首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Miller RA  Dolan D  Han M  Kohler W  Schacht J 《Aging cell》2011,10(2):362-363
Those mice whose skin-derived primary fibroblast cell lines resist lethal injury induced by hydrogen peroxide or UV light show lower age-related decline in hearing. Skin cell lines may provide an easily accessible surrogate index of intrinsic stress resistance that varies among individuals and influences the pace of neurosensory decline in aging mice.  相似文献   

2.
Hormesis in longevity is a widespread phenomenon across the animal kingdom. It takes place when longevity is improved as an indirect effect of mild stress. We explored some possible evolutionary trajectories of hormesis in longevity in artificially selected lines of Drosophila buzzatii. The lines were bi-directionally selected for either knockdown resistance to heat stress (K, K+) or chill-coma recovery (CCR, CCR+, with the + and – signs indicating selection for decreased and increased tolerance, respectively). All K and CCR lines successfully diverged due to thermal-stress selection. The heat-inducible hormesis in longevity was substantial in both K and CCR females, whereas no hormesis was apparent for females in CCR+, K+ and control lines. Among-line differences in longevity of non-heat-treated females disappeared after a heat-hardening treatment. Hormesis effects on the demographic senescence rate were sex-specific and consistently higher in the shorter-lived than in the longer-lived lines. Hormesis is an adaptive response, as its magnitude can evolutionary increase with stress-sensitivity.  相似文献   

3.
Fibroblasts from long‐lived mutant mice show diminished phosphorylation of the stress‐activated protein kinases ERK1/2 after exposure to peroxide, cadmium, or paraquat. We have now evaluated the kinetics of ERK phosphorylation in fibroblasts from long‐lived and short‐lived species of mammals and birds in response to stress by cadmium or hydrogen peroxide. Fibroblasts from the shorter‐lived species of rodents and birds showed rapid induction of ERK phosphorylation, with a decline to basal level within 60 min. In contrast, cells from longer‐lived species showed slower and more prolonged activation of ERK phosphorylation. These results suggest that fibroblasts from long‐lived species may be less susceptible to the early phases of damage from cadmium or peroxide and suggest that altered kinetics of ERK activity may contribute to their stress resistance properties.  相似文献   

4.
An inverse correlation between free radical production by isolated mitochondria and longevity in homeotherms has been reported, but previous comparative studies ignored possible confounding effects of body mass and phylogeny. We investigated this correlation by comparing rates of hydrogen peroxide (H(2)O(2)) production by heart mitochondria isolated from groups or pairs of species selected to have very different maximum lifespans but similar body masses (small mammals, medium-sized mammals, birds). During succinate oxidation, H(2)O(2) production rates were generally lower in the longer-lived species; the differences arose at complex I of the electron transport chain during reverse electron transport. Additional data were obtained from large species and the final dataset comprised mouse, rat, white-footed mouse, naked mole-rat, Damara mole-rat, guinea pig, baboon, little brown bat, Brazilian free-tailed bat, ox, pigeon and quail. In this dataset, maximum lifespan was negatively correlated with H(2)O(2) production at complex I during reverse electron transport. Analysis of residual maximum lifespan and residual H(2)O(2) production revealed that this correlation was even more significant after correction for effects of body mass. To remove effects of phylogeny, independent phylogenetic contrasts were obtained from the residuals. These revealed an inverse association between maximum lifespan and H(2)O(2) production that was significant by sign test, but fell short of significance by regression analysis. These findings indicate that enhanced longevity may be causally associated with low free radical production by mitochondria across species over two classes of vertebrate homeotherms.  相似文献   

5.
6.
Identifying the mechanisms determining species-specific life spans is a central challenge in understanding the biology of aging. Cellular stresses produce damage, that may accumulate and cause aging. Evolution theory predicts that long-lived species secure their longevity through investment in a more durable soma, including enhanced cellular resistance to stress. To investigate whether cells from long-lived species have better mechanisms to cope with oxidative and non-oxidative stress, we compared cellular resistance of primary skin fibroblasts from eight mammalian species with a range of life spans. Cell survival was measured by the thymidine incorporation assay following stresses induced by paraquat, hydrogen peroxide, tert-butyl hydroperoxide, sodium arsenite and alkaline pH (sodium hydroxide). Significant positive correlations between cell LD90 and maximum life span were found for all these stresses. Similar results were obtained when cell survival was measured by the MTT assay, and when lymphocytes from different species were compared. Cellular resistance to a variety of oxidative and non-oxidative stresses was positively correlated with mammalian longevity. Our results support the concept that the gene network regulating the cellular response to stress is functionally important in aging and longevity.  相似文献   

7.
Laboratory studies on Drosophila have revealed that resistance to one environmental stress often correlates with resistance to other stresses. There is also evidence on genetic correlations between stress resistance, longevity and other fitness-related traits. The present work investigates these associations using artificial selection in Drosophila melanogaster. Adult flies were selected for increased survival after severe cold, heat, desiccation and starvation stresses as well as increased heat-knockdown time and lifespan (CS, HS, DS, SS, KS and LS line sets, respectively). The number of selection generations was 11 for LS, 27 for SS and 21 for other lines, with selection intensity being around 0.80. For each set of lines, the five stress-resistance parameters mentioned above as well as longevity (in a nonstressful environment) were estimated. In addition, preadult developmental time, early age productivity and thorax length were examined in all lines reared under nonstressful conditions. Comparing the selection lines with unselected control revealed clear-cut direct selection responses for the stress-resistance traits. Starvation resistance increased as correlated response in all sets of selection lines, with the exception of HS. Positive correlated responses were also found for survival after cold shock (HS and DS) and heat shock (KS and DS). With regard to values of resistance across different stress assays, the HS and KS lines were most similar. The resistance values of the SS lines were close to those of the LS lines and tended to be the lowest among all selection lines. Developmental time was extended in the SS and KS lines, whereas the LS lines showed a reduction in thorax length. The results indicate a possibility of different multiple-stress-resistance mechanisms for the examined traits and fitness costs associated with stress resistance and longevity.  相似文献   

8.
Genetic variation for resistance to a high temperature stress under saturated humidity was examined within and among three Drosophila buzzatii populations from Australia. Further, the acclimation of this species to high temperatures was tested by prelreating flies for a shorter, sublethal, time period under conditions that lead to expression of heat shock proteins. Genetic variation for temperature resistance was present among lines for flies either pretreated to high temperature or not. Pro-treating increased survival, with the benefit significantly higher if pretreating was performed 24 h rather than 96 h before exposure to the potentially lethal stress. For (lies pretreated at both times, resistance to heat stress was even greater. The lack of a significant treatment by line interaction term suggested that all lines were similarly plastic for acclimation following previous exposure(s) to a high temperature. Significantly more males survived the heat stress than females, and, within each sex, larger flies were generally more heat resistant than smaller ones. Additionally, the lines from the population that naturally encounters the highest temperatures were generally more resistant to high temperature stress.  相似文献   

9.
The possible associations between longevity, early fecundity, and stress-resistance traits were explored using artificial selection on longevity in a laboratory population of Drosophila buzzatii . Three replicated lines were selected for increased lifespan (L lines) and compared with the respective unselected controls (C lines) after the 14th generation of selection. Mean longevity exhibited a significant response to selection. The baseline mortality tended to decrease in the L lines and a negative correlated response to longevity selection was found for early fecundity. Egg-to-adult developmental time increased in L lines. Longevity selection increased stress resistance for both high and low temperatures, as measured by heat knockdown resistance and chill-coma recovery. Starvation resistance also tended to be higher in L than in C lines. The results obtained are consistent with the hypothesis of trade-offs between longevity and early fecundity, and also suggest a trade-off association between adult longevity and developmental time. Correlated selection responses were generally consistent with correlations among the traits previously inferred from altitudinal clines for longevity and stress-resistance phenotypes.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 97 , 738–748.  相似文献   

10.
Oxidative stress plays numerous biological roles, both functional and pathological. The role of oxidative stress in various epidemiologically relevant biological traits in Anopheles mosquitoes is not well established. In this study, the effects of oxidative stress on the longevity and insecticide resistance phenotype in the major malaria vector species An. arabiensis and An. funestus were examined. Responses to dietary copper sulphate and hydrogen peroxide were used as proxies for the oxidative stress phenotype by determining the effect of copper on longevity and hydrogen peroxide lethal dose. Glutathione peroxidase and catalase activities were determined colorimetrically. Oxidative burden was quantified as protein carbonyl content. Changes in insecticide resistance phenotype were monitored by WHO bioassay. Insecticide resistant individuals showed an increased capacity for coping with oxidative stress, mediated by increased glutathione peroxidase and catalase activity. This effect was observed in both species, as well as in laboratory strains and F1 individuals derived from wild-caught An. funestus mothers. Phenotypic capacity for coping with oxidative stress was greatest in strains with elevated Cytochrome P450 activity. Synergism of oxidative stress defence enzymes by dietary supplementation with haematin, 3-Amino-1, 2, 4-triazole and Sodium diethyldithiocarbamate significantly increased pyrethroid-induced mortality in An. arabiensis and An. funestus. It is therefore concluded that defence against oxidative stress underlies the augmentation of the insecticide resistance phenotype associated with multiple blood-feeding. This is because multiple blood-feeding ultimately leads to a reduction of oxidative stress in insecticide resistant females, and also reduces the oxidative burden induced by DDT and pyrethroids, by inducing increased glutathione peroxidase activity. This study highlights the importance of oxidative stress in the longevity and insecticide resistance phenotype in malaria vectors.  相似文献   

11.
In previous experiments we found that Drosophila melanogaster lines selected for increased adult desiccation resistance had increased resistance to other environmental stresses at the adult stage including starvation, intense 60Co-γ radiation and a toxic ethanol level. In further studies on these lines, we now show that selection did not alter resistance to desiccation and ethanol at the larval stage. As well as having a lower early fecundity, selected lines showed increased adult male longevity and increased viability at high larval densities compared with control lines. There were no changes in development time or mating success. The increased male longevity is consistent with the reduced metabolic rate of the selected lines.
A genetic correlation between resistance to different stresses was confirmed by an analysis of isofemale lines derived from a population founded by flies from a stress-resistant line and an unselected line. The results are consistent with the existence of genes segregating in natural populations conferring increased general stress resistance.  相似文献   

12.
Previous studies have shown that dermal fibroblast cell lines derived from young adult mice of the long-lived Snell dwarf mutant stock are resistant, in vitro, to the cytotoxic effects of H(2)O(2), cadmium, UV light, paraquat, and heat. We show here that similar resistance profiles are seen in fibroblast cells derived from a related mutant, the Ames dwarf mouse, and that cells from growth hormone receptor-null mice are resistant to H(2)O(2), paraquat, and UV but not to cadmium. Resistance to UV light, cadmium, and H(2)O(2) are similar in cells derived from 1-wk-old Snell dwarf or normal mice, and thus the resistance of cell lines derived from young adult donors reflects developmental processes, presumably hormone dependent, that take place in the first few months of life. The resistance of cells from Snell dwarf mice to these stresses does not reflect merely antioxidant defenses: dwarf-derived cells are also resistant to the DNA-alkylating agent methyl methanesulfonate. Furthermore, inhibitor studies show that fibroblast resistance to UV light is unaffected by the antioxidants ascorbic acid and N-acetyl-L-cysteine. These data suggest that postnatal exposure to altered levels of pituitary hormones leads to development of cellular resistance to oxidative and nonoxidative stressors, which are stable through many rounds of in vitro cell division and could contribute to the remarkable disease resistance of long-lived mutant mice.  相似文献   

13.
Vascular aging is characterized by decreased nitric oxide (NO) bioavailability, oxidative stress, and enhanced apoptotic cell death. We hypothesized that interspecies comparative assessment of vascular function among rodents with disparate longevity may offer insight into the mechanisms determining successful vascular aging. We focused on four rodents that show approximately an order of magnitude range in maximum longevity (ML). The naked mole rat (NMR; Heterocephalus glaber) is the longest-living rodent known (ML > 28 yr), Damara mole rats (DMRs, Cryptomys damarensis; ML approximately 16 yr) and guinea pigs (GPs, Cavia porcellus; ML approximately 6 yr) have intermediate longevity, whereas laboratory mice are short living (ML approximately 3.5 yr). We compared interspecies differences in endothelial function, O(2)(-)* and H(2)O(2) production, and resistance to apoptotic stimuli in blood vessels. Sensitivity to acetylcholine-induced, NO-mediated relaxation was smaller in carotid arteries from NMRs, GPs, and DMRs than in mouse vessels. Measurements of production of O(2)(-)* (lucigenin chemiluminescence and ethidium bromide fluorescence) and H(2)O(2) (dichlorofluorescein fluorescence) showed that free radical production in vascular endothelial and smooth muscle cells is comparable in vessels of the three longer-living species and in arteries of shorter-living mice. In mouse arteries, H(2)O(2) (from 10(-6) to 10(-3) mol/l) and heat exposure (42 degrees C for 15-45 min) enhanced apoptotic cell death, as indicated by an increased DNA fragmentation rate and increased caspase 3/7 activity. In NMR vessels, only the highest doses of H(2)O(2) enhanced apoptotic cell death, whereas heat exposure did not increase DNA fragmentation rate. Interspecies comparison showed there is a negative correlation between H(2)O(2)-induced apoptotic cell death and ML. Thus endothelial vasodilator function and vascular production of reactive oxygen species do not correlate with maximal lifespan, whereas increased lifespan potential is associated with an increased vascular resistance to proapoptotic stimuli.  相似文献   

14.
Life history,ecology and longevity in bats   总被引:5,自引:1,他引:4  
Wilkinson GS  South JM 《Aging cell》2002,1(2):124-131
The evolutionary theory of aging predicts that life span should decrease in response to the amount of mortality caused by extrinsic sources. Using this prediction, we selected six life history and ecological factors to use in a comparative analysis of longevity among 64 bat species. On average, the maximum recorded life span of a bat is 3.5 times greater than a non-flying placental mammal of similar size. Records of individuals surviving more than 30 years in the wild now exist for five species. Univariate and multivariate analyses of species data, as well as of phylogenetically independent contrasts obtained using a supertree of Chiroptera, reveal that bat life span significantly increases with hibernation, body mass and occasional cave use, but decreases with reproductive rate and is not influenced by diet, colony size or the source of the record. These results are largely consistent with extrinsic mortality risk acting as a determinant of bat longevity. Nevertheless, the strong association between life span and both reproductive rate and hibernation also suggests that bat longevity is strongly influenced by seasonal allocation of non-renewable resources to reproduction. We speculate that hibernation may provide a natural example of caloric restriction, which is known to increase longevity in other mammals.  相似文献   

15.
Microchiropteran bats sustain very high oxygen consumption rates when active, but they also exhibit drastic daily drops in oxygen consumption when torpid. In addition, bats are also characterized by an extraordinary longevity considering their body mass and high specific metabolic rate when compared to other mammals of related size. Therefore, they consist of a very interesting group regarding the free radical theory of aging. The present study was carried out to measure the antioxidant defenses of several tissues of five South American bat species, attempting to correlate the antioxidant status, ecophysiology and longevity. Superoxide dismutase (SOD) and catalase (CAT) activities in blood, liver and kidney were higher compared to other tissues. The contents of alpha-tocopherol and beta-carotene found in liver, heart, kidneys, and pectoral muscles were one to two orders of magnitude higher than those usually found in rat and mouse liver. Also, these contents in liver were generally inversely related to lipoperoxidation measured as TBARS contents. Blood GSH contents and the activities of SOD and CAT were higher in torpid Sturnira lillium compared to active ones, thus suggesting that the elevation of such antioxidants might be daily modulated to minimize the oxidative stress related to the transition from torpid to active state in bats. The lower ROS generation reported in the literature for other bat species, their high constitutive antioxidant defenses, and the daily energy sparing associated with torpor appear to be closely related to their ecophysiological adaptations and to their extended longevity.  相似文献   

16.
Thermal environments can influence many fitness‐related traits including life span. Here, we assess whether longevity in Drosophila melanogaster can experimentally evolve as a correlated response to cold‐stress selection, and whether genotype‐by‐temperature and sex‐by‐temperature interactions are significant components of variation in life span. Three replicated S lines were cold‐stress selected and compared with their respective unselected controls (Clines) in the 16th generation of thermal selection. Cold‐stress resistance exhibited a substantial direct response to selection, and also showed a significant interaction between sex and type of line. Mean longevity exhibited a significant interaction between adult test temperature (14 and 25 °C) and line (with suggestive evidence for increased longevity of S lines when tested at 14 °C), but there was no evidence for increased longevity in S lines at normal temperatures (i.e. 25 °C). Another temperature‐dependent effect was sex‐specific, with males being the longer lived sex at 25 °C but the less long‐lived sex at 14 °C. Additionally, we tested in an exploratory way the relationship between longevity and cold‐stress resistance by also measuring resistance to a prefreezing temperature before and after one generation of longevity selection at 14 °C (selection intensity, i = 1.47 for S lines, and 1.42 for C lines). In this longevity selection, we found that cold‐stress resistance increased by about 6% in S lines and 18% in C lines. However, taken together, the results indicate no simple relationship between longevity and cold‐stress resistance, with genotype‐by‐sex interactions in both traits. Temperature dependent interaction in longevity is apparent between S and C lines, and sex‐specific variation in mean longevity also depends on temperature.  相似文献   

17.
Expression of small stress proteins (shsp) enhances the survival of mammalian cells exposed to heat or oxidative injuries. Recently, we have shown that the expression of shsp from different species, such as human hsp27, Drosophila hsp27 or human alphaB-crystallin protected murine L929 cells against cell death induced by tumor necrosis factor (TNFalpha), hydrogen peroxide or menadione. Here, we report that, in growing L929 cell lines, the presence of these shsp decreased the intracellular level of reactive oxygen species (ROS). shsp expression also abolished the burst of intracellular ROS induced by TNFalpha. Several downstream effects resulting from the TNFalpha-mediated ROS increment, such as NF-kappaB activation, lipid peroxidation and protein oxidation, were inhibited by shsp expression. We also report that the expression of these different shsp raised the total glutathione level in both L929 cell lines and transiently transfected NIH 3T3-ras cells. This phenomenon was essential for the shsp-mediated decrease in ROS and resistance against TNFalpha. Our results therefore suggest that the protective activity shared by human hsp27, Drosophila hsp27 and human alphaB-crystallin against TNFalpha-mediated cell death and probably other types of oxidative stress results from their conserved ability to raise the intracellular concentration of glutathione.  相似文献   

18.
In Drosophila melanogaster, exposure of females to low temperature and shortened photoperiod can induce the expression of reproductive quiescence or diapause. Diapause expression is highly variable within and among natural populations and has significant effects on life-history profiles, including patterns of longevity, fecundity, and stress resistance. We hypothesized that if diapause expression is associated with overwintering mechanisms and adaptation to temperate environments, the frequency of diapause incidence would exhibit a latitudinal cline among natural populations. Because stress resistance and reproductive traits are also clinal in this species, we also examined how patterns of fecundity and longevity varied with geography and how stress resistance and associated traits differed constitutively between diapause and nondiapause lines. Diapause incidence was shown to vary predictably with latitude, ranging from 35% to 90% among natural populations in the eastern United States Survivorship under starvation stress differed between diapause and nondiapause lines; diapause phenotypes were also distinct for total body triglyceride content and the developmental distribution of oocytes in the ovary following stress exposure. Patterns of longevity, fecundity, and ovariole number also varied with geography. The data suggest that, for North American populations, diapause expression is functionally associated with overwintering mechanisms and may be an integral life-history component in natural populations.  相似文献   

19.
20.
Inactivation of insulin-like growth factor I (IGF-I) signalling pathways have been shown to extend lifespans in various lower species, including the nematode Caenorhabditis elegans. In order to investigate this relationship in a mammalian species, a series of experiments were carried out with a mouse model heterozygous for a mutation in the IGF-I receptor gene. These heterozygous mice only had slight post-natal growth retardation, but had a lifespan 26% longer than normal. Their fertility and dietary intake were unaffected. The mechanism for increased lifespan in these mutant mice appears to be enhanced resistance to oxidative stress: heterozygous mice had a greater survival rate subsequent to severe oxidative stress generated in vivo than wild-type mice, and cells from heterozygous animals had a better resistance to hydrogen peroxide in vitro than cells from wild-type animals. Resistance to oxidative stress in these mutant animals could be caused by decreased phosphorylation of molecules downstream of the IGF-I receptor in the IGF-I signalling pathway, one of which is thought to be p66shc. Whether this link between reduced IGF-I signalling and longevity is conserved in other mammalian species, including humans, is presently not known. If it was, it could have implications for growth hormone therapy, which increases serum IGF-I levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号