首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The isolated rabbit caecum was studied in vitro. Under our experimental conditions, the rabbit caecum secreted potassium and chloride and absorbed sodium. To characterize the transport properties of the apical and the basolateral barriers, transepithelial electrical and flux (22Na, 36Cl and 86Rb) measurements and their sensitivity to transport inhibitors (furosemide, DIDS, ouabain and barium) are presented together with intracellular measurements with double-barrelled microelectrodes of intracellular electrical potentials and ionic activities. The fluxes of sodium and chloride were insensitive to DIDS and furosemide. The secretion of potassium and the absorption of sodium were both inhibited by ouabain, indicating that they are coupled through the sodium pump. Ouabain induced a slow fall in the chloride net fluxes, suggesting that these fluxes are also driven by the sodium pump, albeit indirectly. The basolateral to apical fluxes of potassium are insensitive to barium added to the apical side, but are accelerated by the replacement of chloride by gluconate on the apical side, suggesting the presence of a K+/Cl- symport in the apical barrier.  相似文献   

2.
Lowering the extracellular K+ content from 6 to 0.6 mM causes a rise, and elevation from 6 to 8.5 mM a fall of 45Ca++ efflux from the vascular smooth muscle cells of the arteria carotis communis of cattle. In contrast, a level of 17 mM K+ has no influence. Removal of extracellular calcium does not block these effects. 10(-4) M ouabain also induces a rise in Ca++ efflux, additional potassium reduction then being without effect; 10(-9) M ouabain is of no influence. The 45Ca++ efflux kinetics correlates with the activity of the isolated Na,K-ATPase. Tonus increases of the vascular strips by 10(-4) M ouabain and potassium deficiency cannot be blocked by 4 mM lanthanum or removal of extracellular calcium. Unlike sodium, potassium stimulates the active Ca++ binding and the activity of the Ca-ATPase of the microsomal fraction. The ative Ca++ binding of the mitochondria is stimulated by both ions. It is postulated that the activity of the plasma membrane Na,K-pump is able to regulate the tonus of big arteries through alteration of Ca++ storage processes.  相似文献   

3.
The role of sodium ions in amylase secretion from rat parotid cells was studied using various Na+-free media and monensin. In a sucrose medium, amylase secretion was not stimulated by isoproterenol but was significantly stimulated by dibutyryl cAMP. In choline chloride and LiCl media, both isoproterenol and dibutyryl cAMP clearly evoked amylase release. Monensin itself elicited amylase secretion slightly, but significantly inhibited the secretion stimulated by isoproterenol or dibutyryl cAMP. The inhibitory effect of monensin was detectable even in choline chloride, LiCl and KCl media. These results indicate that sodium ions are not essential for amylase secretion from rat parotid cells and that the inhibitory effect of monensin is independent of influx of sodium ions or efflux of potassium ions.  相似文献   

4.
Sodium transport mechanisms were investigated in plasma membrane vesicles prepared from the medullary thick ascending limb of Henle's loop (TALH) of rabbit kidney. The uptake of 22Na into the plasma membrane vesicles was investigated by a rapid filtration technique. Sodium uptake was greatest in the presence of chloride; it was reduced when chloride was replaced by nitrate, gluconate or sulfate. The stimulation of sodium uptake by chloride was seen in the presence of a chloride gradient directed into the vesicle and when the vesicles were equilibrated with NaCl, KCl plus valinomycin so that no chemical or electrical gradients existed across the vesicle (tracer exchange experiments). Furosemide decreased sodium uptake into the vesicles in a dose-dependent manner only in the presence of chloride, with a Ki of around 5 X 10(-6) M. Amiloride, at 2 mM, had no effect on the chloride-dependent sodium uptake. Similarly, potassium removal had no effect on the chloride-dependent sodium uptake and furosemide was an effective inhibitor of sodium uptake in a potassium-free medium. The results show the presence of a furosemide-sensitive sodium-chloride cotransport system in the plasma membranes of the medullary TALH. There is no evidence for a Na+/H+ exchange mechanism or a Na+ -K+ -Cl- cotransport system. The sodium-chloride cotransport system would effect the uphill transport of chloride against its electrochemical potential gradient at the luminal membrane of the cell.  相似文献   

5.
Isolated proximal cells from rabbit kidney were seeded on collagen-coated permeable supports. After 8 days, the cultured cells became organized as a confluent monolayer. The proximal origin of the monolayer was confirmed by enzymatic, immunological, electrical and electron microscopical studies. The epithelia exhibited a morphological polarity that allowed for measurements of effluxes across the apical or the basolateral membranes. 86Rb was used as an isotopic tracer to indicate potassium movements. The 86Rb+ efflux across the basolateral face was 1.93-times that across the apical face, and both effluxes were pH dependent. Apical and basolateral 86Rb+ effluxes increased when the Ca2+ ionophore ionomycin (3 microM) was applied and when monolayers were exposed to a hypotonic medium. A pharmacological study revealed that BaCl2 (5 mM), tetraethylammonium (TEA, 20 mM) and Leiurus quinquestriatus hebraeus scorpion venom (from which charybdotoxin is extracted) abolished both ionomycin and hypotonically-stimulated effluxes, whereas apamin had no significant effect on the hypotonically-stimulated 86Rb+ efflux. This stimulated efflux was also abolished when monolayers were preincubated with pertussis toxin, but did not decrease in a Ca2(+)-free medium.  相似文献   

6.
Ca2+ channel blocker (sensit) and calmodulin antagonists (thioridazine, perphenazine, oxyprothepine) applied to the mucosal side of frog urinary bladder, weakened the response of epithelial cells to vasopressin. Thioridazine (2.7 X 10(-5) mol X l-1) and sensit (1.7 X 10(-4) mol X l-1) applied to the serosal side rapidly increased the permeability of the epithelia for sodium and potassium ions along the concentration gradient (from serosa to mucosa). The same concentrations of these blockers when applied to the mucosal side of frog urinary bladder selectively decreased vasopressin stimulated water permeability and did not influence ionic permeability. Both thioridazine and sensit decreased the short-circuit current across frog skin. The results show that the Ca2+ channel blocker and the calmodulin antagonists tested influenced water and ionic transport across the epithelial cell membranes, and had different effects upon the apical and the basolateral cell membranes.  相似文献   

7.
Summary Potassium fluxes in a suspension of rabbit proximal tubules were monitored using a potassium-sensitive extracellular electrode. Ouabain (10–4 m) and barium (5mm) were used to selectively quantitate the potassium efflux pathway (105±5 nmol K+·mg protein–1·min–1) and the sodium pump-related potassium influx (108±7), respectively. These equal and opposite fluxes suggest that potassium accumulation in the cell occurs mainly through the sodium pump and that potassium efflux occurs mainly through barium-sensitive potassium channels. Thus the activity of the sodium pump (Na, K-ATPase) in the basolateral membrane of the proximal tubule is balanced by the efflux of potassium, presumably across the basolateral membrane, which has a high potassium permeability. In addition, the effect of valinomycin and other ionophores was examined on potassium fluxes and several metabolic parameters [oxygen consumption (QO2), ATP content]. The addition of valinomycin to the tubules produced a net efflux of potassium which was quantitatively equivalent to the efflux produced by the addition of ouabain. The valinomycin-induced efflux was mainly due to the activity of valinomycin as a mitochondrial uncoupler, which indirectly inhibited the sodium pump by allowing a rapid reduction of the intracellular ATP. Amphotericin, nystatin, and monensin all produced large net releases of intracellular potassium. The action of the ionophores could be localized to the plasma or mitochondrial membrane and classified into three groups, as follows: (a) those which demonstrated full mitochondrial uncoupler activity (FCCP, valinomycin), (b) those which had no uncoupler activity (amphotericin B, nystatin); and (c) those which displayed partial uncoupler activity (monensin, nigericin).  相似文献   

8.
Barium ions enter chromaffin cells via voltage-sensitive calcium channels, although the intracellular site of barium action is distinct from that of calcium. The entry of barium primarily through voltage-sensitive channels was indicated by experiments showing inhibition of 133Ba2+ uptake by blockers of voltage-dependent calcium channels. In addition, 133Ba2+ uptake was stimulated by 50 mM KCl but not by nicotine. Furthermore, 133Ba2+ uptake was inhibited by hyperosmolarity, which specifically blocks the voltage-sensitive calcium channel but not the receptor-associated calcium channel. These conclusions from studies on barium uptake were also borne out by experiments measuring catecholamine secretion. Thus, blockers of voltage-dependent calcium channels which inhibited barium uptake also inhibited barium-induced catecholamine secretion. In other experiments, simultaneous stimulation with nicotine and barium in the presence of calcium evoked coincident and additive catecholamine secretion. By contrast, when 50 mM KCl was substituted for nicotine in the same experimental design, barium ions inhibited potassium-induced catecholamine secretion at low calcium concentrations. Only at high calcium concentrations were barium-induced and potassium-induced secretion additive. These data also indicate that barium and calcium compete at the voltage-sensitive pathway. Furthermore, these additivity data suggest that once inside the cell, barium and calcium have two distinct mechanisms of action. As predicted by this hypothesis, in digitonin-permeabilized chromaffin cells either calcium or barium stimulated catecholamine release, and in the presence of both cations catecholamine secretion was equivalent to the sum of secretion with either cation alone. Additional support of this concept comes from experiments showing that while calcium-mediated catecholamine secretion is sensitive to trifluoperazine and imipramine, barium-mediated secretion is not. Taken together, all these data indicate that there are two distinct intracellular sites of action for barium and calcium. In contrast to catecholamine secretion, non-exocytotic ascorbic acid secretion was induced by nicotine and potassium in the presence of calcium, but not by barium alone. These data provide additional evidence that barium acts by a different mechanism than calcium, in still another secretory system in chromaffin cells.  相似文献   

9.
Acetylcholine-stimulated fluid secretion from the perfused rabbit mandibular salivary gland was inhibited in a biphasic manner when extracellular calcium concentration was reduced in the range 5 X 10(-4) - 10(-5)M. An initial rapid inhibition was followed by partial recovery to a plateau, the level of which depended upon the calcium concentration. Since no recovery was observed during substitution of calcium by strontium, recovery may depend upon an increased membrane permeability to calcium. It is concluded that acetylcholine evokes fluid secretion in this gland by enhancing calcium entry from the extracellular space, an action which can be mimicked by the calcium ionophore A23187. Changes in the electrolyte composition of saliva during calcium-depletion were such as to suggest that ductal reabsorption of sodium and chloride, and secretion of potassium are inhibited as extracellular calcium concentration is reduced. Secretin-stimulated fluid secretion from the cat pancreas was unaffected when perfusate calcium concentration was reduced to 2.5 X 10(-6)M and carbachol-stimulated amylase secretion was only slightly reduced. Since the latter is a calcium-dependent process, the source of calcium is presumably intracellular. In both glands, reducing calcium to 1 X 10(-6)M caused rapid and irreversible inhibition of fluid secretion.  相似文献   

10.
We examined the development of K+ secretion after removing Cl- from the basolateral surface of isolated skins of Rana temporaria using noise analysis. K+ secretion was defined by the appearance of a Lorentzian component in the power density spectrum (PDS) when Ba2+ was present in the apical bath (0.5 mM). No Lorentzians were observed when tissues were bathed in control, NaCl Ringer solution. Replacement of basolateral Cl- by gluconate, nitrate, or SO4- (0-Clb) yielded Lorentzians with corner frequencies near 25 Hz, and plateau values (So) that were used to estimate the magnitude of K+ secretion through channels in the apical cell membranes of the principal cells. The response was reversible and reproducible. In contrast, removing apical Cl- did not alter the PDS. Reduction of basolateral Cl- to 11.5 mM induced Lorentzians, but with lower values of So. Inhibition of Na+ transport with amiloride or by omitting apical Na+ depressed K+ secretion but did not prevent its appearance in response to 0-Clb. Using microelectrodes, we observed depolarization of the intracellular voltage concomitant with increased resistance of the basolateral membrane after 0-Clb. Basolateral application of Ba2+ to depolarize cells also induced K+ secretion. Because apical conductance and channel density are unchanged after 0-Clb, we conclude that K+ secretion is "induced" simply by an increase of the electrical driving force for K+ exit across this membrane. Repolarization of the apical membrane after 0-Clb eliminated K+ secretion, while further depolarization increased the magnitude of the secretory current. The cell depolarization after 0-Clb is most likely caused directly by a decrease of the basolateral membrane K+ conductance. Ba2(+)-induced Lorentzians also were elicited by basolateral hypertonic solutions but with lower values of So, indicating that cell shrinkage per se could not entirely account for the response to 0-Clb and that the effects of 0-Clb may be partly related to a fall of intracellular Cl-.  相似文献   

11.
The present study has been performed to test for the influence of verapamil and quinidine on the potential difference across the basolateral cell membrane (PDbl) and on the basolateral potassium conductance of isolated perfused segments of the mouse proximal tubule. PDbl was recorded continuously with conventional microelectrodes during rapid alterations of bath or luminal perfusate composition. The contribution of the basolateral potassium conductance to the conductance of both cell membranes (tk) was estimated from the effects of altered bath potassium concentration on PDbl. Under control conditions tk approaches 0.8, i.e. the basolateral cell membrane is mainly conductive to potassium. Neither quinidine nor verapamil affect PDbl at concentrations below 10 mumol/l. At higher concentrations both substances depolarize the basolateral cell membrane mimicking the effect of 1 mmol/l barium. In the presence of 0.1 mmol/l verapamil tk is virtually abolished at 5 to 10 mmol/l bath potassium concentration but is almost unaffected at bath potassium concentrations between 20 and 40 mmol/l. 1 mumol/l ionophore A-23187 does not change the depolarizing effect of 0.1 mmol/l verapamil on cell membrane potential. In the presence of 0.1 mmol/l quinidine, tk is reduced to some 50%, irrespective of the bath potassium concentration. It is concluded that the potassium conductance in straight proximal tubules is inhibited not only by barium but as well by high concentrations of verapamil and quinidine. The effect is probably direct and not related to alterations in the intracellular calcium activity.  相似文献   

12.
川芎嗪增加大鼠远端结肠阴离子分泌的基侧膜机制   总被引:3,自引:1,他引:2  
Xing Y  He Q  Zhu JX  Chan HC 《生理学报》2003,55(6):653-657
本研究用短路电流技术来观察在川芎嗪作用下,电解质在大鼠远端结肠上皮细胞的转运及其细胞机制。在新鲜分离的结肠上皮的基侧膜加入川芎嗪,能产生较大的短路电流。用粘膜下神经元阻断剂——河豚毒素预作用于结肠上皮,不影响随后的川芎嗪所产生的短路电流,前列腺素合成抑制剂indomethacin预作用可使随后的川芎嗪产生的短路电流减少55.2%。在结肠上皮的顶膜加入Cl^-通道阻断剂DPC和glibenclamide,能完全阻断川芎嗪产生的短路电流。Bumetanide,基侧膜钠、钾、氯共转运体阻断剂能抑制川芎嗪引起的短路电流的85.2%,而结肠上皮细胞基侧膜的非选择性钾通道阻断剂Ba^2 能阻断90%以上的短路电流,说明基侧膜的钠、钾、氯共转运体和钾通道在川芎嗪引起的短路电流中起着重要的作用。上述结果表明,川芎嗪刺激大鼠远端结肠上皮细胞分泌Cl^-是通过上皮细胞顶膜Cl^-通道和基侧膜的钠、钾、氯共转体和K^ 通道介导的。  相似文献   

13.
The transient increase in cation permeability observed in duck red cells incubated with norepinephrine has been shown to be a linked, bidirectional, co-transport of sodium plus potassium. This pathway, sensitive to loop diuretics such as furosemide, was found to have a [Na + K] stoichiometry of 1:1 under all conditions tested. Net sodium efflux was inhibited by increasing external potassium, and net potassium efflux was inhibited by increasing external sodium. Thus, the movement of either cation is coupled to, and can be driven by, the gradient of its co-ion. There is no evidence of trans stimulation of co- transport by either cation. The system also has a specific anion requirement satisfied only by chloride or bromide. Shifting the membrane potential by varying either external chloride (at constant internal chloride) or external potassium (at constant internal potassium in the presence of valinomycin and DIDs [4,4'-diisothiocyano- 2,2'-disulfonic acid stilbene]), has no effect on nor-epinephrine- stimulated net sodium transport. Thus, this co-transport system is unaffected by membrane potential and is therefore electrically neutral. Finally, under the latter conditions-when Em was held constant near EK and chloride was not at equilibrium-net sodium extrusion against a substantial electrochemical gradient could be produced by lowering external chloride at high internal concentrations, thereby demonstrating that the anion gradient can also drive co-transport. We conclude, therefore, that chloride participates directly in the co- transport of [Na + K + 2Cl].  相似文献   

14.
The effect of 1-deamino-8-D-arginine-vasopressin, dDAVP, the synthetic analogue of vasopressin, upon the active sodium transport across the frog skin was studied using standard microelectrode technique and compared with the effect of synthetic arginine-vasopressin, AVP. dDAVP applied to the basolateral side of the epithelium stimulated the active sodium transport as reflected by the increase of short-circuit current, Isc, and transepithelial electrical potential difference, Voc. Potential difference across both the apical, Vo, and the basolateral, Vi, cell membranes decreased. The driving force of transepithelial sodium transport, ENa, did not change. The transepithelial electrical resistance, Rt, ohmic resistance of the active sodium transport, RNa, and apical cell membrane resistance, Ro, rapidly decreased, while the resistance of the basolateral cell membrane, Ri, and the resistance of the shunt pathway, Rs, remained unchanged. It is concluded that dDAVP primarily increases sodium permeability of the apical cell membrane which subsequently stimulates sodium pump activity. This action is similar to that of AVP.  相似文献   

15.
22Na+ and 42K+ fluxes across the basolateral membrane of the isolated epithelium of frog skin were investigated with regard to dependence on K+ in the basolateral solution. When K+ was removed from the basolateral solution (K+-free Ringer), there was a transient rise in short circuit current (Isc) that could be eliminated by pretreatment with ouabain. Concurrently, the apparent sodium efflux across the basolateral membrane (JNa*13) showed either no change or an immediate (1-2 min) small decrease (approximately equal to 10%) that was followed by a small transient increase. K+ fluxes showed either no change or a small decrease under these conditions. JNa*13 was partially ouabain sensitive during all of the above treatments. Furosemide partially inhibited both sodium and potassium flux after K+-free treatment. The pump, as defined by ouabain sensitivity of Na+ flux, continued to work even after 20 minutes of K+-free treatment. Pump activity may be maintained by potassium leaking from the cells that is recycled by the pump. However, the ouabain-sensitive transient rise in Isc after K+-free treatment cannot readily be explained by changes in either Na+ or K+ flux. A change in pump coupling ratio provides one explanation for these data.  相似文献   

16.
Forskolin stimulated short-circuit current (SCC) and transepitelial electrical conductance (G) in the isolated skin of the toad Bufo arenarum in a concentration-dependent manner, between 1.0 x 10(-6) and 2.4 x 10(-5) M. At the latter concentration, glandular secretion appeared to be stimulated also. The increase in G was considerably greater in skins bathed in Ringer solution than in solutions containing no chloride. The increased SCC was abolished by amiloride, a specific blocker of sodium transport in amphibian membranes, irrespective of the anion present in the solution bathing the skin. G was also decreased by amiloride to control values in skins bathed in solutions without chloride, but remained elevated in the presence of Cl-. The increase in SCC following exposure to forskolin, 4.4 x 10(-6) M, was not altered when furosemide, a specific blocker of chloride transport, was present in the Ringer solution bathing the dermal side of the skin. The response to forskolin, 2.4 x 10(-5) M, however, was significantly decreased by dermal furosemide; the inhibitor was ineffective in the absence of chloride. The data indicate that forskolin acts on at least two sites: stratum granulosum cells (the main pathway for sodium transport, and an alternate site, responsible for the increase in permeability to chloride. In addition, at high concentration of the agent, glandular secretion is also stimulated. The data suggest that the adenylate cyclase-cyclic AMP system is involved in the regulation of the permeability of the toad skin to sodium and chloride, probably by separate cell types.  相似文献   

17.
Cell volume regulation in liver   总被引:5,自引:0,他引:5  
The maintenance of liver cell volume in isotonic extracellular fluid requires the continuous supply of energy: sodium is extruded in exchange for potassium by the sodium/potassium ATPase, conductive potassium efflux creates a cell-negative membrane potential, which expelles chloride through conductive pathways. Thus, the various organic substances accumulated within the cell are osmotically counterbalanced in large part by the large difference of chloride concentration across the cell membrane. Impairment of energy supply leads to dissipation of ion gradients, depolarization and cell swelling. However, even in the presence of ouabain the liver cell can extrude ions by furosemide-sensitive transport in intracellular vesicles and subsequent exocytosis. In isotonic extracellular fluid cell swelling may follow an increase in extracellular potassium concentration, which impairs potassium efflux and depolarizes the cell membrane leading to chloride accumulation. Replacement of extracellular chloride with impermeable anions leads to cell shrinkage. During excessive sodium-coupled entry of amino acids and subsequent stimulation of sodium/potassium-ATPase by increase in intracellular sodium activity, an increase in cell volume is blunted by activation of potassium channels, which maintain cell membrane potential and allow for loss of cellular potassium. Cell swelling induced by exposure of liver cells to hypotonic extracellular fluid is followed by regulatory volume decrease (RVD), cell shrinkage induced by reexposure to isotonic perfusate is followed by regulatory volume increase (RVI). Available evidence suggests that RVD is accomplished by activation of potassium channels, hyperpolarization and subsequent extrusion of chloride along with potassium, and that RVI depends on the activation of sodium hydrogen ion exchange with subsequent activation of sodium/potassium-ATPase leading to the respective accumulation of potassium and bicarbonate. In addition, exposure of liver to anisotonic perfusates alters glycogen degradation, glycolysis and probably urea formation, which are enhanced by exposure to hypertonic perfusates and depressed by hypotonic perfusates.  相似文献   

18.
The volume of individual cells in intact frog urinary bladders was determined by quantitative microscopy and changes in volume were used to monitor the movement of solute across the basolateral membrane. When exposed to a serosal hyposmotic solution, the cells swell as expected for an osmometer, but then regulate their volume back to near control in a process that involves the loss of KCl. We show here that volume regulation is abolished by Ba++, which suggests that KCl movements are mediated by conductive channels for both ions. Volume regulation is also inhibited by removing Ca++ from the serosal perfusate, which suggests that the channels are activated by this cation. Previously, amiloride was observed to inhibit volume regulation: in this study, amiloride-inhibited, hyposmotically swollen cells lost volume when the Ca++ ionophore A23187 was added to Ca++-replete media. We attempted to effect volume changes under isosmotic conditions by suddenly inhibiting Na+ entry across the apical membrane with amiloride, or Na+ exit across the basolateral membrane with ouabain. Neither of these Na+ transport inhibitors produced the expected results. Amiloride, instead of causing a decrease in cell volume, had no effect, and ouabain, instead of causing cell swelling, caused cell shrinkage. However, increasing cell Ca++ with A23187, in both the absence and presence of amiloride, caused cells to lose volume, and Ca++-free Ringer's solution (serosal perfusate only) caused ouabain-blocked cells to swell. Finally, again under isosmotic conditions, removal of Na+ from the serosal perfusate caused a loss of volume from cells exposed to amiloride. These results strongly suggest that intracellular Ca++ mediates cell volume regulation by exerting a negative control on apical membrane Na+ permeability and a positive control on basolateral membrane K+ permeability. They also are compatible with the existence of a basolateral Na+/Ca++ exchanger.  相似文献   

19.
ATP-dependent Ca2+ transport was studied in basolateral membrane vesicles prepared from rat parotid gland slices incubated without or with agents which increase cyclic AMP. Isoproterenol (10(-5) M), forskolin (2 X 10(-6) M) and 8-bromocyclic AMP (2 X 10(-3) M) all increased ATP-dependent 45Ca2+ uptake 1.5- to 3-fold. The effect of isoproterenol was concentration-dependent and blocked by the beta-adrenergic antagonist propranolol. Enhanced uptake did not appear an artifact of vesicle preparation as apparent vesicle sidedness, 45Ca2+ efflux rates, specific activity of marker enzymes and equilibrium Ca2+ content were identical in vesicle preparations from control and 8-bromocyclic AMP-treated slices. Kinetic studies showed the ATP-dependent Ca2+ transport system in vesicles from 8-bromocyclic AMP-treated slices displayed a approximately 50% increase in Vmax and in Km Ca2+, compared to controls. The data suggest that physiological secretory stimuli to rat parotid acinar cells, which involve cyclic AMP, result in a readjustment of the basolateral membrane ATP-dependent Ca2+ pump.  相似文献   

20.
Poole RJ 《Plant physiology》1969,44(4):485-490
The flux ratio (influx/efflux) of K+ across the plasmalemma of beet cells at an external potassium concentration of 0.6 mm does not respond to changes of membrane potential in the manner expected for the free diffusion of ions. The K+ efflux is affected by the presence of adsorbed Ca2+, but is apparently unrelated to the electrical potential or to the net uptake of potassium. The K+ efflux is greater than the efflux of the sulfate and organic anions which are accumulated with potassium, and is partially dependent on the presence of external potassium. Thus the loss of 42K from the cell does not appear to be a leakage of freely diffusing K+ ions, nor a leakage of ion pairs, but a carrier-mediated transport or exchange of potassium across the cell membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号