首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study presents univariate narrow-sense heritability estimates for 33 common craniometric dimensions, calculated using the maximum likelihood variance components method on a skeletal sample of 298 pedigreed individuals from Hallstatt, Austria. Quantitative genetic studies that use skeletal cranial measurements as a basis for inferring microevolutionary processes in human populations usually employ heritability estimates to represent the genetic variance of the population. The heritabilities used are often problematic: most come from studies of living humans, and/or they were calculated using statistical techniques or assumptions violated by human groups. Most bilateral breadth measures in the current study show low heritability estimates, while cranial length and height measures have heritability values ranging between 0.102-0.729. There appear to be differences between the heritabilities calculated from crania and those from anthropometric studies of living humans, suggesting that the use of the latter in quantitative genetic models of skeletal data may be inappropriate. The univariate skeletal heritability estimates seem to group into distinct regions of the cranium, based on their relative values. The most salient group of measurements is for the midfacial/orbital region, with a number of measures showing heritabilities less than 0.30. Several possible reasons behind this pattern are examined. Given the fact that heritabilities calculated on one population should not be applied to others, suggestions are made for the use of the data presented.  相似文献   

2.
Summary Tassel branch numbers of six crosses of maize (Zea mays L.) were analyzed to determine inheritance of this trait. Generation mean analyses were used to estimate genetic effects, and additive and nonadditive components of variance were calculated and evaluated for bias due to linkage. Both narrow-sense and broad-sense heritabilities were estimated. Additive genetic variance estimates were significant in five of the six crosses, whereas estimates of variance due to nonadditive components were significant in only three crosses. Additionally, estimates of additive variance components usually were larger than corresponding nonadditive components. There was no evidence for linkage bias in these estimates. Estimates of additive genetic effects were significant in four of six crosses, but significant dominance, additive × additive and additive × dominance effects also were detected. Additive, dominance, and epistatic gene action, therefore, all influenced the inheritance of tassel branch number, but additive gene action was most important. Both narrow-sense and broadsense heritability estimates were larger than those reported for other physiological traits of maize and corroborated conclusions concerning the importance of additive gene action inferred from analyses of genetic effects and variances. We concluded that selection for smalltasseled inbreds could be accomplished most easily through a mass-selection and/or pedigree-selection system. Production of a small-tasseled hybrid would require crossing of two small-tasseled inbreds. We proposed two genetic models to explain unexpected results obtained for two crosses. One model involved five interacting loci and the other employed two loci displaying only additive and additive × additive gene action.Journal Paper No. J-9231 of the Iowa Agriculture and Home Economics Experiment Station, Ames, Iowa 50011. Project No. 2152  相似文献   

3.
Comparing Evolvability and Variability of Quantitative Traits   总被引:35,自引:0,他引:35       下载免费PDF全文
D. Houle 《Genetics》1992,130(1):195-204
There are two distinct reasons for making comparisons of genetic variation for quantitative characters. The first is to compare evolvabilities, or ability to respond to selection, and the second is to make inferences about the forces that maintain genetic variability. Measures of variation that are standardized by the trait mean, such as the additive genetic coefficient of variation, are appropriate for both purposes. Variation has usually been compared as narrow sense heritabilities, but this is almost always an inappropriate comparative measure of evolvability and variability. Coefficients of variation were calculated from 842 estimates of trait means, variances and heritabilities in the literature. Traits closely related to fitness have higher additive genetic and nongenetic variability by the coefficient of variation criterion than characters under weak selection. This is the reverse of the accepted conclusion based on comparisons of heritability. The low heritability of fitness components is best explained by their high residual variation. The high additive genetic and residual variability of fitness traits might be explained by the great number of genetic and environmental events they are affected by, or by a lack of stabilizing selection to reduce their phenotypic variance. Over one-third of the quantitative genetics papers reviewed did not report trait means or variances. Researchers should always report these statistics, so that measures of variation appropriate to a variety of situations may be calculated.  相似文献   

4.
Data from natural populations have suggested a disconnection between trait heritability (variance standardized additive genetic variance, VA) and evolvability (mean standardized VA) and emphasized the importance of environmental variation as a determinant of trait heritability but not evolvability. However, these inferences are based on heterogeneous and often small datasets across species from different environments. We surveyed the relationship between evolvability and heritability in >100 traits in farmed cattle, taking advantage of large sample sizes and consistent genetic approaches. Heritability and evolvability estimates were positively correlated (r = 0.37/0.54 on untransformed/log scales) reflecting a substantial impact of VA on both measures. Furthermore, heritabilities and residual variances were uncorrelated. The differences between this and previously described patterns may reflect lower environmental variation experienced in farmed systems, but also low and heterogeneous quality of data from natural populations. Similar to studies on wild populations, heritabilities for life‐history and behavioral traits were lower than for other traits. Traits having extremely low heritabilities and evolvabilities (17% of the studied traits) were almost exclusively life‐history or behavioral traits, suggesting that evolutionary constraints stemming from lack of genetic variability are likely to be most common for classical “fitness” (cf. life‐history) rather than for “nonfitness” (cf. morphological) traits.  相似文献   

5.
The application and underlying assumptions of formulae used to estimate the variance of variance components and ratios of variance components are fully described for (1) variance components estimated using Henderson's Method 3 (HM3) and Restricted Maximum Likelihood (REML) and (2) ratios of variance components commonly used in genetic tests — biased and unbiased heritabilities. A first-order Taylor series approximation is often used to estimate the variance of a ratio of two random variables (e.g., heritability), however the formula is complicated, thus making calculations prone to errors. Dickerson's approximation is considerably simpler, though relatively rarely used. In case studies using data from 148 slash pine full-sib progeny tests, Dickerson's method was found to be slightly more conservative than the Taylor series approximation when estimating the variance of heritability estimates, regardless of test size, age, or the trait (volume, which is a continuous trait, and rust resistance, which is a bernoulli trait). Both the Taylor series and Dickerson approximations compared favorably with an empirical estimate of the variance of heritability estimates, however there is some evidence of small-sample bias associated with the use of the asymptotic variance-covariances from REML variance component estimation.This is Florida Agricultural Experiment Station Journal Series No. R-03964 of the Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA  相似文献   

6.
Summary Six replicate lines of Drosophila melanogaster, which had been selected for increased abdominal bristle number for more than 85 generations, were assayed by hierarchical analysis of variance and offspring on parent regression immediately after selection ceased, and by single-generation realised heritability after more than 25 generations of subsequent relaxed selection.Half-sib estimates of heritability in 5 lines were as high as in the base population and much higher than observed genetic gains would suggest, excluding lack of sufficient additive genetic variance as a cause of ineffective selection in these lines. Also, there was considerable diversity among the six lines in composition of phenotypic variability: in addition to differences in the additive genetic component, one or more of the components due to dominance, epistasis, sex-linkage or genotype-environment interaction appeared to be important in different lines.Even after relaxed selection, single-generation realised heritabilities in four lines were as high as in the base population. As a large proportion of total genetic gain must have been made by fixation of favourable alleles, the compensatory increase of genetic variability has been sought in a genetic model involving genes at low initial frequencies, enhancement of gene effects during selection and/or new mutations.  相似文献   

7.
K. R. Koots  J. P. Gibson 《Genetics》1996,143(3):1409-1416
A data set of 1572 heritability estimates and 1015 pairs of genetic and phenotypic correlation estimates, constructed from a survey of published beef cattle genetic parameter estimates, provided a rare opportunity to study realized sampling variances of genetic parameter estimates. The distribution of both heritability estimates and genetic correlation estimates, when plotted against estimated accuracy, was consistent with random error variance being some three times the sampling variance predicted from standard formulae. This result was consistent with the observation that the variance of estimates of heritabilities and genetic correlations between populations were about four times the predicted sampling variance, suggesting few real differences in genetic parameters between populations. Except where there was a strong biological or statistical expectation of a difference, there was little evidence for differences between genetic and phenotypic correlations for most trait combinations or for differences in genetic correlations between populations. These results suggest that, even for controlled populations, estimating genetic parameters specific to a given population is less useful than commonly believed. A serendipitous discovery was that, in the standard formula for theoretical standard error of a genetic correlation estimate, the heritabilities refer to the estimated values and not, as seems generally assumed, the true population values.  相似文献   

8.
The existence of additive genetic variance in developmental stability has important implications for our understanding of morphological variation. The heritability of individual fluctuating asymmetry and other measures of developmental stability have frequently been estimated from parent-offspring regressions, sib analyses, or from selection experiments. Here we review by meta-analysis published estimates of the heritability of developmental stability, mainly the degree of individual fluctuating asymmetry in morphological characters. The overall mean effect size of heritabilities of individual fluctuating asymmetry was 0.19 from 34 studies of 17 species differing highly significantly from zero (P < 0.0001). The mean heritability for 14 species was 0.27. This indicates that there is a significant additive genetic component to developmental stability. Effect size was larger for selection experiments than for studies based on parent-offspring regression or sib analyses, implying that genetic estimates were unbiased by maternal or common environment effects. Additive genetic coefficients of variation for individual fluctuating asymmetry were considerably higher than those for character size per se. Developmental stability may be significantly heritable either because of strong directional selection, or fluctuating selection regimes which prevent populations from achieving a high degree of developmental stability to current environmental and genetic conditions.  相似文献   

9.
Genetic parameters and (co)variance components were estimated for weights at birth and at 30, 90 and 180 days of age for Draa goat maintained at Ouarzazate station over a period of 18 years (1988–2005). Records of 1498 kids, the progeny of 46 sires and 404 dams were used in the study. Analyses were carried out by restricted maximum likelihood. Six different animal models including or ignoring maternal genetic or permanent environmental effects were fitted for all traits. The Model 2 with only permanent environmental maternal effects seemed most suitable. Estimates of direct heritability from this model were 0.16 for birth weight and 0.07, 0.11 and 0.11 for weights at 30, 90 and 180 days, respectively. Maternal heritability estimates varied from 0.00 to 0.24 for all traits according to the model used (Models 4–6). Bivariate analysis by Model 2 was also used to estimate genetic correlations between traits. The estimates of genetic and phenotypic correlations among weights were positive and intermediate to high in value. Despite the low estimated heritabilities of body weight traits of Draa goat, there is a small genetic variability that may be exploited to improve growth performance.  相似文献   

10.
The aim of this investigation was to quantify the relative contributions of genetic and environmental influences to the observed variability of permanent tooth size in a group of Australian Aboriginals. Tooth size data were obtained from dental casts of Aboriginals living at Yuendumu in the Northern Territory of Australia. The custom of polygyny practised by these people enabled the analysis of associations between full-siblings and half-siblings. Phenotypic variability of tooth size was partitioned into four variance components; between sides, between fathers, between mothers and between offspring. From these components, the relative genetic and environmental contributions were quantified and heritability estimates for tooth size derived. Additional estimates of heritability were obtained by regression analysis from a small sample of parent-offspring data. Results of the analyses suggested that about 64% of the total variability of permanent tooth size could be attributed to genetic factors, while a further 6% was due to common environment. Although the findings confirm a relatively strong genetic component, they emphasise the importance of non-genetic influences in the determination of tooth size variability.  相似文献   

11.
Second-year traits of growth, stem form, terminal flushing, and survival were assessed in 1770 ramets from 295 clones of 16 full-sib families of Castanea spp. Additive, dominance, and epistatic genetic variances were estimated in a clonally replicated incomplete 5?×?4 factorial test. Parents of the mating design were selected mainly on their phenotypes for wood quality (Castanea sativa traditional varieties) and their proven resistance to Phytophthora spp. (Asiatic species and Castanea crenata?×?C. sativa hybrids). Additive genetic variances were estimated to be 1.7–9 times greater than the dominance components. Inferred epistatic variance components showed a significant role in controlling growth traits and branch length. Narrow- and broad-sense heritability estimates showed that terminal flushing date was the most heritable trait, followed by height. The high estimates of half-sib, full-sib, and clonal mean heritabilities for almost all traits suggest that different strategies of backwards and forwards selection could be proposed. The ranking of the breeding values of parents allow us to select the best parents for new crosses and extend the mating design. Favorable genetic correlations were found between growth traits and straightness, so multi-trait selection looks promising. Our results provide the first information on the partitioning of genetic variance in Castanea spp. and a starting point for devising new selection strategies.  相似文献   

12.
Estimation of the components of variance for a quantitative trait allows one to evaluate both the degree to which genetics influences the trait and the trait's underlying genetic architecture. For particular traits, the estimates also may have implications for discriminating between potential models of selection and for choosing an appropriate model for linkage analysis. Using a recently developed method, we estimate the additive and dominance components of variance--or, equivalently, the narrow and broad sense heritabilities--of several traits in the Hutterites, a founder population with extensive genealogical records. As a result of inbreeding and because Hutterite individuals are typically related through multiple lines of descent, we expect that power to detect dominance variance will be increased relative to that in outbred studies. Furthermore, the communal lifestyle of the Hutterites allows us to evaluate the genetic influences in a relatively homogeneous environment. Four phenotypes had a significant dominance variance, resulting in a relatively high broad heritability. We estimated the narrow and broad heritabilities as being, respectively,.36 and.96 for LDL,.51 and 1.0 for serotonin levels, and.45 and.76 for fat free mass (FFM). There was no significant additive component for systolic blood pressure (SBP), resulting in a narrow heritability of 0 and a broad heritability of.45. There were several traits for which we found no significant dominance component, resulting in equal broad and narrow heritability estimates. These traits and their heritabilities are as follows: HDL,.63; triglycerides,.37; diastolic blood pressure,.21; immunoglobulin E,.63; lipoprotein(a),.77; and body-mass index,.54. The large difference between broad and narrow heritabilities for LDL, serotonin, FFM, and SBP are indicative of strong dominance effects in these phenotypes. To our knowledge, this is the first study to report an estimate of heritability for serotonin and to detect a dominance variance for LDL, FFM, and SBP.  相似文献   

13.
Directional and stabilizing selection tend to deplete additive genetic variance. On the other hand, genetic variance in traits related to fitness could be retained through polygenic mutation, spatially varying selection, genotype-environment interaction, or antagonistic pleiotropy. Most estimates of genetic variance in fitness-related traits have come from laboratory studies, with few estimates of heritability made under natural conditions, particularly for longer lived organisms. Here I estimated additive genetic variance in life-history characters of a monocarpic herb, Ipomopsis aggregata, that lives for up to a decade. Experimental crosses yielded 229 full-sibships nested within 32 paternal half-sibships. More than 5000 offspring were planted as seeds into natural field sites and were followed in most cases through their entire life cycle. Survival showed substantial additive genetic variance (genetic coefficient of variation ≈ 54%). Small differences at seedling emergence were magnified over time, such that the genetic variability in survival was only detectable by tracking the success of offspring for several years starting from seed. In contrast to survival, reproductive traits such as flower number, seeds per flower, and age at flowering showed little or no genetic variability. Despite relatively high levels of additive genetic variation for some life-history characters, high environmental variance in survival resulted in very low heritabilities (0–9%) for all of these characters. Maternal effects were evident in seed mass and remained strong throughout the lengthy vegetative period. No negative genetic correlations between major components of female fitness were detected. Mean corolla width for a paternal family was, however, negatively correlated with the finite rate of increase based on female fitness. That negative correlation could help to maintain additive genetic variance in the face of strong selection through male function for wide corollas.  相似文献   

14.
Measurements of the genetic variation and covariation underlying quantitative traits are crucial to our understanding of current evolutionary change and the mechanisms causing this evolution. This fact has spurred a large number of studies estimating heritabilities and genetic correlations in a variety of organisms. Most of these studies have been done in laboratory or greenhouse settings, but it is not well known how accurately these measurements estimate genetic variance and covariance expressed in the field. We conducted a quantitative genetic half-sibling analysis on six floral traits in wild radish. Plants were grown from seed in the field and were exposed to natural environmental variation throughout their lives, including herbivory and intra- and interspecific competition. The estimates of heritabilities and the additive genetic variance-covariance matrix (G) obtained from this analysis were then compared to previous greenhouse estimates of the same floral traits from the same natural population. Heritabilities were much lower in the field for all traits, and this was due to both large increases in environmental variance and decreases in additive genetic variance. Additive genetic covariance expressed was also much lower in the field. These differences resulted in highly significant differences in the G matrix between the greenhouse and field environments using two complementary testing methods. Although the G matrices shared some principal components in common, they were not simply proportional to each other. Therefore, the greenhouse results did not accurately depict how the floral traits would respond to natural selection in the field.  相似文献   

15.
The validity of the assumption, that laboratory estimates of heritabilities will tend to overestimate natural heritabilities, due to a reduction in environmental variability and thus the phenotypic variance of traits, is examined. One hundred sixty-five field estimates of narrow sense heritabilities derived from the literature are compared with 189 estimates from laboratory studies on wild, outbred animal populations derived from the data set of Mousseau and Roff. The results indicate that 84% of field heritabilities are significantly different from zero and that for morphological, behavioral, and life-history traits there are no significant differences between laboratory and field estimates of heritability. Unexpectedly, mean heritabilities for morphological and life-history traits are actually higher in the field than in the lab. Twenty-two cases were found for which both laboratory and natural heritabilities had been estimated on the same traits. For this subset of the data, laboratory heritabilities tended to be higher than field estimates, but the difference was not significant. Also, the correlation between lab and field estimates was high (r = 0.6, P < 0.001), and the regression slope did not differ significantly from one. The major implications of this study are that laboratory estimates of heritability should generally provide reasonable estimations of both the magnitude and the significance of heritabilities in nature.  相似文献   

16.
Summary Heritability estimates of five quantitative characters, namely, yield, girth, girth increment, virgin bark and renewed bark thickness, of the breeding Phase III Hevea families have been obtained by variance component analyses. In general, the combined heritability estimates for various characters were low to moderate. The heritabilities of these characters based on female variance components, however, were high, suggesting that considerable improvement of each of the characters could be achieved in properly designed experiments.Estimates of heritability for average yields (Range: 0.11–0.34) over different years showed that the first three years' yield was adequate for predicting estimates of genetic variance for the average of five years' yield.Correlation studies on yield with other characters indicated considerable influence of environment, with genetic correlations accounting for about 0.07 to 0.36 in the characters studied.Expected direct response to selection in yield and correlated response in yield to selection for girth at opening and virgin bark thickness have been calculated using three arbitrary values of selection intensity. The efficiency of the correlated response was found to be approximately half that of the direct response. However, the indirect selection for yield using virgin bark thickness appeared to be more favourable than that using the girth at opening favoured by earlier workers.  相似文献   

17.
Quantitative genetics has been an immensely powerful tool in manipulating the phenotypes of domesticated plants and animals. Much of the predictive power of quantitative genetics depends on the breeder's control over the context in which phenotype and mating are being expressed. In the natural world, these contexts are often difficult to describe, let alone control. We are left, therefore, with a poor understanding of the limits of quantitative genetics in natural populations. One of the crucial contextual elements for assessing breeding value is the genetic background in which an individual's genes are being assessed. When interacting genes are polymorphic within a population, the degree of mating among relatives can influence the correlations among mates and the predictions of a response to selection. Population structure can strongly influence the degree to which dominance and epistasis influences additive genetic variance and heritability. The extent of inbreeding can also influence heritabilities through its effect on the environmental component of phenotypic variance. The applicability of standard quantitative genetic breeding designs to the measurement of heritabilities in natural populations therefore depends in part on: (1) the mating system of the population; and (2) the importance of gene interactions in determining phenotypic variation. We tested for an effect of mating structure on the partitioning of phenotypic variance and heritability by comparing two breeding designs in a common environment. Both breeding designs used 139 pollen parents taken from mapped locations in a population of Plantago lanceolata L., and crossed to 280 seed parents from the same population. One design was random-mating, the second was biased toward near-neighbor matings to an extent determined by field measure of pollen-mediated gene flow distances. The offspring were grown randomly mixed in a common garden. Nine traits were measured: central corm diameter, number of leaves, area of the most recently fully expanded leaf, density of hairs (cm-2) on the leaves, dry weight per unit leaf area, photosynthetic capacity, transpiration rates, water use efficiency, and reproductive dry weight. Heritabilities and variance components from the two designs were compared using randomization tests. None of the variance components or the heritabilities differed significantly between breeding designs at the 0.05 level. The test could distinguish differences between the heritabilities measured in the two breeding designs as small as 0.11, on average. Thus, for the degree of inbreeding normally exhibited in P. lanceolata there is insufficient gene interaction present within populations to influence the partitioning of variance between additive and nonadditive components or to influence heritability estimates to a meaningful extent. We suggest that for Plantago other sources of variation in heritability estimates, such as maternal effects and genotype × environment interactions, are more important influences than the interaction between inbreeding and gene interactions, and standard heritability estimate based on random breeding is as accurate as one taking the natural mating structure into account.  相似文献   

18.
《Small Ruminant Research》2007,73(2-3):87-91
In this study, heritabilities and (co)variance components for body weight at 100 days (BW), muscle depth (MD) and fat depth (FD) were estimated for Suffolk, the most common sheep breed in the Czech Republic. Data from 1996 to 2004 were extracted from the sheep recording database of the Czech Sheep and Goat Breeding Association. Genetic parameters were estimated using multivariate animal models, including both direct and maternal genetic effects and permanent environmental effects. Average values for BW, MD and FD were 27.91 kg, 25.5 mm and 3.3 mm, respectively. Direct and maternal heritability for BW were 0.17 and 0.08, respectively, and direct heritabilities were 0.16 for MD and 0.08 for FD. Maternal heritability estimates for ultrasonic measurements were generally low. Direct genetic correlations between BW and MD and maternal genetic correlations between BW and MD were positive and favourable. Both direct genetic correlations between BW and FD and maternal genetic correlations between BW and FD were negative, but not significantly different from zero. The favourable genetic correlations between BW and MD make ultrasound measurements a valuable tool in breeding programs focusing on growth and carcass characteristics.  相似文献   

19.
Dyslipidemia is a major risk factor for CVD. Previous studies on lipid heritability have largely focused on white populations assessed after the obesity epidemic. Given secular trends and racial differences in lipid levels, this study explored whether lipid heritability is consistent across time and between races. African American and white nuclear families had fasting lipids measured in the 1970s and 22–30 years later. Heritability was estimated, and bivariate analyses between visits were conducted by race using variance components analysis. A total of 1,454 individuals (age 14.1/40.6 for offspring/parents at baseline; 39.6/66.5 at follow-up) in 373 families (286 white, 87 African American) were included. Lipid trait heritabilities were typically stronger during the 1970s than the 2000s. At baseline, additive genetic variation for LDL was significantly lower in African Americans than whites (P = 0.015). Shared genetic contribution to lipid variability over time was significant in both whites (all P < 0.0001) and African Americans (P ≤ 0.05 for total, LDL, and HDL cholesterol). African American families demonstrated shared environmental contributions to lipid variation over time (all P ≤ 0.05). Lower heritability, lower LDL genetic variance, and durable environmental effects across the obesity epidemic in African American families suggest race-specific approaches are needed to clarify the genetic etiology of lipids.  相似文献   

20.
Different components of heritability, including genetic variance (VG), are influenced by environmental conditions. Here, we assessed phenotypic responses of life‐history traits to two different developmental conditions, temperature and food limitation. The former represents an environment that defines seasonal polyphenism in our study organism, the tropical butterfly Bicyclus anynana, whereas the latter represents a more unpredictable environment. We quantified heritabilities using restricted maximum likelihood (REML) procedures within an “Information Theoretical” framework in a full‐sib design. Whereas development time, pupal mass, and resting metabolic rate showed no genotype‐by‐environment interaction for genetic variation, for thorax ratio and fat percentage the heritability increased under the cool temperature, dry season environment. Additionally, for fat percentage heritability estimates increased under food limitation. Hence, the traits most intimately related to polyphenism in B. anynana show the most environmental‐specific heritabilities as well as some indication of cross‐environmental genetic correlations. This may reflect a footprint of natural selection and our future research is aimed to uncover the genes and processes involved in this through studying season and condition‐dependent gene expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号