-A2−17 and OXA in the PVN further increases food intake compared to DYN-A2−17 or OXA alone. This is the first report describing the effects of non-opioid DYN-A2−17 on food intake and SPA, and suggests that DYN-A2−17 interacts with OXA in the PVN to modulate food intake. Our data suggest a novel function for non-opioid DYN-A2−17 on food intake, supporting the concept that some behavioral effects of the orexin neurons result from combined actions of the orexin and DYN peptides.  相似文献   

6.
The effect of different opioid peptides on acidified ethanol- and indomethacin-induced gastric mucosal lesions was studied following intracerebroventricular (i.c.v.) administration. It was found that both the selective delta opioid receptor agonists--deltorphin II, [D-Ala(2), D-Leu(5)]-enkephalin (DADLE), [D-Pen(2), D-Pen(5)]-enkephalin (DPDPE)-, mu-opioid receptor agonist--[D-Ala(2), Phe(4), GlyT-ol]-enkephalin (DAGO)--as well as beta-endorphin inhibited the mucosal damage induced by both ethanol and indomethacin in pmolar dose range. In contrast, the gastric acid secretion was not influenced by DADLE in the dose of 16 nmol/rat and only a slight reduction (40%) was induced by DAGO in the dose of 1.9 nmol/rat. The protective effect was abolished in both ulcer models by bilateral cervical vagotomy. N(G)-nitro-L-arginine, an inhibitor of NO synthase, reduced the protective action in ethanol-induced, but not in indomethacin-induced gastric damage. The results suggest that activation of supraspinal delta and mu-opioid receptors resulted in inhibition of gastric mucosal lesions elicited by ethanol or indomethacin. The gastroprotective action is independent from the effect of opioids on acid secretion. Vagal nerve is involved in conveying the central action to the periphery. The mechanism of the gastroprotective effect of opioids is different in ethanol- and indomethacin-ulcer models: prostaglandins and nitric oxide are likely to be involved in the protective action of opioid peptides in ethanol-, but not in the indomethacin-ulcer model.  相似文献   

7.
The effect of Leu5-enkephalin on growth hormone (GH) and prolactin (PRL) release was studied in vivo in the infant rat and compared to that of morphine. In 10 day-old pups, intracerebroventricular injection of Leu5-enkephalin (50, 75 and 100 μg) resulted in a dose-related increase in plasma GH; morphine was active as GH releaser at the dose of 5 and 10 μg, but not at 2.5 μg. Pretreatment with naloxone (2 mg/kg ip) suppressed the GH-releasing effect of either Leu5-enkephalin (100 μg) or morphine (10 μg). Leu5-enkephalin (75 and 100 μg) induced a rise in plasma PRL which was neither dose-related nor antagonized by naloxone; morphine (5 and 10 μg) was active as PRL releaser and its effect was antagonized by naloxone. These results indicate that: 1) Leu5-enkephalin stimulates both GH and PRL release; 2) the release of GH by Leu5-enkephalin but likely not that of PRL involves specific opiate receptors; 3) morphine releases GH and PRL through specific opiate receptors.  相似文献   

8.
The inhibitory effect of intracerebroventricularly-administered [D-Arg(2), beta-Ala(4)]-dermorphin (1-4) (TAPA), a highly selective mu(1)-opioid receptor agonist, on mouse gastrointestinal transit was compared with that of morphine and [D-Ala(2), N-methyl-Phe(4), Gly(5)-ol]-enkephalin (DAMGO). When administered intracerebroventricularly 5 min before the oral injection of charcoal meal, TAPA (10-100 pmol), morphine (0.25-4 nmol), and DAMGO (20-80 pmol) dose-dependently inhibited gastrointestinal transit of charcoal. The inhibitory effect of each mu-opioid receptor agonist was completely antagonized by naloxone, a nonselective opioid receptor antagonist. The inhibitory effects of morphine and DAMGO were significantly antagonized by both beta-funaltrexamine, a selective mu-opioid receptor antagonist, and naloxonazine, a selective mu(1)-opioid receptor antagonist. In contrast, the inhibitory effect of TAPA was not affected at all by beta-funaltrexamine, naloxonazine, nor-binaltorphimine (a selective kappa-opioid receptor antagonist), or naltrindole (a selective delta-opioid receptor antagonist). These results suggest that the inhibitory effect of TAPA on gastrointestinal transit may be mediated through an opioid receptor mechanism different from that of morphine and DAMGO.  相似文献   

9.
Both the endogenous opioid peptide, dynorphin (1-13) (DYN), and morphine elicited dose-dependent feeding when microinjected into the ventral tegmental area of food-satiated rats. DYN was 50,000 times more potent than morphine in producing feeding. Whereas the ED50 for morphine was in the nanomole range, the ED50 for DYN was in the femtomole range. Administration of a narcotic antagonist attenuated DYN-elicited feeding. These data suggest a possible role for DYN in the VTA in opioid modulation of feeding behavior.  相似文献   

10.
Dose-response comparisons of the ability of the selective delta antagonist ICI 154,129 (12.5-50 nmol), the nonselective antagonist naloxone (29-290 nmol), and the irreversible selective mu antagonist beta-fNA (1.3-21 nmol) to alter the threshold response to DADLE or etorphine was studied in the rat flurothyl seizure test. DADLE (35 nmol, i.c.v.) and etorphine (122 nmol/kg, s.c.) both caused increases in seizure threshold which were differentially antagonized by pretreatment (i.c.v.) with the respective antagonists. For DADLE, only ICI 154,129 and naloxone produced a dose-related blockade of the increase in seizure threshold, with ICI 154,129 being more potent than naloxone. In contrast, the anticonvulsant action of etorphine was not antagonized by ICI 154,129 (50 nmol), but was blocked by a low dose of naloxone (29 nmol) or beta-fNA (21 nmol). In addition, prior occupancy of mu-sites with beta-fNA (21 nmol) significantly diminished the abilities of either ICI 154, 129 (50 nmol) or naloxone (290 nmol) to antagonize the anticonvulsant action of DADLE. The results of this study demonstrated that the effects of DADLE to increase seizure threshold in the rat were primarily mediated by activation of a delta-opioid receptor system. Furthermore, evidence has been provided for a functional interaction between delta and mu receptors in the opioid regulation of seizure threshold.  相似文献   

11.
Opioid agonists were used to investigate the modulation of seizures in the seizure-susceptible El mouse. Morphine andd-Ala2-d-Leu5-enkephalin (DADLE) were injected subcutaneously or intracisternally as prototypic agonists for and opioid receptors. Systemic or intracisternal injection of both morphine and DADLE decreased the incidence of seizures and the seizure score in El mice in a dose-dependent manner. The anticonvulsant effects of morphine and DADLE were reversed by naloxone (2 mg/kg, s.c.). This implies that opioid agonists have anticonvulsant properties which are mediated by and opioid receptors. In conclusion, a deficit in endogenous opioid peptides, which act as anticonvulsants may play a significant role in the etiology or pathophysiology of seizures in the El mouse.  相似文献   

12.
Wang YQ  Guo J  Wang SB  Fang Q  He F  Wang R 《Peptides》2008,29(7):1183-1190
The present study used the endpoint of hypothermia to investigate opioid and neuropeptide FF (NPFF) interactions in conscious animals. Both opioid and NPFF systems played important roles in thermoregulation, which suggested a link between opioid receptors and NPFF receptors in the production of hypothermia. Therefore, we designed a study to investigate the relationship between opioid and NPFF in control of thermoregulation in mice. The selective NPFF receptors antagonist RF9 (30nmol) injected into the third ventricle failed to induce significant effect, but it completely antagonized the hypothermia of NPFF (45 nmol) after cerebral administration in mice. In addition, RF9 (30 nmol) co-injected i.c.v. in the third ventricle reduced the hypothermia induced by morphine (5nmol,) or nociceptin/orphanin FQ (N/OFQ) (2 nmol). Neither the classical opioid receptors antagonist naloxone (10 nmol) nor NOP receptor antagonist [Nphe(1)]NC(1-13)NH(2) (7.5 nmol) reduced the hypothermia induced by the central injection of NPFF at dose of 45 nmol. Co-injected with a low dose of NPFF (5 nmol), the hypothermia of morphine (5 nmol) or N/OFQ (2 nmol) was not modified. These results suggest that NPFF receptors activation is required for opioid to produce hypothermia. In contrast, NPFF-induced hypothermia is mainly mediated by its own receptors, independent of opioid receptors in the mouse brain. This interaction, quantitated in the present study, is the first evidence that NPFF receptors mediate opioid-induced hypothermia in conscious animals.  相似文献   

13.
Y Ruckebusch  T Bardon  M Pairet 《Life sciences》1984,35(17):1731-1738
In sheep, the subcutaneous (SC) or intracerebroventricular (ICV) administration of the mu-type opioid agonists, fentanyl and morphine, evokes a blockade of the cyclic contractions of the reticulum. A similar inhibition of forestomach motility was recorded following the administration of the two enkephalin analogs, D-Ala2-Met5-enkephalinamide (DAMA) and D-Ala2-D-Leu5-enkephalin (DADLE) which are mixed mu - delta opioid agonists. In contrast, the reticular contractions were enhanced by the SC or ICV administration of the kappa type agonist, ethylketazocine (EKC) and U - 50 488 H. The proximal duodenum motor activity was transiently increased resulting in the occurrence of a phase III-like activity by these opioid agonists, regardless of the subtypes. The effects of the opioid agonists on reticular motility were prevented by the injection of naloxone but not by the quaternary parent compound methylnaloxone which does not cross the blood-brain barrier. The duodenal motor effects elicited by the opioid agonists were antagonized by both naloxone and methylnaloxone. The results suggest that the inhibition of the ruminant stomach motility is centrally mediated by mu - delta type opioid agonists and are consistent with opposite effects from kappa type opioid agonists. The stimulatory effect of peptide and non-peptide opioid agonists on the duodenum may result in part from direct opioid receptor-mediated actions on smooth muscle.  相似文献   

14.
Various opioid receptor agonists, including Met5-enkephalin amide, Leu5-enkephalin amide, [D-Ala]2-Met5-enkephalin amide, [D-Ala]2-Leu5-enkephalin amide, morphine sulfate, d-methadone hydrochloride, and l-methadone hydrochloride were administered to adult male rats by subcutaneous injection. All opioid receptor agonists except Leu5-enkephalin amide significantly stimulated growth hormone and prolactin release. Naloxone and naltrexone blocked the hormone stimulatory effects of the opioids and both naloxone and naltrexone, when administered alone, significantly reduced serum growth hormone and prolactin concentrations. The dopaminergic agonist apomorphine, but not the alpha-adrenergic agonist clonidine, blocked opiate stimulation of prolactin. Morphine sulfate caused growth hormone release in rats pretreated with alpha-methyl-p-tryosine, a catecholamine synthesis inhibitor. Cholinergic agonists, physostigmine and pilocarpine, antagonized the growth hormone and prolactin release induced by morphine sulfate. The data suggest that the opiates stimulate prolactin via an interaction with catecholaminergic neurons controlling prolactin release and stimulate growth hormone via a mechanism independent of alpha-adrenergic or general catecholaminergic influence. The mechanism through which cholinergic agonists act to inhibit opiate agonist stimulation of growth hormone is presently unknown.  相似文献   

15.
The N-terminal substance P fragment SP1-7 is known to modulate hyperalgesia and opioid withdrawal in animal models. This study examined the effects of intraperitoneal (i.p.) injections of SP1-7 on chronic morphine tolerance and on the levels of dynorphin B (DYN B) and nociceptin/orphanin FQ (N/OFQ) in various brain areas of male Sprague-Dawley rats. Morphine tolerance was induced by subcutaneous injections of the opioid (10 mg/kg) twice daily for 7 days. SP1-7 injected i.p. (185 nmol/kg) 30 min prior to morphine reduced the development of morphine tolerance. Immunoreactive (ir) DYN B and N/OFQ peptide levels were measured in several areas of the central nervous system. Levels of ir DYN B in rats treated with SP1-7 and morphine were decreased in the nucleus accumbens, substantia nigra and ventral tegmental area and increased in the frontal cortex. The ir N/OFQ levels were increased in the periaqueductal gray and decreased in the nucleus accumbens. Since the concentration profiles of the two peptides were altered by SP1-7 in the areas that are implicated in the modulation of opioid tolerance and analgesia, it is suggested that DYN B and N/OFQ systems may be involved in the effects of SP1-7 on opioid tolerance.  相似文献   

16.
Kappa opioid receptors stimulate phosphoinositide turnover in rat brain   总被引:4,自引:0,他引:4  
S Periyasamy  W Hoss 《Life sciences》1990,47(3):219-225
The effects of various subtype-selective opioid agonists and antagonists on the phosphoinositide (PI) turnover response were investigated in the rat brain. The kappa-agonists U-50,488H and ketocyclazocine produced a concentration-dependent increase in the accumulation of IP's in hippocampal slices. The other kappa-agonists Dynorphin-A (1-13) amide, and its protected analog D[Ala]2-dynorphin-A (1-13) amide also produced a significant increase in the formation of [3H]-IP's, whereas the mu-selective agonists [D-Ala2-N-Me-Phe4-Gly5-ol]-enkephalin and morphine and the delta-selective agonist [D-Pen2,5]-enkephalin were ineffective. The increase in IP's formation elicited by U-50,488H was partially antagonized by naloxone and more completely antagonized by the kappa-selective antagonists nor-binaltorphimine and MR 2266. The formation of IP's induced by U-50,488H varies with the regions of the brain used, being highest in hippocampus and amygdala, and lowest in striatum and pons-medulla. The results indicate that brain kappa- but neither mu- nor delta-receptors are coupled to the PI turnover response.  相似文献   

17.
In the first series of experiments on the isolated mouse vas deferens and guinea-pig ileum the capacity of 10 opioid peptides to activate mu- and delta-receptors was evaluated. [DAla2, DLeu5]-enkephalin (DADLE) and [DAla2, MePhe4, Gly5-ol]-enkephalin (DAMPGE) were the most selective agonists of delta- and mu-opiate receptors, respectively. In the second series of experiments on urethan-anesthetized rats it was shown, that intravenous administration of DADLE or DAMPGE (10(-7) M/kg each) elicited hypotension, bradycardia and expiratory apnoe. These effects disappeared both after naloxone injection and bilateral cervical vagotomy. A reflex nature of the vegetative effects of opioid peptides and the role of both mu- and delta-receptors in their realization are suggested.  相似文献   

18.
H H Suh  L F Tseng 《Life sciences》1990,46(11):759-765
Antinociceptive tolerance and cross-tolerance to intracerebroventricular (i.c.v.) beta-endorphin, morphine, and DPDPE (D-Pen2-D-Pen5-enkephalin) induced by a prior i.c.v. administration of beta-endorphin, morphine and DPDPE, respectively, were studied in mice. Acute tolerance was induced by i.c.v. pretreatment with beta-endorphin (0.58 nmol), morphine (6 nmol) and DPDPE (31 nmol) for 120, 180 and 75 min, respectively. Various doses of beta-endorphin, morphine or DPDPE were then injected. The tail-flick and hot-plate tests were used as antinociceptive tests. Pretreatment of mice with beta-endorphin i.c.v. reduced inhibition of the tail-flick and hot-plate responses to i.c.v. administered beta-endorphin, but not morphine and DPDPE. Pretreatment of mice with morphine i.c.v. reduced inhibition of the tail-flick and hot-plate responses to morphine but not beta-endorphin. Pretreatment of mice with DPDPE reduced inhibition of the tail-flick and hot-plate responses to DPDPE but not beta-endorphin. The results indicate that one injection of beta-endorphin, morphine or DPDPE induces acute antinociceptive tolerance to its own distinctive opioid receptor and does not induce cross-tolerance to other opioid agonists with different opioid receptor specificities. The data support the hypothesis that beta-endorphin, morphine and DPDPE produce antinociception by stimulating specific epsilon, mu- and delta-opioid receptors, respectively.  相似文献   

19.
To examine the possible involvement of multiple opioid receptors in animal hibernation, we infused opioids selective for mu, kappa, and delta opioid receptors into summer-active ground squirrels (Citellus tridecemlineatus). The effects of those opioid treatments on the hibernation induced by HIT (Hibernation Induction Trigger) were also examined. Mu opioids morphine (1.50 mg/kg/day) and morphiceptin (0.82 mg/kg/day) and kappa opioid peptide dynorphin A (0.82 mg/kg/day) did not induce hibernation. On the contrary, morphine, morphiceptin and dynorphin A antagonized HIT-induced hibernation in summer-active ground squirrels. Infusion of delta opioid DADLE (D-Ala2-D-Leu5 enkephalin; 1.50 mg/kg/day), however, induced summer hibernation in a manner comparable to that induced by HIT. It is concluded therefore that delta opioid receptor and its ligand may be intimately involved in animal hibernation. In view of the fact that HIT was obtained from winter hibernating animals and might therefore be responsible for natural hibernation, our results also suggest that naturally occurring mu and kappa opioids may play an important role in the arousal state of hibernation.  相似文献   

20.
We examined scratch-inducing effects of intracisternal, intrathecal and intradermal injections of morphine and some opioid agonists in mice. Intracisternal injection of morphine (3 nmol/animal) and the mu-receptor agonist [D-Ala(2), N-Me-Phe(4), Gly(5)-ol]enkephalin (DAMGO; 0.2 nmol/animal) elicited scratching of the face, with little effect on scratching of the trunk. Intracisternal injection of the delta-receptor agonist [D-Pen(2,5)]enkephalin (DPDPE) and the kappa-receptor agonist U50488 were without effects. Intrathecal injection of morphine (0.1-3 nmol/animal) produced a dose-dependent increase in body scratching, with little effects on face scratching. Face scratching induced by intrathecal morphine (3 nmol/animal) was almost abolished by subcutaneous pretreatment with naloxone (1 mg/kg). Intradermal injections of morphine (3-100 nmol/site), DAMGO (1-100 nmol/site), DPDPE (10 and 100 nmol/site) and U50488 (10-100 nmol/site) did not elicit scratching of the site of injection. Intradermal injection of histamine (100 nmol/site) induced the scratching in ICR, but not ddY, mice and serotonin (30 and 50 nmol/site) elicited the scratching in either strain of mice. The results suggest that opioids induce scratching, and probably itching, through central mu-opioid receptors in the mouse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号