首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As it is clear now, the level of gene expression in eukariotes is determined mainly by chromatin composition. Chromatin structure of a particular gene (it is a complex item, which includes nucleosome positioning, histone modifications and non-histone chromatin proteins) can be modified externally and is able to be inherited mitotically and meiotically. Changes in chromatine structure are the basis of so called epigenetic inheritance that occurs without modification of DNA sequence. One of the most striking examples of epigenetic inheritance in plants is epimutations--stable for many generation's alleles of some genes that do not differ in primary DNA structure. Molecular basis of epimutations seems to be DNA metylation. Epimutations may be widely distributed in nature and affect some basis morphological features that have a systematic significance. Possibility of inheritance of acquired epigenetic modifications lead us to reconsider an idea of multipLe independent origins of some plant forms (or ecotypes) under action of similar external conditions. Different populations of the same species may in this case be unrelated and has no common ancestor. Species should be considered as invariant of multiple ways of origin. Wide distribution of polyploids amongst higher plants suggests effective mechanism of repression of multicopy genes. Each allopolyploidisation event is followed by repression of random set of parent genes via changes in its chromatin structure. As a result, in the limits of the same hybrid formula may arise different stable combinations of epigenetically controlled features of parent species. These combinations may be classified as different species of other taxa.  相似文献   

2.
3.
Cancer is traditionally viewed as a disease of abnormal cell proliferation controlled by a series of mutations. Mutations typically affect oncogenes or tumor suppressor genes thereby conferring growth advantage. Genomic instability facilitates mutation accumulation. Recent findings demonstrate that activation of oncogenes and inactivation of tumor suppressor genes, as well as genomic instability, can be achieved by epigenetic mechanisms as well. Unlike genetic mutations, epimutations do not change the base sequence of DNA and are potentially reversible. Similar to genetic mutations, epimutations are associated with specific patterns of gene expression that are heritable through cell divisions. Knudson's hypothesis postulates that inactivation of tumor suppressor genes requires two hits, with the first hit occurring either in somatic cells (sporadic cancer) or in the germline (hereditary cancer) and the second one always being somatic. Studies on hereditary and sporadic forms of colorectal carcinoma have made it evident that, apart from genetic mutations, epimutations may serve as either hit or both. Furthermore, recent next-generation sequencing studies show that epigenetic genes, such as those encoding histone modifying enzymes and subunits for chromatin remodeling systems, are themselves frequent targets of somatic mutations in cancer and can act like tumor suppressor genes or oncogenes. This review discusses genetic vs. epigenetic origin of cancer, including cancer susceptibility, in light of recent discoveries. Situations in which mutations and epimutations occur to serve analogous purposes are highlighted.  相似文献   

4.
Singh J  Freeling M  Lisch D 《PLoS genetics》2008,4(10):e1000216
In animals and yeast, position effects have been well documented. In animals, the best example of this process is Position Effect Variegation (PEV) in Drosophila melanogaster. In PEV, when genes are moved into close proximity to constitutive heterochromatin, their expression can become unstable, resulting in variegated patches of gene expression. This process is regulated by a variety of proteins implicated in both chromatin remodeling and RNAi-based silencing. A similar phenomenon is observed when transgenes are inserted into heterochromatic regions in fission yeast. In contrast, there are few examples of position effects in plants, and there are no documented examples in either plants or animals for positions that are associated with the reversal of previously established silenced states. MuDR transposons in maize can be heritably silenced by a naturally occurring rearranged version of MuDR. This element, Muk, produces a long hairpin RNA molecule that can trigger DNA methylation and heritable silencing of one or many MuDR elements. In most cases, MuDR elements remain inactive even after Muk segregates away. Thus, Muk-induced silencing involves a directed and heritable change in gene activity in the absence of changes in DNA sequence. Using classical genetic analysis, we have identified an exceptional position at which MuDR element silencing is unstable. Muk effectively silences the MuDR element at this position. However, after Muk is segregated away, element activity is restored. This restoration is accompanied by a reversal of DNA methylation. To our knowledge, this is the first documented example of a position effect that is associated with the reversal of epigenetic silencing. This observation suggests that there are cis-acting sequences that alter the propensity of an epigenetically silenced gene to remain inactive. This raises the interesting possibility that an important feature of local chromatin environments may be the capacity to erase previously established epigenetic marks.  相似文献   

5.
The fate of populations during range expansions, invasions and environmental changes is largely influenced by their ability to adapt to peripheral habitats. Recent models demonstrate that stable epigenetic modifications of gene expression that occur more frequently than genetic mutations can both help and hinder adaptation in panmictic populations. However, these models do not consider interactions between epimutations and evolutionary forces in peripheral populations. Here, we use mainland–island mathematical models and simulations to explore how the faster rate of epigenetic mutation compared to genetic mutations interacts with migration, selection and genetic drift to affect adaptation in peripheral populations. Our model focuses on cases where epigenetic marks are stably inherited. In a large peripheral population, where the effect of genetic drift is negligible, our analyses suggest that epimutations with random fitness impacts that occur at rates as high as 10–3 increase local adaptation when migration is strong enough to overwhelm divergent selection. When migration is weak relative to selection and epimutations with random fitness impacts decrease adaptation, we find epigenetic modifications must be highly adaptively biased to enhance adaptation. Finally, in small peripheral populations, where genetic drift is strong, epimutations contribute to adaptation under a wider range of evolutionary conditions. Overall, our results suggest that epimutations can change outcomes of adaptation in peripheral populations, which has implications for understanding conservation and range expansions and contractions, especially of small populations.  相似文献   

6.
Phenotypic plasticity is an important mechanism for populations to buffer themselves from environmental change. While it has long been appreciated that natural populations possess genetic variation in the extent of plasticity, a surge of recent evidence suggests that epigenetic variation could also play an important role in shaping phenotypic responses. Compared with genetic variation, epigenetic variation is more likely to have higher spontaneous rates of mutation and a more sensitive reaction to environmental inputs. In our review, we first provide an overview of recent studies on epigenetically encoded thermal plasticity in animals to illustrate environmentally‐mediated epigenetic effects within and across generations. Second, we discuss the role of epigenetic effects during adaptation by exploring population epigenetics in natural animal populations. Finally, we evaluate the evolutionary potential of epigenetic variation depending on its autonomy from genetic variation and its transgenerational stability. Although many of the causal links between epigenetic variation and phenotypic plasticity remain elusive, new data has explored the role of epigenetic variation in facilitating evolution in natural populations. This recent progress in ecological epigenetics will be helpful for generating predictive models of the capacity of organisms to adapt to changing climates.  相似文献   

7.
8.
9.
10.
11.
Understanding how senescence is established and maintained is an important area of study both for normal cell physiology and in tumourigenesis. Modifications to N-terminal tails of histone proteins, which can lead to chromatin remodelling, appear to be key to the regulation of the senescence phenotype. Epigenetic mechanisms such as modification of histone proteins have been shown to be sufficient to regulate gene expression levels and specific gene promoters can become epigenetically altered at senescence. This suggests that epigenetic mechanisms are important in senescence and further suggests epigenetic deregulation could play an important role in the bypass of senescence and the acquisition of a tumourigenic phenotype. Tumour suppressor proteins and cellular senescence are intimately linked and such proteins are now known to regulate gene expression through chromatin remodelling, again suggesting a link between chromatin modification and cellular senescence. Telomere dynamics and the expression of the telomerase genes are also both implicitly linked to senescence and tumourigenesis, and epigenetic deregulation of the telomerase gene promoters has been identified as a possible mechanism for the activation of telomere maintenance mechanisms in cancer. Recent studies have also suggested that epigenetic deregulation in stem cells could play an important role in carcinogenesis, and new models have been suggested for the attainment of tumourigenesis and bypass of senescence. Overall, proper regulation of the chromatin environment is suggested to have an important role in the senescence pathway, such that its deregulation could lead to tumourigenesis.  相似文献   

12.
13.
Mammalian epigenomics: reprogramming the genome for development and therapy   总被引:10,自引:0,他引:10  
Reik W  Santos F  Dean W 《Theriogenology》2003,59(1):21-32
Epigenetic modifications of DNA and chromatin are important for genome function during development and in adults. DNA and chromatin modifications have central importance for genomic imprinting and other aspects of epigenetic control of gene expression. In somatic lineages, modifications are generally stably maintained and are characteristic of different specialized tissues. The mammalian genome undergoes major reprogramming of modification patterns in germ cells and in the early embryo. Some of the factors that are involved both in maintenance and in reprogramming, such as methyltransferases, are being identified. Epigenetic reprogramming is deficient in animal cloning, which is a major explanation for the inefficiency of the cloning procedure. Deficiencies in reprogramming are likely to underlie the occurrence of epimutations and of epigenetic inheritance. Environmental factors can alter epigenetic modifications and may thus have long-lasting effects on phenotype. Epigenomics methods are being developed to catalogue genome modifications under normal and pathological conditions. Epigenetic engineering is likely to play an important role in medicine in the future.  相似文献   

14.
15.
《Epigenetics》2013,8(7):843-848
Epigenetic silencing is a pervasive mode of gene regulation in multicellular eukaryotes: stable differentiation of somatic cell types requires the maintenance of subsets of genes in an active or silent state. The variety of molecules involved, and the requirement for active maintenance of epigenetic states, creates the potential for errors on a large scale. When epigenetic errors - or epimutations - activate or inactivate a critical gene, they may cause disease. An epimutation that occurs in the germline or early embryo can affect all, or most, of the soma and phenocopy genetic disease. But the stochastic and reversible nature of epigenetic phenomena predicts that epimutations are likely to be mosaic and inherited in a nonmendelian manner; epigenetic diseases will thus rarely behave in the comfortably predictable manner of genetic diseases but will display variable expressivity and complex patterns of inheritance. Much phenotypic variation and common disease might be explained by epigenetic variation and aberration. The known examples of true epigenetic disease are at present limited, but this may reflect only the difficulty in distinguishing causal epigenetic aberrations from those that are merely consequences of disease, a challenge further extended by the impact of environmental agents on epigenetic mechanisms. The rapidly developing molecular characterization of epigenomes, and the new ability to survey epigenetic marks on whole genomes, may answer many questions about the causal role of epigenetics in disease; these answers have the potential to transform our understanding of human disease.  相似文献   

16.
17.
Epigenetic phenomena and the evolution of plant allopolyploids   总被引:29,自引:0,他引:29  
Allopolyploid speciation is widespread in plants, yet the molecular requirements for successful orchestration of coordinated gene expression for two divergent and reunited genomes are poorly understood. Recent studies in several plant systems have revealed that allopolyploid genesis under both synthetic and natural conditions often is accompanied by rapid and sometimes evolutionarily conserved epigenetic changes, including alteration in cytosine methylation patterns, rapid silencing in ribosomal RNA and protein-coding genes, and de-repression of dormant transposable elements. These changes are inter-related and likely arise from chromatin remodeling and its effects on epigenetic codes during and subsequent to allopolyploid formation. Epigenetic modifications could produce adaptive epimutations and novel phenotypes, some of which may be evolutionarily stable for millions of years, thereby representing a vast reservoir of latent variation that may be episodically released and made visible to selection. This epigenetic variation may contribute to several important attributes of allopolyploidy, including functional diversification or subfunctionalization of duplicated genes, genetic and cytological diploidization, and quenching of incompatible inter-genomic interactions that are characteristic of allopolyploids. It is likely that the evolutionary success of allopolyploidy is in part attributable to epigenetic phenomena that we are only just beginning to understand.  相似文献   

18.
19.
In most discussions of the evolution of sex chromosomes, it is presumed that the morphological differences between the X and Y were initiated by genetic changes. An alternative possibility is that, in the early stages, a key role was played by epigenetic modifications of chromatin structure that did not depend directly on genetic changes. Such modifications could have resulted from spontaneous epimutations at a sex-determining locus or, in mammals, from selection in females for the epigenetic silencing of imprinted regions of the paternally derived sex chromosome. Other features of mammalian sex chromosomes that are easier to explain if the epigenetic dimension of chromosome evolution is considered include the relatively large number of X-linked genes associated with human brain development, and the overrepresentation of spermatogenesis genes on the X. Both may be evolutionary consequences of dosage compensation through X-inactivation.  相似文献   

20.
Selma  S.  Orzáez  D. 《Transgenic research》2021,30(4):381-400

Site-specific nucleases (SSNs) have drawn much attention in plant biotechnology due to their ability to drive precision mutagenesis, gene targeting or allele replacement. However, when devoid of its nuclease activity, the underlying DNA-binding activity of SSNs can be used to bring other protein functional domains close to specific genomic sites, thus expanding further the range of applications of the technology. In particular, the addition of functional domains encoding epigenetic effectors and chromatin modifiers to the CRISPR/Cas ribonucleoprotein complex opens the possibility to introduce targeted epigenomic modifications in plants in an easily programmable manner. Here we examine some of the most important agronomic traits known to be controlled epigenetically and review the best studied epigenetic catalytic effectors in plants, such as DNA methylases/demethylases or histone acetylases/deacetylases and their associated marks. We also review the most efficient strategies developed to date to functionalize Cas proteins with both catalytic and non-catalytic epigenetic effectors, and the ability of these domains to influence the expression of endogenous genes in a regulatable manner. Based on these new technical developments, we discuss the possibilities offered by epigenetic editing tools in plant biotechnology and their implications in crop breeding.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号