首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The transfer of the methyl group of acetate to coenzyme M (2-mercaptoethanesulfonic acid; HS-CoM) during the metabolism of acetate to methane was investigated in cultures of Methanosarcina strain TM-1. The organism metabolized CD3COO- to 83% CD3H and 17% CD2H2 and produced no CDH3 or CH4. The isotopic composition of coenzyme M in cells grown on CD3COO- was analyzed with a novel gas chromatography-mass spectrometry technique. The cells contained CD3-D-CoM and CD2H-S-CoM) in a proportion similar to that of CD3H to CD2H2. These results, in conjunction with a report (J.K. Nelson and J.G. Ferry, J. Bacteriol. 160:526-532, 1984) that extracts of acetate-grown strain TM-1 contain high levels of CH3-S-CoM methylreductase, indicate that CH3-S-CoM is an intermediate in the metabolism of acetate to methane in this organism.  相似文献   

2.
We found that recombinant human adult hemoglobin (rHb A) expressed in Escherichia coli showed heterogeneity of components with the intensity of a positive CD band at 260 nm and that it could be resolved into three components (SP-1, SP-2, and SP-3) by SP-Sepharose column chromatography. 1H NMR revealed that SP-1 is identical with native Hb A, while SP-2 and SP-3 largely contain the reversed heme isomer in both the alpha and beta subunits, with contents of approximately 50 and >80% in SP-2 and SP-3, respectively. Rotation of the heme 180 degrees about the 5,15-meso axis (reversed heme) causes an interexchange of the methyl groups at positions 2 and 7 with the vinyl groups at positions 8 and 3, respectively. To examine the effect of the modification of the heme-protein contact on the structure and function of Hb A, we compared the 1H NMR, CD, and oxygen binding properties of the three components with those of native Hb A. Native Hb A exhibits a distinct positive CD band in both the near-UV and Soret regions, but rHb A with reversed heme exhibits a very weak positive CD band at 260 nm and a prominent negative CD band in the Soret region. Cooperativity, as measured by Hill's n value, decreased from 3.18 (SP-1) to 2.94 (SP-2) to 2.63 (SP-3) with an increase in the reversed heme orientation. The effect of an allosteric effector, inositol hexaphosphate (IHP), on the oxygen binding properties was also reduced in rHb A with reversed heme. These results indicate that changes in the heme-globin contact exert a discernible influence on CD spectra and cooperative oxygen binding.  相似文献   

3.
Recently we have shown that HMQC spectra of protonated methyl groups in high molecular weight, highly deuterated proteins have large enhancements in sensitivity and resolution relative to HSQC-generated data sets. These enhancements derive from a TROSY effect in which complete cancellation of intra-methyl (1)H-(1)H and (1)H-(13)C dipolar interactions occurs for 50% of the signal in the case of HMQC, so long as the methyl is attached to a molecule tumbling in the macromolecular limit (Tugarinov, V., Hwang, P.M., Ollerenshaw, J.E., Kay, L.E. J. Am. Chem. Soc. (2003) 125, 10420-10428; Ollerenshaw, J.E., Tugarinov, V. and Kay, L.E. Magn. Reson. Chem. (2003) 41, 843-852. The first demonstration of this effect was made for isoleucine delta1 methyl groups in a highly deuterated 82 kDa protein, malate synthase G. As with (1)H-(15)N TROSY spectroscopy high levels of deuteration are critical for maximizing the TROSY effect. Here we show that excellent quality methyl TROSY spectra can be recorded on U-[(2)H] Iledelta1-[(13)CH(3)] Leu,Val-[(13)CH(3)/(12)CD(3)] protein samples, significantly extending the number of probes available for structural and dynamic studies of high molecular weight systems.  相似文献   

4.
Methyl alkylamino methanesulfonates are mutagenic agents as shown by treating several strains of E. coli at pH 7. Methyl methylaminosulfonate (CH3-NH-SO3-CH3) was more efficient than methyl ethylaminosulfonate (C2H5-NH-SO3-CH3) which itself was more efficient than methyl isopropylaminosulfonate (C3H7-NH-SO3-CH3). Methyl methylaminosulfonate seemed to be at least as effective as methyl methanesulfonate (CH3-SO3-CH3). Methyl methylaminosulfonate produced a yield of up to 1% of auxotrophic mutants. All three new mutagens appeared to react according to the same mechanism by ester fission and methylation of nucleophilic groups as is known for methyl methanesulfonate. The reaction mechanism seems to be of the SN2 type.  相似文献   

5.
[2,2,2-2H]Ethanol was administered continuously to bile fistula rats for 72 h, with or without (--)-hydroxycitrate. The deuterium labelling of biliary bile acids was determined by GC-MS and 13C NMR. Difference spectra between 2H,1H- and 1H-decoupled 13C NMR spectra showed the presence of partly deuterated methyl and methylene groups in methyl cholate, indicating exchange of deuterium in [2,2,2-2H]ethanol for protium prior to or during incorporation of acetate into the bile acid. The extent of exchange was 20--30% as calculated from the isotopic composition of a fragment ion containing one methyl and one methylene group derived from C-2 of acetate. The exchange was unaffected by (--)-hydroxycitrate, indicating that it was not due to reversible incorporation of deuterated acetate into citrate. About 60% of the acetyl-CoA serving as precursor of cholic and chenodeoxycholic acids were derived from ethanol. This value was not changed by administration of (--)-hydroxycitrate. The half-life time of cholesterol molecules acting as precursors of both bile acids was about 50 h in the presence of (--)-hydroxycitrate, which is about the same as previously found in the absence of the inhibitor.  相似文献   

6.
Influenza virus H9N2 subtype has triggered co-infection with other infectious agents, resulting in huge economical losses in the poultry industry. Our current study aims to evaluate the antiviral activity of protocatechuic acid (PCA) against a virulent H9N2 strain in a mouse model. 120 BALB/c mice were divided into one control group, one untreated group, one 50 mg/kg amantadine hydrochloride-treated group and three PCA groups treated 12 hours post-inoculation with 40, 20 or 10 mg/kg PCA for 7 days. All the infected animals were inoculated intranasally with 0.2 ml of a A/Chicken/Hebei/4/2008(H9N2) inoculum. A significant body weight loss was found in the 20 mg/kg and 40 mg/kg PCA-treated and amantadine groups as compared to the control group. The 14 day survivals were 94.4%, 100% and 95% in the PCA-treated groups and 94.4% in the amantadine hydrochloride group, compared to less than 60% in the untreated group. Virus loads were less in the PCA-treated groups compared to the amantadine-treated or the untreated groups. Neutrophil cells in BALF were significantly decreased while IFN-γ, IL-2, TNF-α and IL-6 decreased significantly at days 7 in the PCA-treated groups compared to the untreated group. Furthermore, a significantly decreased CD4+/CD8+ ratio and an increased proportion of CD19 cells were observed in the PCA-treated groups and amantadine-treated group compared to the untreated group. Mice administered with PCA exhibited a higher survival rate and greater viral clearance associated with an inhibition of inflammatory cytokines and activation of CD8+ T cell subsets. PCA is a promising novel agent against bird flu infection in the poultry industry.  相似文献   

7.
1. Radioactivity from l-[Me-(14)C,(3)H]methionine is incorporated into phylloquinone, plastoquinone, gamma-tocopherol, alpha-tocopherol, alpha-tocopherolquinone and ubiquinone in maize shoots. 2. Comparative studies with other terpenoids (squalene and beta-carotene) and chemical degradation of selected quinones (ubiquinone and plastoquinone) established that all the radioactivity is confined to nuclear methyl substituents. 3. In ubiquinone 76% of the radioactivity is in the methoxyl groups and 24% in the ring C-methyl group. 4. Taking the phytosterols as an internal reference and accepting the atomic ratio of (14)C/(3)H transferred from l-[Me-(14)C,(3)H]methionine to the supernumerary group at C(24) to be 1:2 the ratio of all the quinones and chromanols examined approached 1:3. After allowing for the fact that for plastoquinone, gamma-tocopherol, alpha-tocopherol and alpha-tocopherolquinone one nuclear methyl group is formed from the beta-carbon of tyrosine, these results show that one nuclear C-methyl group for phylloquinone, plastoquinone and gamma-tocopherol, two nuclear methyl groups for alpha-tocopherol and alpha-tocopherolquinone and one nuclear methyl and two methoxyl groups for ubiquinone are formed by the transfer of intact methyl groups from methionine. 5. From a comparison of the incorporation of (14)C radioactivity into these compounds it would appear that the methylation reactions involved in phylloquinone and plastoquinone biosynthesis take place in the chloroplast, whereas those involved with ubiquinone biosynthesis occur else-where within the cell.  相似文献   

8.
1. Ethylmalonyl-CoA was found to be a substrate for methylmalonyl-CoA mutase from Propionibacterium shermanii, the product being mainly (2R)-methylsuccinyl-CoA along with some (2S)-diastereoisomer. 2. The relevant 1H-nuclear magnetic resonance signals of methylsuccinic acid and of its dimethyl ester were assigned to the diastereotopic methylene hydrogens using sterospecifically dideuterated specimens of known configuration. 3. [2(-2)H1]Ethylmalonyl-CoA was converted by methylmalonyl-CoA mutase in 2H2O mainly to (2R, 3S)-[3(-2)H1]methylsuccinyl-CoA. No dideuterated product was observed. 4. Starting from (1R)-[1(-2)H1]-ethathanol, (1S)-[1(-2)H1]ethanol and [2H6] ethanol the following deuterated specimens of ethylmalonic acid were synthesised and characterised: (3S)-[3(-2)H1], (3R)-[3(-2)H1] and [3(-2)H2, 4(-2)H3], respectively. 5. Conversion of (3S)-[3(-2)H1]-ethylmalonyl-CoA (70% 2H1 and 2% 2H2 species) on the mutase in water afforded mainly (2R)-[2(-2)H1]methylsuccinyl-CoA along with some (2S)-diastereoisomer. No deuterium loss was observed. 6. Methylmalonyl-CoA mutase converted (3R)-[3(-2)H1]ethylmalonyl-CoA (81% 2H1 and 2% 2H2 species) to the following methylsuccinyl-CoA species: 33% [3(-2)H1], the deuterium being in the threo position with respect to the methyl group; 21% [2(-2)H1]; 46% unlabelled. The ratio of the species with (2R) and (2S) configuration was about 60:40. 7. Reaction of [3(-2)H2, 4(-2)H3]ethylmalonyl-CoA (94.5% [2H5] species) with the mutase gave the following labelled methylsuccinyl-CoA species:53.4% [methyl-2H3, 2(-2)H1, 3(-2)H1], the 3-deuterium being in the threo position with respect to the methyl group; 37.6% [methyl-2H3, 2(-2)H1]; 5% [methyl(-2)H3, 2(-2)H1, 2(-2)H1, 3(-2)H1] the 3-deuterium being in erythro position with respect to the methyl group; 4% [methyl(-2)H3, 3(-2)H1]. The ratio of the species with (2R) and (2S) configuration was about 70:30. 8. Implications of these findings for the mechanism of the rearrangements catalysed by coenzyme B12 are discussed.  相似文献   

9.
Alcaligenes eutrophus H16 was grown on mixtures of 1H- and 2H-acetate as carbon sources. The accumulation of deuterated poly(3-hydroxybutyrate) (P(3HB)) was observed. The deuterium distributions in the isolated P(3HB)s were determined from 1H and 2H-n.m.r. spectra and confirmed by 13C-n.m.r. spectra. Although one would expect to synthesize P([2,2,4,4,4-2H5]3HB) when the cells were grown on 2H-acetate as the sole carbon source, the methyl, methylene and methine groups of the P(3HB) contained both deuterium and proton. This observation indicates some substitution from 2H to 1H during the P(3HB) synthesis. The 2H content in the methyl groups was larger than that in the methylene groups, which suggests a kinetic isotope effect in the P(3HB) synthesizing process. The deuterium distributions in the two magnetically non-equivalent methylene protons were determined to be different, which indicates stereoselectivity at the C2 site.  相似文献   

10.
H R Dickinson  C A Bush 《Biochemistry》1975,14(11):2299-2304
In order to test the usefulness of circular dichroism in stereochemical and structural studies of oligosaccharides of glycoproteins, we measured the circular dichroism (CD) for N-acetylneuraminic acid (NAcNA) and several derivates. By acidic mathanolysis, we have prepared the deacetylated methyl ester, methyl glycoside of NAcNA, as well as a saponified product. Circular dichroism of these compounds allows us to assign the transition due to the amide chromophore. There is a carboxyl n-pi transition at about 220 nm which has a negative CD band associated with it for the beta-methocyneuraminic acid, but changes sign for the methyl ester (methyl (methyl beta-D-neuraminid)ate). We isolated the trisaccharides N-acetylneuraminyl-(2 leads to 3)-beta-D-galactopyranosyl-(1 leads to 4)-D-glucopyranose [(2leads to 3)NAcN-Lac] as well as (2 leads to 6)NAcN-Lac by paper chromatography and compared the CD for each. The two isomers show similar but distinguishable CD patterns, with a weak negative band due to the carboxyl group centered at 225 nm and a stronger positive band at 200 nm containing contributions from both the amide and carboxyl groups.  相似文献   

11.
目的对构建的H5N1重组禽流感病毒样颗粒(VLPs)进行初步免疫原性探讨,并与H5N1全病毒灭活疫苗(WIV)进行体液免疫和细胞免疫的比较。方法在0周和3周分别以纯化H5N1重组禽流感病毒样颗粒、H5N1全病毒灭活疫苗及pH7.2 PBS腿部肌肉注射BALB/c小鼠,于不同时间收集血清,以血凝抑制试验(HI)和血清IgG抗体酶联免疫吸附试验(ELISA)评估体液免疫,CD4+、CD8+T细胞亚群及酶联免疫斑点试验(ELISPOT)评估细胞免疫,并以同型毒株滴鼻攻击,观察小鼠存活率。结果病毒样颗粒各组和全病毒灭活疫苗免疫后小鼠血清ELISA IgG效价均有升高;中和抗体效价除病毒样颗粒120 ng/只免疫剂量外其他免疫小鼠HI效价均达1︰40;小鼠脾CD4+T淋巴细胞亚群分类:全病毒灭活疫苗组(600μg/只)为36.56%;病毒样颗粒组(120 ng/只,600 ng/只,2 500 ng/只)分别为26.58%,32.20%,29.25%;PBS组为26.65%;CD8+T淋巴细胞亚群分类:全病毒灭活疫苗组(600 ng/只)为10.78%;病毒样颗粒组(120 ng/只,600 ng/只,2 500 ng/只)分别为1 3.53%,14.24%,1 3.35%;PBS组为10.69%。ELISPOT试验统计学数据显示,病毒样颗粒和全病毒灭活疫苗的小鼠脾单个核细胞分泌IFN-γ细胞与PBS组有显著性差异;小鼠保护性试验结果显示,除病毒样颗粒120 ng/只免疫剂量小鼠的存活率为87.5%外,其他病毒样颗粒实验组小鼠均为100%,PBS对照组为12.5%。结论 H5N1重组禽流感病毒样颗粒能诱导体液免疫和细胞免疫,并能抵御同型病毒株的攻击,可作为H5N1人用禽流感的候选疫苗。  相似文献   

12.
Incubation of rabbit skeletal muscle pyruvate kinase (ATP:pyruvate 2-O-phosphotransferase, EC 2.7.1.40) with methyl methanethiosulphonate resulted in the time- and inhibitor concentration-dependent loss of enzyme activity. Substrates or products of the catalytic reaction prevented the loss of activity caused by methanethiolation. Their effectiveness as protecting agents was placed in the order ADP greater than ATP greater than Mg2+ greater than phosphoenolpyruvate greater than pyruvate. The essential catalytic cation, K+, had no effect on the methanethiolation reaction. [Me-3H]Methanethiosulphonate modified all the available cysteine thiol groups which correlated to the incorporation of four SC3H3 groups per protomer. Four radioactive peptides were obtained on tryptic peptide mapping. When methanethiolation was carried out in the presence of Mg2+ alone or with Mg2+ and ATP together, then only three SC3H3 groups were incorporated into each subunit. If MgATP protected methanethiolated pyruvate kinase was reacted with iodo[2-3H]acetic acid then 1.37 +/- 0.2 groups per protomer were carboxymethylated. 70% of the radioactivity was located in a single peptide on tryptic peptide mapping. This peptide was isolated and contained the segment carboxymethyl cysteine (Glx, Asx, Ser) Arg. Collectively these data indicate that although all thiol groups are equally accessible to methyl methanethiosulphonate, only a single thiol group participates in the catalytic event. An additional role in the maintenance of structure for this thiol group was also shown in studied of reduction and thermal denaturation of the enzyme.  相似文献   

13.
The poly A-containing mRNA of cultured hamster (BHK-21) cells has been examined with regard to methylation status. Steady state-labeled mRNA was obtained by incubating cells for 20-22h in the presence of [methyl-3H]-methionine and 32Pi. The degree of methylation of this RNA was 1.8 methyl groups per 1000 nucleotides, or 4-5 methyl groups on the average per molecule. The nature of the methylated residues was determined by paper chromatography and electrophoresis of acid and alkaline hydrolysates, by DEAE cellulose chromatography of alkaline hydrolysates and of T2 RNase digests, and by examining the effect of subjecting samples to "beta-elimination." Approx. half of the methyl groups occurred in standard ("internal") linkage, 10% as m5Cp and 40% as m6Ap residues. The remainder occurred at least for the most part in "blocked" 5'-termini with the presumptive structure m7G(5')ppp(Nm)p.., where Nm was Gm, m6Am, Um, or Cm.  相似文献   

14.
Reaction of one equivalent of vanadium(III) chloride with three equivalents of l-cysteine(H2Cys) in methyl alcohol affords a VIII-Cys compound that is formulated as [VIII(Hcys)3].2HCl.2.5H2O 1. The solid state characterization of 1 was performed by microanalysis, circular dichroism (CD) and infrared studies as well as room temperature magnetic susceptibility. These studies have shown coordination of each HCys- ligand to the VIII atom through an amine nitrogen and a carboxylate oxygen atoms. Solution studies of 1 were carried out in water and methanol by UV-visible, CD and electron paramagnetic resonance (EPR) spectroscopies. According to these studies, it was evident that despite the progressive oxidation of 1 to oxovanadium(IV) species, some V(III) species were also present in solution after several hours. Compound 1, VIVOSO4.5H2O and l-cysteine were examined for their total antioxidant capacity (TAC) and lag time. Compound 1 exhibited significantly greater total antioxidant capacity and lag time values than l-cysteine. VIVOSO4.5H2O did not show any total antioxidant capacity or lag time. The inhibition of neutral endopeptidase (NEP) activity caused by 1, VIVOSO4.5H2O and thiorphan was also measured. Compound 1, at a concentration of 10(-3) M, showed inhibition of NEP activity as potent as thiorphan at 10(-6) M, while VIVOSO4.5H2O in the same concentration exhibited less than 50% inhibitory activity than that of thiorphan at 10(-6) M. Moreover, the antimetastatic effects of compound 1, l-cysteine and VIVOSO4.5H2O were examined on Wistar rats, treated with 3,4-benzopyrene. The results revealed that 1 prevents significantly lung metastases (only 9.5% of animals treated with 1 showed metastases), whereas 47-52% of the rats of the control group and those treated with l-cysteine and VIVOSO4.5H2O exhibited metastases.  相似文献   

15.
S-Adenosyl-L-methionine (AdoMet) has been found to bind specifically to the plasma membrane of promyelocytic leukemia cells, HL-60. The Kd for AdoMet is 4.2.10(-6) M and the Bmax is 4.0.10(-12) mol/10(7) HL-60 cells. The binding is not related to the adenosine receptor since neither adenosine, ADP, nor ATP affect the ligand-receptor reaction. When HL-60 cells were incubated with physiological concentrations of [methyl-3H]AdoMet (20 microM) at 36 degrees C, AdoMet did not equilibrate with the intracellular pool, nor were any [3H]methyl groups incorporated into nucleic acids or proteins. In contrast, significant amounts of [3H]methyl groups were incorporated into membrane phospholipids. When cells were incubated with 20 microM [methyl-3H]AdoMet, [3H]methyl groups were transferred to phosphatidylethanolamine, -monomethylethanolamine, and -dimethylethanolamine yielding phosphatidylcholine. However, the rate of methyl transfer with AdoMet was only 22% of that observed when cells were incubated with a comparable amount of [methyl-3H]methionine. Both the binding of AdoMet and the methylation of phospholipids were inhibited by exogenous S-adenosyl-L-homocysteine. Therefore, the binding may be linked to a phospholipid methyltransferase.  相似文献   

16.
A mutation in the mch gene, encoding the enzyme 5,10-methenyl tetrahydromethanopterin (H(4)MPT) cyclohydrolase, was constructed in vitro and recombined onto the chromosome of the methanogenic archaeon Methanosarcina barkeri. The resulting mutant does not grow in media using H(2)/CO(2), methanol, or acetate as carbon and energy sources, but does grow in media with methanol/H(2)/CO(2), demonstrating its ability to utilize H(2) as a source of electrons for reduction of methyl groups. Cell suspension experiments showed that methanogenesis from methanol or from H(2)/CO(2) is blocked in the mutant, explaining the lack of growth on these substrates. The corresponding mutation in Methanosarcina acetivorans C2A, which cannot grow on H(2)/CO(2), could not be made in wild-type strains, but could be made in strains carrying a second copy of mch, suggesting that M. acetivorans is incapable of methyl group reduction using H(2). M. acetivorans mch mutants could also be constructed in strains carrying the M. barkeri ech hydrogenase operon, suggesting that the block in the methyl reduction pathway is at the level of H(2) oxidation. Interestingly, the ech-dependent methyl reduction pathway of M. acetivorans involves an electron transport chain distinct from that used by M. barkeri, because M. barkeri ech mutants remain capable of H(2)-dependent methyl reduction.  相似文献   

17.
C-methylation occurs during the biosynthesis of heme d1   总被引:2,自引:0,他引:2  
The biosynthetic origin of methyl groups in heme d1 isolated from the nitrite reductase cytochrome cd1 was investigated by a stable isotope labeling experiment. Pseudomonas aeruginosa (American Type Culture Collection strain 19429) was grown on a minimal medium supplemented with [13C]methionine. The enzyme was purified, the heme extracted, converted into the free base methyl ester derivative, and purified. 1H NMR and 13C NMR indicated that only the methyl groups attached to C2 and C7 are derived from methionine.  相似文献   

18.
'Chiral methyl valines', i.e. samples of valine labelled stereospecifically in the methyl groups with 2H and 3H, were incorporated into cephalosporin C by a suspension of washed cells of Cephalosporium acremonium. Analysis by 3H n.m.r. of the cephalosporin C produced showed that the conversion of the 3-pro-S-methyl group of valine into the acetoxymethyl side-chain was a highly stereospecific process. By contrast, conversion of the 3-pro-R-methyl group into the endocyclic methylene group of the dihydrothiazine ring was shown to proceed by a non-stereospecific process.  相似文献   

19.
Of over 20 nucleated cell lines we have examined to date, human H2 glioblastoma cells have turned out to be the most resistant to complement-mediated cytolysis in vitro. H2 cells expressed strongly the membrane attack complex inhibitor protectin (CD59), moderately CD46 (membrane cofactor protein) and CD55 (decay-accelerating factor), but no CD35 (complement receptor 1). When treated with a polyclonal anti-H2 Ab, anti-CD59 mAb, and normal human serum, only 5% of H2 cells became killed. Under the same conditions, 70% of endothelial-like EA.hy 926 cells and 40% of U251 control glioma cells were killed. A combined neutralization of CD46, CD55, and CD59 increased H2 lysis only minimally, demonstrating that these complement regulators are not enough to account for the resistance of H2 cells. After treatment with Abs and serum, less C5b-9 was deposited on H2 than on U251 and EA.hy 926 cell lines. A reason for the exceptional resistance of H2 cells was revealed when RT-PCR and protein biochemical methods showed that the H2 cells, unlike the other cell lines tested, actively produced the soluble complement inhibitors factor H and factor H-like protein 1. H2 cells were also capable of binding human factor H from the fluid phase to their cell surface and promoted the cleavage of C3b to its inactive form iC3b more efficiently than U251 and EA.hy 926 cells. In accordance, anti-factor H mAbs enhanced killing of H2 glioblastoma cells. Taken together, our results show that production and binding of factor H and factor H-like protein 1 is a novel mechanism that these malignant cells utilize to escape complement-mediated killing.  相似文献   

20.
Tiburu EK  Karp ES  Dave PC  Damodaran K  Lorigan GA 《Biochemistry》2004,43(44):13899-13909
(2)H and (15)N solid-state NMR spectroscopic techniques were used to investigate the membrane composition, orientation, and side-chain dynamics of the transmembrane segment of phospholamban (TM-PLB), a sarcoplasmic Ca(2+)-regulator protein. (2)H NMR spectra of (2)H-labeled leucine (deuterated at one terminal methyl group) incorporated at different sites (CD(3)-Leu28, CD(3)-Leu39, and CD(3)-Leu51) along the TM-PLB peptide exhibited line shapes characteristic of either methyl group reorientation about the C(gamma)-C(delta) bond axis or by additional librational motion about the C(alpha)-C(beta) and C(beta)-C(gamma) bond axes. The (2)H NMR line shapes of all CD(3)-labeled leucines are very similar below 0 degrees C, indicating that all of the residues are located inside the lipid bilayer. At higher temperatures, all three labeled leucine residues undergo rapid reorientation about the C(alpha)-C(beta), C(beta)-C(gamma), and C(gamma)-C(delta) bond axes as indicated by (2)H line-shape simulations and reduced quadrupolar splittings. At all of the temperatures studied, the (2)H NMR spectra indicated that the Leu51 side chain has less motion than Leu39 or Leu28, which is attributed to its incorporation in the pentameric PLB leucine zipper motif. The (15)N powder spectra of Leu39 and Leu42 residues indicated no backbone motion, while Leu28 exhibited slight backbone motion. The chemical-shift anisotropy tensor values for (15)N-labeled Leu TM-PLB were sigma(11) = 50.5 ppm, sigma(22) = 80.5 ppm, and sigma(33) = 229 ppm within +/-3 ppm experimental error. The (15)N chemical-shift value from the mechanically aligned spectrum of (15)N-labeled Leu39 PLB in DOPC/DOPE phospholipid bilayers was 220 ppm and is characteristic of a TM peptide that is nearly parallel with the bilayer normal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号