首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of the present study was to use the microdialysis technique to simultaneously measure the interstitial concentrations of several putative stimulators of the exercise pressor reflex during 5 min of intermittent static quadriceps exercise in humans (n = 7). Exercise resulted in approximately a threefold (P < 0.05) increase in muscle sympathetic nerve activity (MSNA) and 13 +/- 3 beats/min (P < 0.05) and 20 +/- 2 mmHg (P < 0.05) increases in heart rate and blood pressure, respectively. During recovery, all reflex responses quickly returned to baseline. Interstitial lactate levels were increased (P < 0.05) from rest (1.1 +/- 0.1 mM) to exercise (1. 6 +/- 0.2 mM) and were further increased (P < 0.05) during recovery (2.0 +/- 0.2 mM). Dialysate phosphate concentrations were 0.55 +/- 0. 04, 0.71 +/- 0.05, and 0.48 +/- 0.03 mM during rest, exercise, and recovery, respectively, and were significantly elevated during exercise. At the onset of exercise, dialysate K(+) levels rose rapidly above resting values (4.2 +/- 0.1 meq/l) and continued to increase during the exercise bout. After 5 min of contractions, dialysate K(+) levels had peaked with an increase (P < 0.05) of 0.6 +/- 0.1 meq/l and subsequently decreased during recovery, not being different from rest after 3 min. In contrast, H(+) concentrations rapidly decreased (P < 0.05) from resting levels (69.4 +/- 3.7 nM) during quadriceps exercise and continued to decrease with a mean decline (P < 0.05) of 16.7 +/- 3.8 nM being achieved after 5 min. During recovery, H(+) concentrations rapidly increased and were not significantly different from baseline after 1 min. This study represents the first time that skeletal muscle interstitial pH, K(+), lactate, and phosphate have been measured in conjunction with MSNA, heart rate, and blood pressure during intermittent static quadriceps exercise in humans. These data suggest that interstitial K(+) and phosphate, but not lactate and H(+), may contribute to the stimulation of the exercise pressor reflex.  相似文献   

2.
Nifedipine was administrated to 25 patients with chronic congestive heart failure treated with digoxin and furosemide++, nifedipine (NF) in a daily dose of 30-80 mg for 14 days. Before and after the treatment with nifedipine chest X-ray, blood biochemical investigations, echocardiographic evaluation of the left ventricular function and submaximal exercise test were performed. Nifedipine induced significant decreases in the left ventricular systolic dimension, heart volume, blood serum potassium and uric acid concentrations and hematocrit . Resting and exertional heart rate, blood pressure, exercise power and duration, watt-pulse, myocardial oxygen demand index, ejection fraction, cardiac output, body weight, 24-hour urinary output, blood serum concentrations of urea, creatinine, sodium and chloride changed insignificantly following nifedipine administration. The obtained results suggest that long-term nifedipine treatment of patients who were already given digoxin and furosemide neither improve nor worsen their clinical status.  相似文献   

3.
This study investigated the involvement of serotonergic mechanisms of the lateral parabrachial nucleus (LPBN) in the control of sodium (Na+) excretion, potassium (K+) excretion, and urinary volume in unanesthetized rats subjected to acute isotonic blood volume expansion (0.15 M NaCl, 2 ml/100 g of body wt over 1 min) or control rats. Plasma oxytocin (OT), vasopressin (VP), and atrial natriuretic peptide (ANP) levels were also determined in the same protocol. Male Wistar rats with stainless steel cannulas implanted bilaterally into the LPBN were used. In rats treated with vehicle in the LPBN, blood volume expansion increased urinary volume, Na+ and K+ excretion, and also plasma ANP and OT. Bilateral injections of serotonergic receptor antagonist methysergide (1 or 4 microg/200 etal) into the LPBN reduced the effects of blood volume expansion on increased Na+ and K+ excretion and urinary volume, while LPBN injections of serotonergic 5-HT(2a)/HT(2c) receptor agonist, 2.5-dimetoxi-4-iodoamphetamine hydrobromide (DOI; 1 or 5 microg/200 etal) enhanced the effects of blood volume expansion on Na+ and K+ excretion and urinary volume. Methysergide (4 microg) into the LPBN decreased the effects of blood volume expansion on plasma ANP and OT, while DOI (5 microg) increased them. The present results suggest the involvement of LPBN serotonergic mechanisms in the regulation of urinary sodium, potassium and water excretion, and hormonal responses to acute isotonic blood volume expansion.  相似文献   

4.
The volume of interstitial fluid in the limbs varies considerably, due to hydrostatic effects. As signals from working muscle, responsible for much of the cardiovascular drive, are assumed to be transmitted in this compartment, blood pressure and heart rate could be affected by local or systemic variations in interstitial hydration. Using a special calf ergometer, eight male subjects performed rhythmic aerobic plantar flexions in a supine position with dependent calves for periods of 7 min. During exercise heart rate, blood pressure, oxygen uptake (VO2) and blood lactate concentrations were measured in two different tests, one before and after interstitial calf dehydration through limb elevation for 25 min, compared to the other, a control with unaltered fluid volume in a maintained working position. Impedance plethysmography showed calf volume to be stabilized in the control position. Leg elevation by passive hip flexion to 90 degrees resulted in a fast (vascular) volume decrease lasting less than 2 min, followed by a slow linear fluid loss from the interstitial compartment. Then, when returned to the control position, adjustment of vascular volume was completed within 2 min and exercise could be performed with dehydration remaining in the interstitium only. Cardiovascular response was identical at the start of both tests. However, exercising with dehydrated calves elicited a significantly larger increase in heart rate compared to the control, whereas VO2 was identical. The blood pressure response was shown to be only slightly enhanced. Structural interstitial features varying with hydration, most likely chemical or mechanical ones, may have been responsible for this amplification of signals.  相似文献   

5.
Static muscular contraction reflexly increases arterial blood pressure and heart rate. One possible mechanism evoking this reflex is that potassium accumulates in the interstitial space of a working muscle to stimulate group III and IV afferents whose activation in turn evokes a pressor response. The responses of group III and IV muscle afferents to increases in interstitial potassium concentrations within the range evoked by static contraction are unknown. Thus we injected potassium chloride into the gracilis artery of anesthetized dogs while we measured both gracilis muscle interstitial potassium concentrations with potassium-selective electrodes and the impulse activity of afferents in the gracilis nerve. We found that increasing interstitial potassium concentrations to levels similar to those seen during static contraction stimulated 14 of 16 group III and 29 of 31 group IV afferents. The responses of the afferents to potassium were concentration dependent. The typical response to potassium consisted of a burst of impulses, an effect that returned to control firing rates within 26 s, even though interstitial potassium concentrations remained elevated for several minutes. Although our results suggest that potassium may play a role in initiating the reflex cardiovascular responses to static muscular contraction, the accumulation of this ion does not appear to be solely responsible for maintaining the pressor response for the duration of the contraction.  相似文献   

6.
The purpose of the present study was to examine the effects of adenosine perfusion of the isolated triceps surae muscle group in the decerebrate cat on interstitial adenosine concentrations as well as heart rate and blood pressure responses. In six male cats (6.0 +/- 0.21 kg), the triceps surae muscle group of both legs was perfused with an artificial blood solution containing no additives (control) and then with blood containing 20 mM or 100 microM adenosine for 10 min. An intact muscle reflex was confirmed by bolus injections of 50 mM phosphate and/or saturated KCl administered into the triceps surae muscle via the cannulated popliteal artery before and after adenosine blood perfusion. Microdialysis of the triceps surae muscle group during muscle perfusion revealed that interstitial adenosine was elevated (P < 0.05) from 0.9 +/- 0.3 microM during control blood perfusion to 2,421 +/- 547 microM during 20 mM adenosine perfusion. In addition, interstitial adenosine levels were increased (P < 0.05) from 1.1 +/- 0.3 microM during control blood perfusion to 4.1 +/- 1.2 microM during perfusion with 100 microM adenosine. Despite the large increases in interstitial adenosine levels, perfusion of the triceps surae muscle group with the two blood adenosine solutions resulted in no significant increases in heart rate or blood pressure. These data strongly suggest that elevated interstitial adenosine concentrations do not play a role in activating the muscle reflex and confirm our previous in vivo human findings (J Appl Physiol 83: 1045-1053, 1997).  相似文献   

7.
Effect of different concentration of K+ in perfusion fluid ([K+]) (5.9 mM, 3.6 mM, 2.38 mM) and the heart temperatures of 20 degrees C and below on the rat heart rate in the Langendorf preparations, were examined in conditions of retrograde perfusion with a modified Krebs-Henseleit buffer at constant perfusion volume. The lowering of [K+] diminished the temperature/heart rate ratio and depressed the heart standstill temperature from 12.3 +/- 0.6 degrees C at [K+] 5.9 mM (n = 12) to 6.7 +/- 0.6 degrees C at [K+] 3.6 mM (n = 5) and to 2.24 +/- 0.40 degrees C at [K+] 2.38 mM (n = 5). Temperature of the cold heart standstill had the liner relationship to Ig[K+]. Change the perfusion fluid with 5.9 mM K+ after heart cold standstill by the perfusion fluid with 3.6 mM K+ restored the heart beats to the rate of 40-50 min-1 in some experiments. The second heart standstill was at the mean temperature 3.6 degrees C lower than the first one.  相似文献   

8.
Gastric glands were isolated from rabbit stomach and pepsinogen secretion was measured after stimulation with isoproterenol, forskolin, 8-bromo cyclic adenosine monophosphate (8-bromo cAMP), cholecystokinin octapeptide (CCK-OP), carbachol, and hyperosmolar medium. The responses to these stimuli in medium containing 143 mM Na+ and 5.4 mM K+ (normal medium) were compared with responses to the same stimuli in media containing either 0 Na+ and 5.4 mM K+, or 143 mM Na+ and O K+. In addition, the effects of ouabain and furosemide on secretion elicited by these stimuli were determined. Medium containing 0 Na+ inhibited all stimuli. Medium containing 0 K+ inhibited the action of 8-bromo cAMP and stimuli postulated to be mediated by cAMP. Ouabain inhibited the same stimuli as O K+ medium, and, in addition, inhibited the response to hyperosmolar medium. However, ouabain enhanced the response to CCK-OP. Furosemide inhibited the response to hyperosmolar medium but had no effect on the action of any secretagogue employed. Intraglandular [Na+] increased and [K+] decreased after exposure to K+-free medium or ouabain. cAMP content of the glands was assayed after stimulation with both isoproterenol and hyperosmolar medium. Isoproterenol and hyperosmolar medium significantly increased cAMP levels. The results are discussed in relation to possible involvement of ion transport or intracellular ion concentration in the secretory process.  相似文献   

9.
Interstitial K+ ([K+]i) was measured in human skeletal muscle by microdialysis during exhaustive leg exercise, with (AL) and without (L) previous intense arm exercise. In addition, the reproducibility of the [K+]i determinations was examined. Possible microdialysis-induced rupture of the sarcolemma was assessed by measurement of carnosine in the dialysate, because carnosine is only expected to be found intracellularly. Changes in [K+]i could be reproduced, when exhaustive leg exercise was performed on two different days, with a between-day difference of approximately 0.5 mM at rest and 1.5 mM at exhaustion. The time to exhaustion was shorter in AL than in L (2.7 +/- 0.3 vs. 4.0 +/- 0.3 min; P < 0.05). Furthermore, [K+]i was higher from 0 to 1.5 min of the intense leg exercise period in AL compared with L (9.2 +/- 0.7 vs. 6.4 +/- 0.9 mM; P < 0.001) and at exhaustion (11.9 +/- 0.5 vs. 10.3 +/- 0.6 mM; P < 0.05). The dialysate content of carnosine was elevated by exercise, but low-intensity exercise resulted in higher dialysate carnosine concentrations than subsequent intense exercise. Furthermore, no relationship was found between carnosine concentrations and [K+]i. Thus the present data suggest that microdialysis can be used to determine muscle [K+]i kinetics during intense exercise, when low-intensity exercise is performed before the intense exercise. The high [K+]i levels reached at exhaustion can be expected to cause fatigue, which is supported by the finding that a faster accumulation of interstitial K+, induced by prior arm exercise, was associated with a reduced time to fatigue.  相似文献   

10.
The influence of moderate cold exposure on the hormonal responses of atrial natriuretic factor (ANF), arginine vasopressin (AVP), catecholamines, and plasma renin activity (PRA) after exhaustive exercise was studied in 9 young and 10 middle-aged subjects. Exercise tests were randomly performed in temperate (30 degrees C) and cold (10 degrees C) environments. Heart rate, oxygen consumption, and peripheral arterial blood pressure were measured at regular intervals. Blood samples were collected before and immediately after exercise at 30 or 10 degrees C. Plasma sodium and potassium concentrations as well as hemoglobin and hematocrit were measured, and the change in plasma volume was calculated. At rest and during exercise, oxygen consumption was similar during exposure to both temperate and cold temperatures. During submaximal exercise intensities, the rise in heart rate was blunted while the increase in systolic blood pressure was significantly greater at 10 than at 30 degrees C. The increases in plasma sodium and potassium concentrations after exhaustion were similar between environments, as was the decrease in plasma volume. In both groups, all plasma hormones were significantly elevated postexercise, with the AVP response similar at 10 and 30 degrees C. However, the norepinephrine and ANF responses were significantly greater while the PRA response was significantly reduced at 10 degrees C. In the middle-aged subjects the epinephrine response to exercise was higher at 10 than at 30 degrees C. The greater ANF and reduced PRA responses to exercise in the cold may have resulted from central hemodynamic changes caused by cold-induced cutaneous vasoconstriction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
This study evaluated blood pressure and heart rate responses to exercise and nonexercise tasks as indexes of autonomic function in subjects with and without Down syndrome (DS). Twenty-four subjects (12 with and 12 without DS) completed maximal treadmill exercise, isometric handgrip (30% of maximum), and cold pressor tests, with heart rate and blood pressure measurements. Maximal heart rate and heart rate and blood pressure responses to the isometric handgrip and cold pressor tests were reduced in subjects with DS (P < 0.05). Both early (first 30 s) and late (last 30 s) responses were reduced. Obesity did not appear to influence the results, as both obese and normal-weight subjects with DS exhibited similar responses, and controlling for body mass index did not alter the results between controls and subjects with DS. Individuals with DS, without congenital heart disease, exhibit reduced heart rate and blood pressure responses to isometric handgrip exercise and cold pressor testing, consistent with autonomic dysfunction. Autonomic dysfunction may partially explain chronotropic incompetence observed during maximal treadmill exercise in individuals with DS.  相似文献   

12.
Plasma volume was decreased by prolonged bicycle exercise, by passive heating in warm water, by sauna dehydration, and by diuretically induced dehydration in eleven well trained subjects. Blood samples from an arm vein were taken before and after this pre-treatment, as well as after a subsequent standard exercise test (SET) on a bicycle ergometer (50%, 70% and 105% of max VO2; the SET with no pre-treatment was used as a control condition. The changes in plasma concentration of Na+, K+ and Cl- were not proportional to the calculated plasma volume changes. The Na+ and Cl- concentrations always increased in the plasma, while plasma potassium concentration was increased after prolonged exercise, but decreased after the other types of dehydrations. The standard exercise test produced a pronounced fall in total calculated plasma potassium and in K+ concentration measured 3-5 min after exercise in all types of experiments. In the standard exercise test the calculated water loss from the plasma volume was relatively large. It amounted to about 2/3 of the total water loss in the standard exercise test and was independent of the pre-treatments.  相似文献   

13.
G Tiger  C J Fowler 《Life sciences》1991,48(13):1283-1291
The calcium and potassium ion dependency of the inositol phospholipid breakdown response to stimulatory agents has been investigated in rat cerebral cortical miniprisms. The calcium channel agonist BAY K-8644 (10 microM) potentiated the response to carbachol at 6 mM K+ when Ca2(+)-free, but not when 2.52 mM Ca2+ assay buffer was used. In Ca2(+)-free buffer, verapamil (10 microM) inhibited the response to carbachol at both 6 and 18 mM K+ but higher concentrations (30-300 microM) were needed when 2.52 mM Ca2+ was used. At these higher concentrations, however, verapamil inhibited the binding of 2 nM [3H]pirenzepine to muscarinic recognition sites. N-Methyl-D-Aspartate (NMDA, 100 microM) significantly reduced the basal phosphoinositide breakdown rate at 18 mM K+ at 1.3 mM Ca2+, but was without effect on the basal rate at other K+ and Ca2+ concentrations. In the presence of NMDA (100 microM) or quisqualate (100 microM), the responses to carbachol were reduced, the degree of reduction showing a complex dependency upon the assay K+ and Ca2+ concentrations used. These results indicate that the inositol phospholipid breakdown response to carbachol in cerebral cortical miniprisms can be modulated in a manner dependent upon the extracellular calcium and potassium concentrations used.  相似文献   

14.
The effect of the therapeutic concentrations of benzylpenicillin on potassium release and osmotic resistance of the red blood cells in healthy children was investigated potentiometrically with the use of a K+-selective electrode. In a concentration of 0.66 mM (370 units/ml) benzylpenicillin increased the total content of potassium in the cells and their resistance to osmotic lysis and lowered the rate of K+ release induced by valinomycin. The membrane stabilizing effect of benzylpenicillin observed in these studies could to some extent stipulate its nonspecific antiinflammatory effect. In a concentration of 1.32 mM (740 units/ml) it had no significant effect on the indices studied. Under the effect of the maximum concentrations of the antibiotic (3.3 mM) the signs of lowered stability of the red blood cell membranes were observed, i.e. an increased rate of the valinomycin induced release of K+ and a tendency for the decreasing of the osmotic resistance.  相似文献   

15.
Isolated beef heart mitochondria were treated with A23187 in the presence of different concentrations of Mg2+ or EDTA to establish varying levels of total mitochondrial Mg2+. The Mg2+ content was related to the rate of passive swelling of the mitochondria in potassium acetate and other potassium salts in which swelling is presumed to depend on K+ entry via an endogenous K+/H+ antiport. Swelling in these salts does not commence until Mg2+ has been depleted from an initial value of 36 nmol X mg-1 of protein to 8 nmol/mg-1, or less. Below this level, swelling increases linearly with decreasing Mg2+ to a maximum rate at 2 nmol of Mg2+ X mg-1. Rotenone-treated heart mitochondria suspended in 75 mM potassium acetate at pH 7.80 show no delta pH by 5,5-dimethyl-2,4-oxazolidinedione distribution. Distribution of methylamine also shows essentially no delta pH under these conditions when allowance is made for binding of [14C]methylamine by mitochondrial membranes under these conditions. Addition of A23187 results in a small and transient delta pH (delta pH less than 0.14, acid interior) as measured by methylamine distribution. Estimation of the maximum matrix free Mg2+ concentration from the maximum delta pH observed and the external free Mg2+ concentration at equilibrium with A23187 shows that swelling is not initiated until matrix free Mg2+ is decreased to below 150 microM. An independent estimate of free Mg2+ using a null-point procedure gives a lower, but quite similar value (50 microM) for maximum matrix free Mg2+ when swelling commences. The large depletion of total and free Mg2+ that is required to activate swelling in potassium acetate (and presumably K+/H+ antiport activity) does not appear to be compatible with previous indications that free Mg2+ acts as a "carrier brake" to regulate K+ extrusion from the mitochondrion on such an antiport (Garlid, K. D. (1980) J. Biol. Chem. 255, 11273-11279). The removal of a tightly bound component of mitochondrial Mg2+ is closely related to increased K+ permeability and increased passive swelling in potassium salts. This Mg2+ appears to play a role in the maintenance of mitochondrial membrane structure and integrity.  相似文献   

16.
The purpose of the present study was to use the microdialysis technique to determine skeletal muscle interstitial glucose and lactate concentrations during dynamic incremental exercise in humans. Microdialysis probes were inserted into the vastus lateralis muscle, and subjects performed knee extensor exercise at workloads of 10, 20, 30, 40, and 50 W. The in vivo probe recoveries determined at rest by the internal reference method for glucose and lactate were 28.7 +/- 2.5 and 32.0 +/- 2.7%, respectively. As exercise intensity increased, probe recovery also increased, and at the highest workload probe recovery for glucose (61.0 +/- 3.9%) and lactate (66. 3 +/- 3.6%) had more than doubled. At rest the interstitial glucose concentration (3.5 +/- 0.2 mM) was lower than both the arterial (5.6 +/- 0.2 mM) and venous (5.3 +/- 0.3 mM) plasma water glucose levels. The interstitial glucose levels remained lower (P < 0.05) than the arterial and venous plasma water glucose concentrations during exercise at all intensities and at 10, 20, 30, and 50 W, respectively. At rest the interstitial lactate concentration (2.5 +/- 0.2 mM) was higher (P < 0.05) than both the arterial (0.9 +/- 0. 2 mM) and venous (1.1 +/- 0.2 mM) plasma water lactate levels. This relationship was maintained (P < 0.05) during exercise at workloads of 10, 20, and 30 W. These data suggest that interstitial glucose delivery at rest is flow limited and that during exercise changes in the interstitial concentrations of glucose and lactate mirror the changes observed in the venous plasma water compartments. Furthermore, skeletal muscle contraction results in an increase in the diffusion coefficient of glucose and lactate within the interstitial space as reflected by an elevation in probe recovery during exercise.  相似文献   

17.
Interstitial K(+) concentrations were measured during one-legged knee-extensor exercise by use of microdialysis with probes inserted in the vastus lateralis muscle of the subjects. K(+) in the dialysate was measured either by flame photometry or a K(+)-sensitive electrode placed in the perfusion outlet. The correction for fractional K(+) recovery was based on the assumption of identical fractional thallium loss. The interstitial K(+) was 4. 19 +/- 0.09 mM at rest and increased to 6.17 +/- 0.19, 7.48 +/- 1.18, and 9.04 +/- 0.74 mM at 10, 30, and 50 W exercise, respectively. The individual probes demonstrated large variations in interstitial K(+), and values >10 mM were obtained. The observed interstitial K(+) was markedly higher than previously found for venous K(+) concentrations at similar work intensities. The present data support a potential role for interstitial K(+) in regulation of blood flow and development of fatigue.  相似文献   

18.
The ouabain-sensitive synthesis of [32P]ATP from [32P]Pi and ADP (vsyn) was measured in parallel with the ouabain-sensitive hydrolysis of [32P]ATP (vhy) at steady state, at varying concentrations of sodium, potassium, magnesium, inorganic phosphate, ADP, ATP and oligomycin, and at varying pH. Na+ was necessary for ATP synthesis, but vsyn was decreased by high sodium concentrations. Oligomycin, depending on the Na+ concentration, either decreased or did not affect vsyn. Potassium, at low concentrations (1-5 mM) increased vsyn at all magnesium and sodium concentrations tested, lower potassium concentrations being needed to activate vsyn at lower sodium concentrations. vsyn was optimal below pH 6.7, decreasing abruptly at higher values of pH. At pH 6.7, vsyn was a hyperbolic function of the concentration of inorganic phosphate. In the presence of potassium, half-maximal rate was obtained at [Pi] congruent to 40 mM, whereas a higher concentration was needed to obtain half-maximal rate in the absence of K+. In contrast, increasing the concentration of ADP caused a nonhyperbolic activation of vsyn, the pattern obtained in the presence of potassium being different from that obtained in its absence. Increasing the ATP concentration above 0.5 mM decreased vsyn. The data are used to elucidate (1) which reaction steps are involved in the ATP-synthesis catalysed by the Na+/K(+)-ATPase at steady state in the absence of ionic gradients and (2) the mechanism by which K+ ions stimulate the reaction.  相似文献   

19.
We examined the effects of dynamic one-legged knee extension exercise on mean blood velocity (MBV) and muscle interstitial metabolite concentrations in healthy young subjects (n = 7). Femoral MBV (Doppler), mean arterial pressure (MAP) and muscle interstitial metabolite (adenosine, lactate, phosphate, K(+), pH, and H(+); by microdialysis) concentrations were measured during 5 min of exercise at 30 and 60% of maximal work capacity (W(max)). MAP increased (P < 0.05) to a similar extent during the two exercise bouts, whereas the increase in MBV was greater (P < 0.05) during exercise at 60% (77.00 +/- 6.77 cm/s) compared with 30% W(max) (43.71 +/- 3.71 cm/s). The increase in interstitial adenosine from rest to exercise was greater (P < 0.05) during the 60% (0.80 +/- 0.10 microM) compared with the 30% W(max) bout (0.57 +/- 0.10 microM). During exercise at 60% W(max), interstitial K(+) rose at a greater rate than during exercise at 30% W(max) (P < 0.05). However, pH increased (H(+) decreased) at similar rates for the two exercise intensities. During exercise, interstitial lactate and phosphate increased (P < 0.05) with no difference observed between the two intensities. After 5 min of recovery, MBV decreased to baseline levels after exercise at 30% W(max) (4.12 +/- 1.10 cm/s), whereas MBV remained above baseline levels after exercise at 60% W(max) (Delta19.46 +/- 2.61 cm/s; P < 0.05). MAP and interstitial adenosine, K(+), pH, and H(+) returned toward baseline levels. However, interstitial lactate and phosphate continued to increase during the recovery period. Thus an increase in exercise intensity resulted in concomitant changes in MBV and muscle interstitial adenosine and K(+), whereas similar changes were not observed for MAP or muscle interstitial pH, lactate, or phosphate. These data suggest that K(+) and/or adenosine may play an active role in the regulation of skeletal muscle blood flow during exercise.  相似文献   

20.
L-Proline inhibits glutamate-based spreading depressions (SDs) at low concentrations (2--2.5 mM) and promotes K+-based SDs at higher concentrations (5 mM). The inhibition of glutamate-based SDs was postulated to be due to competition of L-glutamate and L-proline for glutamate receptors on somatic and dendritic plasma membranes. The binding of proline to glutamate receptors was furthermore postulated to result in a release of K+ from the intracellular compartment, enhancing the extracellular K+ concentration sufficiently to promote K+-based SDs. A proline analog, L-baikiain, containing a double bond and one more C atom in the ring structure than proline had similar effects as the latter amino acid, but an analog, L-azetidine-2-carboxylic acid, with one less C atom in the ring had little effect on SD in the retina.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号