首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 158 毫秒
1.
Wild-type glycerol kinase of Escherichia coli is inhibited by both nonphosphorylated enzyme IIIGlc of the phosphoenolpyruvate:carbohydrate phosphotransferase system and fructose 1,6-diphosphate. Mutant glycerol kinase, resistant to inhibition by fructose 1,6-diphosphate, was much less sensitive to inhibition by enzyme IIIGlc. The difference between the wild-type and mutant enzymes was even greater when inhibition was measured in the presence of both enzyme IIIGlc and fructose 1,6-diphosphate. The binding of enzyme IIIGlc to glycerol kinase required the presence of the substrate glycerol.  相似文献   

2.
A glycerol-specific phenotypic revertant isolated from a mutant of Escherichia coli missing enzyme I of the phosphoenolpyruvate phosphotransferase system was studied. This revertant is capable of producing higher levels of glycerol kinase and the protein mediating the facilitated diffusion of glycerol (facilitator) than wild-type cells. The kinase of the revertant is indistinguishable from the wild-type enzyme with respect to its sensitivity to feedback inhibition by fructose-1,6-diphosphate, its pH optimum, and its turnover number. The synthesis of glycerol kinase in strains bearing the suppressor locus is resistant to catabolite repression. The suppressor mutation mapped at the known glpK locus. Thus, it is suggested that the mutation occurred in the promoter of the operon specifying the kinase and the facilitator.  相似文献   

3.
The activity of glycerol kinase is rate-limiting in the metabolism of glycerol by cells of Escherichia coli. A mutant strain producing a glycerol kinase resistant to inhibition by fructose-1,6-diphosphate grows faster than its wild-type parent on glycerol as the sole source of carbon and energy. The amount of intracellular fructose-1,6-diphosphate was determined for wild-type cells growing exponentially on glycerol. The water content of such cells was also determined, allowing calculation of the intracellular concentration of fructose-1,6-diphosphate. This value, 1.7 mm, is adequate to exert substantial inhibition on the wild-type glycerol kinase. The desensitization of glycerol kinase to feedback inhibition also enhances the power of glycerol to exert catabolite repression, both on the enzymes of the glycerol system itself and on those of the lactose system. However, desensitization of glycerol kinase alone does not eliminate the phenomenon of diauxic growth in a glucose-glycerol medium. Biphasic growth in such a medium is abolished if the altered enzyme is produced constitutively. The constitutive production of the mutant kinase at high levels, however, renders the cells vulnerable to glycerol. Thus, when the cells have been grown on a carbon source with a low power for catabolite repression, e.g., succinate, sudden exposure to glycerol leads to overconsumption of the nutrient and cell death.  相似文献   

4.
The kinetic and regulatory properties of creatine kinase from Silurus glanis L. white muscles were studied. The effects of several glycolytic intermediates, AMP and pyrophosphate on the creatine kinase reaction catalyzed by fresh and aged enzyme preparations were studied. Glucose-6-phosphate, fructose-1,6-diphosphate, phosphoenolpyruvated and AMP were shown to inhibit the creatine kinase reaction, increasing the cooperativity of the substrate binding. Pyrophosphate exerted a two-phase effect (activation and inhibition) in case of fresh enzyme preparations and one-phase effect (inhibition) in case of aged ones.  相似文献   

5.
Dihydroxyacetone (DHA) kinase of Klebsiella pneumoniae, a gene product of the dha regulon responsible for fermentative dissimilation of glycerol and DHA, was purified 120-fold to a final specific activity of 10 mumol X min-1 X mg of protein-1 at 30 degrees C. The enzyme, a dimer of a 53,000 +/- 5,000-dalton polypeptide, is highly specific for DHA (Km, ca.4 microM). Glycerol is not a substrate at 1 mM and is not an inhibitor even at 100 mM. The enzyme is not inhibited by 5 mM fructose-1,6-diphosphate. Ca2+ gives a higher enzyme activity than Mg2+ as a cationic cofactor. Escherichia coli glycerol kinase acts on both glycerol and DHA and is allosterically inhibited by fructose-1,6-diphosphate. Antibodies raised against E. coli glycerol kinase cross-reacted with K. pneumoniae glycerol kinase but not with K. pneumoniae DHA kinase.  相似文献   

6.
Human erythrocyte pyruvate kinase was modified with bromopyruvate and the kinetic behavior of the modified enzyme was investigated. When the enzyme was modified with bromopyruvate in the absence of adenosine-5'-diphosphate, phosphoenolpyruvate or fructose-1,6-diphosphate the inactivation followed a pseudo first-order kinetics. The inactivation rate constant, ks, was 1.84 +/- 0.15 min(-1). Kd of the bromopyruvate-enzyme complex was 0.14 +/- 0.03 mM. The presence of adenosine-5'-diphosphate, phosphoenolpyruvate or fructose-1,6-diphosphate in the modification medium or the presence of fructose-1,6-diphosphate in the assay medium resulted in deviation of the inactivation kinetics from pseudo first-order. Phosphoenolpyruvate was better than adenosine-5'-diphosphate for protection against bromopyruvate modification whereas fructose-1,6-diphosphate was ineffective. The modified enzyme showed negative cooperativity in the presence of fructose-1,6-diphosphate whereas in the absence of it no activity was detected.  相似文献   

7.
In Escherichia coli K-12, the conversion of glycerol to triose phosphate is regulated by two types of control mechanism: the rate of synthesis of glycerol kinase and the feedback inhibition of its activity by fructose-1,6-diphosphate. A strain which has lost both control mechanisms by successive mutations, resulting in the constitutive synthesis of a glycerol kinase no longer sensitive to feedback inhibition, can produce a bactericidal factor from glycerol. This toxic factor has been identified by chemical and enzymological tests as methylglyoxal. Methylglyoxal can be derived from dihydroxyacetone phosphate through the action of an enzyme which is present at high constitutive levels in the extracts of the mutant as well as that of the wild-type strain. Nine spontaneous mutants resistant to 1 mm exogenous methylglyoxal have been isolated. In all cases the resistance is associated with increased levels of a glutathione-dependent enzymatic activity for the removal of methylglyoxal. Methylglyoxal-resistant mutants derived from the glycerol-sensitive parental strain also became immune to glycerol.  相似文献   

8.
Human erythrocyte pyruvate kinase was modified with bromopyruvate and the kinetic behavior of the modified enzyme was investigated. When the enzyme was modified with bromopyruvate in the absence of adenosine-5′s-diphosphate, phospho-enolpyruvate or fructose-1,6-diphosphate the inactivation followed a pseudo first-order kinetics. The inactivation rate constant, ks, was 1.84 × 0.15 min?1. Kd of the bromopyruvate-enzyme complex was 0.14 × 0.03 mM.

The presence of adenosine-5′-diphosphate, phosphoenolpyruvate or fructose-1,6-diphosphate in the modification medium or the presence of fructose-1,6-diphosphate in the assay medium resulted in deviation of the inactivation kinetics from pseudo first-order. Phosphoenolpyruvate was better than adenosine-5′-diphosphate for protection against bromopyruvate modification whereas fructose-1,6-diphosphate was ineffective. The modified enzyme showed negative cooperativity in the presence of fructose-1,6-diphosphate whereas in the absence of it no activity was detected.  相似文献   

9.
B?ck, August (Purdue University, Lafayette, Ind.), and Frederick C. Neidhardt. Properties of a mutant of Escherichia coli with a temperature-sensitive fructose-1,6-diphosphate aldolase. J. Bacteriol. 92:470-476. 1966.-A mutant of Escherichia coli in which fructose-1,6-diphosphate aldolase functions at 30 C but not at 40 C was used to study the physiological effect of a specific block in the Embden-Meyerhof glycolytic pathway. Growth of the mutant at 40 C was found to be inhibited by the presence of glucose or certain related compounds in the medium. At 40 C, glucose was metabolized at 30 to 40% of the control rate and was abnormal in that glucose was converted into other six-carbon substances (probably gluconate, in large part) that were released into the culture medium. The inhibition was complete, but transient; its duration depended upon the initial amount of inhibitor added. The resumption of growth at 40 C was correlated with the further catabolism of the excreted compounds. When glycerol was used to grow the mutant at 40 C, the growth inhibition by glucose was accompanied by cessation of glycerol metabolism. Growth on alpha-glycerol phosphate was not inhibited under these conditions, implicating glycerol kinase as a possible site of inhibition; no inhibition of glycerol kinase by sugar phosphates, however, could be detected in vitro. The inhibitory effect of glucose on growth at 40 C is not caused by a deficit of intracellular adenosine triphosphate, but may be the result of a generalized poisoning of many cell processes by a greatly increased intracellular concentration of fructose-1,6-diphosphate, the substrate of the damaged enzyme.  相似文献   

10.
The primary catabolic pathways in the fungi Penicillium notatum and P. duponti, and Mucor rouxii and M. miehei were examined by measuring the relative rate of 14CO2 production from different carbon atoms of specifically labelled glucose. It was found that these organisms dissimilate glucose predominantly via the Embden--Meyerhof pathway in conjunction with the tricarboxylic acid cycle and to a lesser extent by the pentose phosphate pathway. Phosphofructokinase (EC 2.7.1.11) activity could not be detected initially in Penicillium species because of the interference from mannitol-1-phosphate dehydrogenase (EC 1.1.1.17) and NADH oxidase (EC 1.6.99.3). A combination of differential centrifuging and a heat treatment of Penicillium cell-free extracts in the presence of fructose-6-phosphate removed the interfering enzymes. The kinetic characteristics of phosphofructokinase from P. notatum and M. rouxii are described. The enzyme presents highly cooperative kinetics for fructose-6-phosphate. The kinetics for ATP show no cooperativity and inhibition by excess ATP is observed. The addition of AMP activated the P. notatum enzyme, relieving ATP inhibition; slight inhibition by AMP was observed with the M. rouxii enzyme. In contrast M. rouxii pyruvate kinase (EC 2.7.1.40) is activated 50-fold by fructose-1,6-diphosphate whereas pyruvate kinase from P. notatum and P. duponti were unaffected by fructose-1,6-diphosphate.  相似文献   

11.
Fraenkel, D. G. (Albert Einstein College of Medicine, New York, N.Y.), and B. L. Horecker. Fructose-1,6-diphosphatase and acid hexose phosphatase of Escherichia coli. J. Bacteriol. 90:837-842. 1965.-The conversion of fructose-1,6-diphosphate to fructose-6-phosphate (fructose-1,6-diphosphatase activity) is essential for growth of Escherichia coli on glycerol, acetate, or succinate, but is unnecessary for growth on hexoses or pentoses. It has sometimes been assumed that fructose-1,6-diphosphatase activity is due to a nonspecific acid hexose phosphatase. We have now obtained a number of one-step mutants which have lost the ability to grow on glycerol, succinate, or acetate, but which grow normally on hexoses; these mutants are deficient in a fructose-1,6-diphosphatase which can be assayed spectrophotometrically in the presence of Mg(++) and low concentrations of substrate. These mutants still possess the nonspecific acid hexose phosphatase, which does not require Mg(++) and is active only at much higher concentrations of fructose-1,6-diphosphate. Evidence is presented to support the hypothesis that the newly described activity is the physiological fructose-1,6-diphosphatase. The acid hexose phosphatase is a different enzyme whose function remains unknown.  相似文献   

12.
Glycerol-specific revertants were isolated from a phosphoenolpyruvate phosphotransferase mutant lacking enzyme I activity. Sixteen of the eighteen separately derived revertants were found to synthesize a fully active glycerol kinase no longer subject to feedback inhibition by fructose 1,6-diphosphate. The suppressor mutation mapped at the known glpK locus. When the fructose, 1,6-diphosphate-insensitive kinase allele was transduced into a strain producing the glp enzymes constitutively, cells of the resultant strain were susceptible to killing by glycerol if this compound was added to a culture growing exponentially in casein hydrolysate. This phenomenon had been previously described for a strain which had a constitutive glycerol kinase refractory to feedback inhibition, but isolated by a different procedure. It is suggested that the suppression of the growth defect on glycerol in the enzyme I(-) mutant by the fructose 1,6-diphosphate-insensitive kinase is achieved by increasing the in vivo catalytic potential of glycerol kinase. This increased activity would allow more rapid conversion of glycerol to l-alpha-glycerophosphate, the true inducer of the glp system. The enzyme I defect in the parental strain impaired the inducibility of the glp system so that the normal basal catalytic activity of the kinase was insufficient to insure induction by glycerol.  相似文献   

13.
M U Tsao  T I Madley 《Microbios》1975,12(49):125-142
Pyruvate kinase (ATP:pyruvate phosphotransferase, EC 2.7.1.40), extracted from the mycelium of Neurospora crassa has been purified 560-fold by precipitation with ammonium sulphate, chromatography with DEAE-Sephadex, and gel filtration with Sephadex G-200. Potassium and magnesium are required for enzyme activity. Fructose, 1,6-diphosphate is the only physiological activator found for the enzyme. In decreasing order of potency, citrate, oxalacetate, calcium, and ATP are inhibitors. Phosphoenolpyruvate is cooperatively bound by the enzyme and the cooperatively is reduced by ATP and completely eliminated by fructose-1,6-diphosphate. Lowering of pH from 7-5 to 5-5 changes the Hill coefficient from 2-7 to 1-0. Substitution of ADP by other nucleotides reduces enzyme activity. Manganese can substitute for the cofactor magnesium, but the reaction velocity is then reduced. MgADP- is cooperatively bound by the enzyme and inhibition of the enzyme occurs only when either magnesium or ADP is in excess of the other beyond the optimum concentration. These kinetics properties of pyruvate kinase are compatible with the role of a regulator of glycolysis in Neurospora crassa.  相似文献   

14.
Pyruvate Kinase of Streptococcus lactis   总被引:18,自引:14,他引:4       下载免费PDF全文
The kinetic properties of pyruvate kinase (ATP:pyruvate-phosphotransferase, EC 2.7.1.40) from Streptococcus lactis have been investigated. Positive homotropic kinetics were observed with phosphoenolpyruvate and adenosine 5′-diphosphate, resulting in a sigmoid relationship between reaction velocity and substrate concentrations. This relationship was abolished with an excess of the heterotropic effector fructose-1,6-diphosphate, giving a typical Michaelis-Menten relationship. Increasing the concentration of fructose-1,6-diphosphate increased the apparent Vmax values and decreased the Km values for both substrates. Catalysis by pyruvate kinase proceeded optimally at pH 6.9 to 7.5 and was markedly inhibited by inorganic phosphate and sulfate ions. Under certain conditions adenosine 5′-triphosphate also caused inhibition. The Km values for phosphoenolpyruvate and adenosine 5′-diphosphate in the presence of 2 mM fructose-1,6-diphosphate were 0.17 mM and 1 mM, respectively. The concentration of fructose-1,6-diphosphate giving one-half maximal velocity with 2 mM phosphoenolpyruvate and 5 mM adenosine 5′-diphosphate was 0.07 mM. The intracellular concentrations of these metabolites (0.8 mM phosphoenolpyruvate, 2.4 mM adenosine 5′-diphosphate, and 18 mM fructose-1,6-diphosphate) suggest that the pyruvate kinase in S. lactis approaches maximal activity in exponentially growing cells. The role of pyruvate kinase in the regulation of the glycolytic pathway in lactic streptococci is discussed.  相似文献   

15.
Metabolic alterations mediated by 2-ketobutyrate in Escherichia coli K12   总被引:9,自引:0,他引:9  
Summary We have previously proposed that 2-ketobutyrate is an alarmone in Escherichia coli. Circumstantial evidence suggested that the target of 2-ketobutyrate was the phosphoenol pyruvate: glycose phosphotransferase system (PTS). We demonstrate here that the phosphorylated metabolites of the glycolytic pathway experience a dramatic downshift upon addition of 2-ketobutyrate (or its analogues). In particular, fructose-1,6-diphosphate, glucose-6-phosphate, fructose-6-phosphate and acetyl-CoA concentrations drop by a factor of 10, 3, 4, and 5 respectively. This result is consistent with (i) an inhibition of the PTS by 2-ketobutyrate, (ii) a control of metabolism by fructose-1,6-diphosphate. Since fructose-1,6-diphosphate is an activator of phosphoenol pyruvate carboxylase and of pyruvate kinase, the concentration of their common substrate, phosphoenol pyruvate, does not decrease in parallel.Abbreviations G1P glucose-1-phosphate - G6P glucose-6-phosphate - F6P fructose-6-phosphate - F1-6DP fructose-1,6-diphosphate - PEP phosphoenol pyruvate  相似文献   

16.
The nonglycolytic, anaerobic organism Veillonella parvula M4 has been shown to contain an active pyruvate kinase. The enzyme was purified 126-fold and was shown by disc-gel electrophoresis to contain only two faint contaminating bands. The purified enzyme had a pH optimum of 7.0 in the forward direction and exhibited sigmoidal kinetics at varying concentrations o-f phosphoenol pyruvate (PEP), adenosine 5'-monophosphate (AMP), and Mg-2+ ions with S0.5 values of 1.5, 2.0, and 2.4 mM, respectively. Substrate inhibition was observed above 4 m PEP. Hill plots gave slope values (n) of 4.4 (PEP), 2.8 (adenosine 5'-diphosphate), and 2.0 (Mg-2+), indicating a high degree of cooperativity. The enzyme was inhibited non-competitively by adenosine 5'-triphosphate (Ki = 3.4 mM), and this inhibition was only slightly affected by increasing concentration of Mg-2+ ions to 30 mM. Competitive inhibition was observed with 3-phosphoglycerate, malate, and 2,3-diphosphoglycerate but only at higher inhibitor concentrations. The enzyme was activated by glucose-6-phosphate (P), fructose-6-P, fructose-1,6-diphosphate (P2), dihydroxyacetone-P, and AMP; the Hill coefficients were 2.2, 1.8, 1.5, 2.1, and 2.0, respectively. The presence of each these metabolites caused substrate velocity curves to change from sigmoidal to hyperbolic curves, and each was accompanied by an increase in the maximum activity, e.g., AMP greater than fructose-1,6-P2 greater than dihydroxyacetone-P greater than glucose-6-P greater than fructose-6-P. The activation constants for fructose-1,6-P2, AMP, and glucose-6-P were 0.3, 1.1, and 5.3 mM, respectively. The effect of 5 mM fructose-1,6-P2 was significantly different from the other compounds in that this metabolite was inhibitory between 1.2 and 3 mM PEP. Above this concentration, fructose-1,6-P2 activated the enzyme and abolished substrate inhibition by PEP. The enzyme was not affected by glucose, glyceraldehyde-3-P, 2-phosphoglycerate, lactate, malate, fumerate, succinate, and cyclic AMP. The results suggest that the pyruvate kinase from V. parvula M4 plays a central role in the control of gluconeogenesis in this organism by regulating the concentration of PEP.  相似文献   

17.
C J Marcus  W L Byrne  A M Geller 《Life sciences》1974,15(10):1765-1780
Treatment of purified fructose 1,6-diphosphatase from bovine liver (which is maximally active at neutral pH) with pyridoxal 5'-phosphate produces changes in the spectral, catalytic, and allosteric properties of the enzyme. After modification the Michaelis constants for fructose-1,6-diphosphate and Mg2+ are increased, and inhibition by AMP is decreased. Substrate inhibition is decreased, but not abolished; the curve is merely shifted toward higher substrate concentration. Fructose-1, 6-diphosphate protects against the increases in the Km for fructose-1, 6-diphosphate and the Km for Mg2+, and against the changes in substrate inhibition, but not against the changes in AMP inhibition. AMP protects against the changes in AMP inhibition and the increase in the Km for magnesium, but does not prevent the changes in substrate inhibition or the increase in the Km for fructose-1, 6-diphosphate. The pH curves in the modified enzyme are altered at high, but not at low, substrate concentration.  相似文献   

18.
Two novel procedures have been used to regulate, in vivo, the formation of phosphoenolpyruvate (PEP) from glycolysis in Streptococcus lactis ML3. In the first procedure, glucose metabolism was specifically inhibited by p-chloromercuribenzoate. Autoradiographic and enzymatic analyses showed that the cells contained glucose 6-phosphate, fructose 6-phosphate, fructose-1,6-diphosphate, and triose phosphates.Dithiothreitol reversed the p-chloromercuribenzoate inhibition, and these intermediates were rapidly and quantitatively transformed into 3- and 2-phosphoglycerates plus PEP. The three intermediates were not further metabolized and constituted the intracellular PEP potential. The second procedure simply involved starvation of the organisms. The starved cells were devoid of glucose 6-phosphate, fructose 6-phosphate, fructose- 1,6-diphosphate, and triose phosphates but contained high levels of 3- and 2-phosphoglycerates and PEP (ca. 40 mM in total). The capacity to regulate PEP formation in vivo permitted the characterization of glucose and lactose phosphotransferase systems in physiologically intact cells. Evidence has been obtained for "feed forward" activation of pyruvate kinase in vivo by phosphorylated intermediates formed before the glyceraldehyde-3-phosphate dehydrogenase reaction in the glycolytic sequence. The data suggest that pyruvate kinase (an allosteric enzyme) plays a key role in the regulation of glycolysis and phosphotransferase system functions in S. lactis ML3.  相似文献   

19.
To understand the mechanism of signal propagation involved in the cooperative AMP inhibition of the homotetrameric enzyme pig-kidney fructose-1,6-bisphosphatase, Arg49 and Lys50 residues located at the C1-C2 interface of this enzyme were replaced using site-directed mutagenesis. The mutant enzymes Lys50Ala, Lys50Gln, Arg49Ala and Arg49Gln were expressed in Escherichia coli, purified to homogeneity and the initial rate kinetics were compared with the wild-type recombinant enzyme. The mutants exhibited kcat, Km and I50 values for fructose-2,6-bisphosphate that were similar to those of the wild-type enzyme. The kinetic mechanism of AMP inhibition with respect to Mg2+ was changed from competitive (wild-type) to noncompetitive in the mutant enzymes. The Lys50Ala and Lys50Gln mutants showed a biphasic behavior towards AMP, with total loss of cooperativity. In addition, in these mutants the mechanism of AMP inhibition with respect to fructose-1,6-bisphosphate changed from noncompetitive (wild-type) to uncompetitive. In contrast, AMP inhibition was strongly altered in Arg49Ala and Arg49Gln enzymes; the mutants had > 1000-fold lower AMP affinity relative to the wild-type enzyme and exhibited no AMP cooperativity. These studies strongly indicate that the C1-C2 interface is critical for propagation of the cooperative signal between the AMP sites on the different subunits and also in the mechanism of allosteric inhibition of the enzyme by AMP.  相似文献   

20.
Purified IIIGlc of the phosphoenolpyruvate:sugar phosphotransferase system of Salmonella typhimurium inhibits glycerol kinase. Phosphorylation of IIIGlc via phosphoenolpyruvate, enzyme I, and HPr abolishes this inhibition. The glycerol facilitator is not inhibited by IIIGlc. It is proposed that regulation of glycerol metabolism by the phosphoenolpyruvate:sugar phosphotransferase system is at the level of glycerol kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号