首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adrenoleukodystrophy-related protein, a peroxisomal ABC transporter encoded by ABCD2, displays functional redundancy with the disease-associated X-linked adrenoleukodystrophy protein, making pharmacological induction of ABCD2 a potentially attractive therapeutic approach. Sterol regulatory element (SRE)-binding proteins (SREBPs) induce ABCD2 through an SRE overlapping with a direct repeat (DR-4) element. Here we show that thyroid hormone (T(3)) receptor (TR)alpha and TRbeta bind this motif thereby modulating SREBP1-dependent activation of ABCD2. Unliganded TRbeta, but not TRalpha, represses ABCD2 induction independently of DNA binding. However, activation by TRalpha and derepression of TRbeta are T(3)-dependent and require intact SRE/DR-4 motifs. Electrophoretic mobility shift assays with nuclear extracts support a direct interaction of TR and SREBP1 at the SRE/DR-4. In the liver, Abcd2 expression is high in young mice (with high T(3) and TRalpha levels) but downregulated in adults (with low T(3) and TRalpha but elevated TRbeta levels). This temporal repression of Abcd2 is blunted in TRbeta-deficient mice, and the response to manipulated T(3) states is abrogated in TRalpha-deficient mice. These findings show that TRalpha and TRbeta differentially modulate SREBP1-activated ABCD2 expression at overlapping SRE/DR-4 elements, suggesting a novel mode of cross-talk between TR and SREBP in gene regulation.  相似文献   

2.
D Forrest  M Sjberg    B Vennstrm 《The EMBO journal》1990,9(5):1519-1528
Thyroid hormones and their receptors (TRs) have critical functions in development. Here we show that a chicken TR beta cDNA clone encodes a receptor with a novel, short N-terminal domain. In vitro-expressed TR beta protein bound thyroid hormone with similar affinity as the chicken TR alpha. Comparison of expression of TR alpha and TR beta mRNAs throughout chicken development until 3 weeks post-hatching revealed ubiquitous expression of TR alpha mRNAs (in 14 different tissues) with some variations in levels, from early embryonic stages. In contast, expression of TR beta mRNA was restricted, occurring notably in brain, eye, lung, yolk sac and kidney, and was subject to striking developmental control, especially in brain where levels increased 30-fold upon hatching. Levels also sharply increased in late embryonic lung, but were relatively high earlier in embryonic eye and yolk sac. RNase protection analyses detected no obvious mRNAs for alpha and beta TRs with variant C-termini as demonstrated previously for the rat TR alpha gene. The data suggest a general role for TR alpha and specific developmental functions for TR beta, and that thyroid-dependent development involves temporal and tissue-specific expression of the TR beta gene.  相似文献   

3.
Thyroid hormones are essential for correct brain development, and since vertebrates express two thyroid hormone receptor genes (TR alpha and beta), we investigated TR gene expression during chick brain ontogenesis. In situ hybridization analyses showed that TR alpha mRNA was widely expressed from early embryonic stages, whereas TR beta was sharply induced after embryonic day 19 (E19), coinciding with the known hormone-sensitive period. Differential expression of TR mRNAs was striking in the cerebellum: TR beta mRNA was induced in white matter and granule cells after the migratory phase, suggesting a main TR beta function in late, hormone-dependent glial and neuronal maturation. In contrast, TR alpha mRNA was expressed in the earlier proliferating and migrating granule cells, and in the more mature granular and Purkinje cell layers after hatching, indicating a role for TR alpha in both immature and mature neural cells. Surprisingly, both TR genes were expressed in early cerebellar outgrowth at E9, before known hormone requirements, with TR beta mRNA restricted to the ventricular epithelium of the metencephalon and TR alpha expressed in migrating cells and the early granular layer. The results implicate TRs with distinct functions in the early embryonic brain as well as in the late phase of hormone requirement.  相似文献   

4.
Retinoic acid (RA) signaling is required for normal development of multiple organs. However, little is known about how RA influences the initial stages of lung development. Here, we used a combination of genetic, pharmacological and explant culture approaches to address this issue, and to investigate how signaling by different RA receptors (RAR) mediates the RA effects. We analyzed initiation of lung development in retinaldehyde dehydrogenase-2 (Raldh2) null mice, a model in which RA signaling is absent from the foregut from its earliest developmental stages. We provide evidence that RA is dispensable for specification of lung cell fate in the endoderm. By using synthetic retinoids to selectively activate RAR alpha or beta signaling in this model, we demonstrate novel and unique functions of these receptors in the early lung. We show that activation of RAR beta, but not alpha, induces expression of the fibroblast growth factor Fgf10 and bud morphogenesis in the lung field. Similar analysis of wild type foregut shows that endogenous RAR alpha activity is required to maintain overall RA signaling, and to refine the RAR beta effects in the lung field. Our data support the idea that balanced activation of RAR alpha and beta is critical for proper lung bud initiation and endodermal differentiation.  相似文献   

5.
6.
The biological effects of thyroid hormone (T3) are mediated by the thyroid hormone receptor (TR). Amphibian metamorphosis is one of the most dramatic processes that are dependent on T3. T3 regulates a series of orchestrated developmental changes, which ultimately result in the conversion of an aquatic herbivorous tadpole to a terrestrial carnivorous frog. T3 is presumed to bind to TRs, which in turn recruit coactivators, leading to gene activation. The best-studied coactivators belong to the p160 or SRC family. Members of this family include SRC1/ NCoA-1, SRC2/TIF2/GRIP1, and SRC3/pCIP/ACTR/AIB-l/RAC-3/TRAM-1. These SRCs interact directly with liganded TR and function as adapter molecules to recruit other coactivators such as p300/CBP. Here, we studied the expression patterns of these coactivators during various stages of development. Amongst the coactivators cloned in Xenopus laevis, SRC3 was found to be dramatically upregulated during natural and T3-induced metamorphosis, and SRC2 and p300 are express  相似文献   

7.
Paul BD  Shi YB 《Cell research》2003,13(6):459-464
The biological effects of thyroid hormone (T3) are mediated by the thyroid hormone receptor (TR). Amphibian metamorphosis is one of the most dramatic processes that are dependent on T3. T3 regulates a series of orchestrated developmental changes, which ultimately result in the conversion of an aquatic herbivorous tadpole to a terrestrial carnivorous frog. T3 is presumed to bind to TRs, which in turn recruit coactivators, leading to gene activation. The best-studied coactivators belong to the p160 or SRC family. Members of this family include SRC1/NCoA-1, SRC2/TIF2/GRIP1, and SRC3/pCIP/ACTR/AIB-1/RAC-3/TRAM-1. These SRCs interact directly with liganded TR and function as adapter molecules to recruit other coactivators such as p300/CBP. Here, we studied the expression patterns of these coactivators during various stages of development. Amongst the coactivators cloned in Xenopus laevis, SRC3 was found to be dramatically upregulated during natural and T3-induced metamorphosis, and SRC2 and p300 are expressed throughout postembryonic development with little change in their expression levels. These results support the view that these coactivators participate in gene regulation by TR during metamorphosis.  相似文献   

8.
9.
The effects of thyroid hormone agonists on thyroid hormone receptor (TR)/DNA complex formation was investigated to elucidate the mechanism by which TRs transactivate genes in response to ligand. The data, obtained from gel shift experiments, indicate that thyroid hormones alter the conformation of TRs bound to DNA, irrespective of if the element is occupied by monomeric TR, homodimeric TR/TR, or heterodimeric complexes with the retinoid receptors RAR or RXR. Furthermore, triiodo-thyronine (T3) prevents 2 TR molecules from binding to oligonucleotides containing direct repeats or inverted palindromes of the consensus AGGTCA motif, an effect that was not detected with palindromic elements. Heterodimers bound to direct repeats were less affected: RXR/TR were fully and RAR/TR complexes partially resistant to thyroid hormone. The data suggest that a ligand-induced conformational change in TR prevents double TR occupancy of a response element containing 2 direct repeats of the consensus binding motif, possibly by steric hindrance, whereas such an event does not prevent TR/RXR heterodimers from binding to DNA. Finally, our data show that a monomeric, liganded TR bound preferentially to the second half site in a AGGTCActcaAGGTCA element, and therefore indicate that nucleotides adjacent to the consensus half site contribute to binding specificity.  相似文献   

10.
This study was undertaken to investigate whether fatty acids inhibit the binding of T3 to the alpha 1 and beta 1 form of the thyroid hormone receptor. Fatty acids inhibited the binding of T3 to both receptor proteins isolated from a bacterial expression system. The effectiveness of inhibition depends on the chain length and degree of saturation of the fatty acids. The inhibition of T3 binding to the alpha 1 and beta 1 receptor by oleic acid is competitive in nature; the Ki value was 5.4 10(-6) M for the c-erbA alpha 1 protein and 3.3 10(-6) M for the c-erb beta 1 protein. The findings indicate a direct interaction of fatty acids with T3 receptor proteins.  相似文献   

11.
Amphibian metamorphosis is a post-embryonic process that systematically transforms different tissues in a tadpole. Thyroid hormone plays a causative role in this complex process by inducing a cascade of gene regulation. While natural metamorphosis does not occur until endogenous thyroid hormone has been synthesized, tadpoles are competent to respond to exogenous thyroid hormone shortly after hatching. In addition, even though the metamorphic transitions of individual organs are all controlled by thyroid hormone, each occurs at distinct developmental stages. Recent molecular studies suggest that this competence of premetamorphic tadpoles to respond to the hormone and the developmental stage-dependent regulation of tissue-specific transformations are determined in part by the levels of thyroid hormone receptors and the concentrations of cellular free thyroid hormone. In addition, at least two genes, encoding a cytosolic thyroid hormone binding protein and a 5-deiodinase, respectively, are likely to be critical players in regulating cellular free thyroid hormone concentrations. This review discusses how all of these molecuar components coordinate to induce amphibian metamorphosis in a correct spatial and temporal manner. These studies provde us with general clues as to how and why tissues become competent to respond to hormonal signals.  相似文献   

12.
Integrins are transmembrane receptors which bind extracellular matrix proteins and enable not only cell adhesion and cytoskeleton organization but also transduction of critical signals into the cells to promote survival, proliferation, differentiation, or migration programs. Integrins participate in many aspects of vascular biology. The past few years have experienced a sustained interest in the implication of integrin receptors in tumor angiogenesis. We will focus our review on studies giving concrete evidence to a role of the beta1 class of integrins in angiogenesis, and we will provide an overview of the molecular mechanisms involved in their action.  相似文献   

13.
The purpose of this study was to determine the effect of thyroid status on the Na,K-ATPase alpha isoforms and beta in rat heart, skeletal muscle, kidney, and brain at the levels of mRNA, protein abundance, and enzymatic activity. Northern and dot-blot analysis of RNA (euthyroid, hypothyroid, and triiodothyronine-injected hypothyroids = hyperthyroids) and immunoblot analysis of protein (euthyroid and hypothyroid) revealed isoform-specific regulation of Na,K-ATPase by thyroid status in kidney, heart, and skeletal muscle and no regulation of sodium pump subunit levels in the brain. In general, in the transition from euthyroid to hypothyroid alpha 1 mRNA and protein levels are unchanged in kidney and skeletal muscle and slightly decreased in heart, while alpha 2 mRNA and protein are decreased significantly in heart and skeletal muscle. In hypothyroid heart and skeletal muscle, the decrease in alpha 2 protein levels was much greater than the decrease in alpha 2 mRNA levels relative to euthyroid indicating translational or post-translational regulation of alpha 2 protein abundance by triiodothyronine status in these tissues. The regulation of beta subunit by thyroid status is tissue-dependent. In hypothyroid kidney beta mRNA levels do not change, but immunodetectable beta protein levels decrease relative to euthyroid, and the decrease parallels the decrease in Na,K-ATPase activity. In hypothyroid heart and skeletal muscle beta mRNA levels decrease; beta protein decreases in heart and was not detected in the skeletal muscle. These findings demonstrate that the euthyroid levels of expression of alpha 1 in heart, alpha 2 in heart and skeletal muscle, and beta in kidney, heart, and skeletal muscle are dependent on the presence of thyroid hormone.  相似文献   

14.
Integrin alphaMbeta2 (Mac-1, CD11b/CD18) is a noncovalently linked heterodimer of alphaM and beta2 subunits on the surface of leukocytes, where it plays a pivotal role in the adhesion and migration of these cells. Using HEK293 cells expressing alphaMbeta2 or the individual constituent chains on their surface, we analyzed the contributions of the alphaM or beta2 subunits to functional responses mediated by the integrin. In cells expressing only alphaM or beta2, the individual subunits were not associated with the endogenous integrins of the cells, and other partners for the subunits were not detected by surface labeling and immunoprecipitation under a variety of conditions. The alphaM cells mediated adhesion and spreading on a series of alphaMbeta2 ligands (fibrinogen, Factor X, iC3b, ICAM-1 (intercellular adhesion molecule-1), and denatured ovalbumin) but could not support cell migration to any of these. The spreading of the alphaM cells suggested an unanticipated linkage of this subunit to the cytoskeleton. The beta2 cells supported migration and attachment but not spreading on a subset of the alphaMbeta2 ligands. The heterodimeric receptor and its individual subunits were purified from the cells by affinity chromatography and recapitulated the ligand binding properties of the corresponding cell lines. These data indicate that each subunit of alphaMbeta2 contributes distinct properties to alphaMbeta2 and that, in most but not all cases, the response of the integrin is a composite of the functions of its individual subunits.  相似文献   

15.
16.
17.
18.
19.
The Chlamydomonas I1 dynein is a two-headed inner dynein arm important for the regulation of flagellar bending. Here we took advantage of mutant strains lacking either the 1α or 1β motor domain to distinguish the functional role of each motor domain. Single- particle electronic microscopic analysis confirmed that both the I1α and I1β complexes are single headed with similar ringlike, motor domain structures. Despite similarity in structure, however, the I1β complex has severalfold higher ATPase activity and microtubule gliding motility compared to the I1α complex. Moreover, in vivo measurement of microtubule sliding in axonemes revealed that the loss of the 1β motor results in a more severe impairment in motility and failure in regulation of microtubule sliding by the I1 dynein phosphoregulatory mechanism. The data indicate that each I1 motor domain is distinct in function: The I1β motor domain is an effective motor required for wild-type microtubule sliding, whereas the I1α motor domain may be responsible for local restraint of microtubule sliding.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号