首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Chemical and biological diversity of protein structures and functions can be widely expanded by position-specific incorporation of non-natural amino acids carrying a variety of specialty side groups. After the pioneering works of Schultz's group and Chamberlin's group in 1989, noticeable progress has been made in expanding types of amino acids, in finding novel methods of tRNA aminoacylation and in extending genetic codes for directing the positions. Aminoacylation of tRNA with non-natural amino acids has been achieved by directed evolution of aminoacyl-tRNA synthetases or some ribozymes. Codons have been extended to include four-base codons or non-natural base pairs. Multiple incorporation of different non-natural amino acids has been achieved by the use of a different four-base codon for each tRNA. The combination of these novel techniques has opened the possibility of synthesising non-natural mutant proteins in living cells.  相似文献   

2.
Flexizymes are de novo ribozymes capable of charging a wide variety of non-natural amino acids on tRNAs. The flexizyme system enables reprogramming of the genetic code by reassigning the codons that are generally assigned to natural amino acids to non-natural residues, and thus mRNA-directed synthesis of non-natural polypeptides can be achieved. In this review, we comprehensively summarize the history of the flexizyme system and its subsequent development into a practical tool. Furthermore, applications to the synthesis of novel biopolymers via genetic code reprogramming and perspectives for future applications are described.  相似文献   

3.
Kolmar H 《The FEBS journal》2008,275(11):2684-2690
Cystine-knot miniproteins are members of a large family of small proteins that are defined by a common structural scaffold which is stabilized by three intramolecular disulfide bonds. Cystine-knot miniproteins display a broad spectrum of therapeutically useful natural biological activities and several family members are marketed as therapeutics or are in clinical development. Because of their extraordinary intrinsic chemical and proteolytic stability they provide promising scaffolds for the introduction of therapeutically relevant functionalities. Several successful engineering efforts have been reported to generate miniproteins with novel activities by rational design via functional loop grafting or by directed evolution via screening of scaffold-constrained random libraries. Owing to their small size they are amenable to recombinant as well as to chemical routes of synthesis, which opens up new avenues in optimizing biological activity, specificity and bioavailability by site-specific modification, introduction of non-natural amino acids or chemical conjugation.  相似文献   

4.
5.
氨酰-tRNA合成酶的研究进展   总被引:1,自引:0,他引:1  
氨酰-tRNA合成酶催化特异的氨基酸与同源tRNA氨酰化,从而保证了遗传密码翻译的忠实性。这些古老而保守的蛋白质分子除了具有酶的功能外,在哺乳动物细胞中还发现了多种其他功能,具有重要的应用价值。在寻找具有全新作用机制的新抗生素以应对日益严重的抗生素耐药现象过程中,氨酰-tRNA合成酶是细菌蛋白质合成过程中重要的、新颖的靶标,成为关注的重点。定向突变的氨酰-tRNA合成酶可以用来定点掺入非天然氨基酸,扩展蛋白质工程。今后,随着人们对氨酰-tRNA合成酶研究的不断深入,它们还可能用来治疗肿瘤等多种疾病。  相似文献   

6.
7.
Reverse cholesterol transport promoted by HDL-apoA-I is an important mechanism of protection against atherosclerosis. We have previously identified apoA-I mimetic peptides by synthesizing analogs of the 22 amino acid apoA-I consensus sequence (apoA-I(cons)) containing non-natural aliphatic amino acids. Here we examined the effect of different aliphatic non-natural amino acids on the structure-activity relationship (SAR) of apoA-I mimetic peptides. These novel apoA-I mimetics, with long hydrocarbon chain (C(5-8)) amino acids incorporated in the amphipathic α helix of the apoA-I(cons), have the following properties: (i) they stimulate in vitro cholesterol efflux from macrophages via ABCA1; (ii) they associate with HDL and cause formation of pre-β HDL particles when incubated with human and mouse plasma; (iii) they associate with HDL and induce pre-β HDL formation in vivo, with a corresponding increase in ABCA1-dependent cholesterol efflux capacity ex vivo; (iv) at high dose they associate with VLDL and induce hypertriglyceridemia in mice. These results suggest our peptide design confers activities that are potentially anti-atherogenic. However a dosing regimen which maximizes their therapeutic properties while minimizing adverse effects needs to be established.  相似文献   

8.
A number of transmembrane proteins have been recently reported to be modified by the covalent addition of saturated fatty acids which may contribute to membrane targeting and specific protein-lipid interactions. Such modifications have not been reported in cell-associated heparan sulfate proteoglycans, although these macromolecules are known to be hydrophobic. Here, we report that a cell surface heparan sulfate proteoglycan is acylated with both myristate and palmitate, two long-chain saturated fatty acids. When colon carcinoma cells were labeled with [3H]myristic acid, a significant proportion of the label was shown to be specifically incorporated into the protein core of the proteoglycan. Characterization of fatty acyl moiety in the purified proteoglycan by reverse-phase high pressure liquid chromatography revealed that approximately 60% of the covalently bound fatty acids was myristate. We further show that this relatively rare 14-carbon fatty acid was bound to the protein core via a hydroxylamine- and alkali-resistant amide bond. The remaining 40% was the more common 16-carbon palmitate, which was bound via a hydroxylamine- and alkali-sensitive thioester bond. Palmitate appeared to be added post-translationally and derived in part from intracellular elongation of myristate, a process that occurred within the first two hours and was insensitive to inhibition of protein synthesis. Acylation of heparan sulfate proteoglycan represents a novel modification of this gene product and could play a role in a number of biological functions including specific interactions with membrane receptors and ligand stabilization.  相似文献   

9.
Many adhesion and signaling molecules critical for development, as well as surface markers implicated in diseases ranging from cancer to influenza, contain oligosaccharides that modify their functions. Inside a cell, complex glycosylation pathways assemble these oligosaccharides and attach them to proteins and lipids as they traffic to the cell surface. Until recently, practical technologies to manipulate glycosylation have lagged unlike the molecular biologic and genetic methods available to intervene in nucleic acid and protein biochemistry; now, metabolic oligosaccharide engineering shows promise for manipulating glycosylation. In this methodology, exogenously-supplied non-natural sugars intercept biosynthetic pathways and exploit the remarkable ability of many of the enzymes involved in glycosylation to process metabolites with slightly altered chemical structures. To date, non-natural forms of sialic acid, GalNAc, GlcNAc, and fucose have been incorporated into glycoconjugates that appear on the cell surface; in addition O-GlcNAc protein modification involved in intracellular signaling has been tagged with modified forms of this sugar. Reactive functional groups, including ketones, azides, and thiols, have been incorporated into glycoconjugates and thereby provide chemical 'tags' that can be used for diverse purposes ranging from drug delivery to new modes of carbohydrate-based cell adhesion that can be used to control stem cell destiny. Finally, strategies for further engineering non-natural sugars to improve their pharmacological properties and provide complementary biological activities, such as addition of short chain fatty acids, are discussed in this article.  相似文献   

10.
We explored the unique substrate specificity of the primary S, subsite of human urinary kallikrein (hK1), which accepts both Phe or Arg synthesizing and assaying peptides derived from Phenylacetyl-Phe-Ser-Arg-EDDnp, a previously described inhibitor with analgesic and anti-inflammatory activities [Emim et al., Br. J. Pharmacol. 130 (2000), 1099-1107]. Phe was substituted by amino acids containing larger aliphatic or aromatic side chains as well as by non-natural basic amino acids, which were designed to combine a large hydrophobic and/or aromatic group with a positively-charged group at their side chains. In general, all peptides with basic amino acids represented better inhibitors than those with hydrophobic amino acids. Furthermore, the S1 subsite specificity proved to be much more selective than the mere distinction between Phe and Arg, for minor differences in the side chains of the non-natural amino acids resulted in major differences in the Ki values. Finally, we present a series of peptides that were assayed as competitive inhibitors for human tissue kallikrein that may lead to the development of novel peptides, which are both more potent and selective.  相似文献   

11.
An efficient and rapid on-bead screening method was established to identify non-natural peptides that target the Androgen Receptor-cofactor interaction. Binding of the Androgen Receptor ligand binding domain to peptide sequences displayed on beads in a One-Bead-One-Compound format could be screened using fluorescence microscopy. The method was applied to generate and screen both a focussed and a random peptide library. Resynthesis of the peptide hits allowed for the verification of the affinity of the selected peptides for the Androgen Receptor in a competitive fluorescence polarization assay. For both libraries strong Androgen Receptor binding peptides were found, both with non-natural and natural amino acids. The peptides identified with natural amino acids showed great similarity in terms of preferred amino acid sequence with peptides previously isolated from biological screens, thus validating the screening approach. The non-natural peptides featured important novel chemical transformations on the relevant hydrophobic amino acid positions interacting with the Androgen Receptor. This screening approach expands the molecular diversity of peptide inhibitors for nuclear receptors.  相似文献   

12.
Position-specific incorporation of non-natural amino acids into proteins is a useful technique in protein engineering. In this study, we established a novel selection system to obtain tRNAs that show high decoding activity, from a tRNA library in a cell-free translation system to improve the efficiency of incorporation of non-natural amino acids into proteins. In this system, a puromycin-tRNA conjugate, in which the 3'-terminal A unit was replaced by puromycin, was used. The puromycin-tRNA conjugate was fused to a C-terminus of streptavidin through the puromycin moiety in the ribosome. The streptavidin-puromycin-tRNA fusion molecule was collected and brought to the next round after amplification of the tRNA sequence. We applied this system to select efficient frameshift suppressor tRNAs from a tRNA library with a randomly mutated anticodon loop derived from yeast tRNA CCCG Phe. After three rounds of the selection, we obtained novel frameshift suppressor tRNAs which had high decoding activity and good orthogonality against endogenous aminoacyl-tRNA synthetases. These results demonstrate that the in vitro selection system developed here is useful to obtain highly active tRNAs for the incorporation of non-natural amino acid from a tRNA library.  相似文献   

13.
Ohtsuki T  Manabe T  Sisido M 《FEBS letters》2005,579(30):6769-6774
The ability to introduce non-natural amino acids into proteins opens up new vistas for the study of protein structure and function. This approach requires suppressor tRNAs that deliver the non-natural amino acid to a ribosome associated with an mRNA containing an expanded codon. The suppressor tRNAs must be absolutely protected from aminoacylation by any of the aminoacyl-tRNA synthetases in the protein synthesizing system, or a natural amino acid will be incorporated instead of the non-natural amino acid. Here, we found that some tRNAs with non-standard structures could work as efficient four-base suppressors fulfilling the above orthogonal conditions. Using these tRNAs, we successfully demonstrated incorporation of three different non-natural amino acids into a single protein.  相似文献   

14.
We describe a detailed protocol for incorporating non-natural amino acids, 3-iodo-L-tyrosine (IY) and p-benzoyl-L-phenylalanine (pBpa), into proteins in response to the amber codon (the UAG stop codon) in mammalian cells. These amino acids, IY and pBpa, are applicable for structure determination and the analysis of a network of protein-protein interactions, respectively. This method involves (i) the mutagenesis of the gene encoding the protein of interest to create an amber codon at the desired site, (ii) the expression in mammalian cells of the bacterial pair of an amber suppressor tRNA and an aminoacyl-tRNA synthetase specific to IY or pBpa and (iii) the supplementation of the growth medium with these amino acids. The amber mutant gene, together with these bacterial tRNA and synthetase genes, is introduced into mammalian cells. Culturing these cells for 16-40 h allows the expression of the full-length product from the mutant gene, which contains the non-natural amino acid at the introduced amber position. This method is implemented using the conventional tools for molecular biology and treating cultured mammalian cells. This protocol takes 5-6 d for plasmid construction and 3-4 d for incorporating the non-natural amino acids into proteins.  相似文献   

15.
Techniques for position-specific incorporation of non-natural amino acids in an in vitro protein synthesizing system are described. First, a PNA-assisted non-enzymatic tRNA aminoacylation with a variety of natural and non-natural amino acids is described. With this technique, one can aminoacylate a specific tRNA simply by adding a preformed amino acid activated ester-PNA conjugate into an in vitro protein biosynthesizing system. Second, the genetic code is expanded by introducing 4-base codons that can be exclusively translated to non-natural amino acids. The most advantageous point of the 4-base codon strategy is to introduce multiple amino acids into specific positions in single proteins by using mutually orthogonal 4-base codons and orthogonal tRNAs. An easy and quick method for preparation of tRNAs possessing 4-base anticodons is also described. Combination of the non-enzymatic aminoacylation and the 4-base codon/anticodon strategy gives an easy and widely applicable technique for incorporating a variety of non-natural amino acids into proteins in vitro.  相似文献   

16.
The last decade has witnessed striking progress in the development of bioorthogonal reactions that are strictly directed towards intended sites in biomolecules while avoiding interference by a number of physical and chemical factors in biological environment. Efforts to exploit bioorthogonal reactions in protein conjugation have led to the evolution of protein translational machineries and the expansion of genetic codes that systematically incorporate a range of non-natural amino acids containing bioorthogonal groups into recombinant proteins in a site-specific manner. Chemoselective conjugation of proteins has begun to find valuable applications to previously inaccessible problems. In this review, we describe bioorthogonal reactions useful for protein conjugation, and biosynthetic methods that produce proteins amenable to those reactions through an expanded genetic code. We then provide key examples in which novel protein conjugates, generated by the genetic incorporation of a non-natural amino acid and the chemoselective reactions, address unmet needs in protein therapeutics and enzyme engineering.  相似文献   

17.
In order to enable competitive manufacturing routes, most biocatalysts must be tailor-made for their processes. Enzymes from nature rarely have the combined properties necessary for industrial chemical production such as high activity and selectivity on non-natural substrates and toleration of high concentrations of organic media over the wide range of conditions (decreasing substrate, increasing product concentrations, solvents, etc.,) that will be present over the course of a manufacturing process. With the advances in protein engineering technologies, a variety of enzyme properties can be altered simultaneously, if the appropriate screening parameters are employed. Here we discuss the process of directed evolution for the generation of commercially viable biocatalysts for the production of fine chemicals, and how novel approaches have helped to overcome some of the challenges.  相似文献   

18.
Proton NMR studies on myoglobins and hemoglobins reconstituted with non-natural hemes, possessing different side chains in the pyrrolic rings, have provided interesting information for the understanding of the mechanism governing heme reorientation in the globin pocket, during synthesis of the native protein in vivo or in the reconstitution process in vitro. More recently, circular dichroism (CD) studies have been reported as a qualitative, alternative tool, with respect to 1H-NMR for detecting heme disorder in a reconstituted myoglobin or hemoglobin. In this paper, a CD study is reported on the reconstitution of horse heart myoglobin with protoheme XIII, a heme possessing true rotational symmetry about its alpha, gamma-meso axis. The results obtained show that the reconstitution product with this heme, which binds to the apoprotein with high affinity, not dissimilar from that of the natural heme, is characterized by a CD spectrum with bands possessing rotational strengths much lower than in the native protein. Furthermore, the CD changes detected as a function of time, during heme reorientation, in the case of natural heme, are absent when the apoprotein is reconstituted with protoheme XIII. These data provide independent evidence for reorientation of the natural heme, which follows its insertion into the protein matrix.  相似文献   

19.
Carica papaya lipase (CPL): an emerging and versatile biocatalyst   总被引:1,自引:0,他引:1  
In recent years, the Carica papaya lipase (CPL) is attracting more and more interest. This hydrolase, being tightly bonded to the water-insoluble fraction of crude papain, is thus considered as a "naturally immobilized" biocatalyst. To date, several CPL applications have already been described: (i) fats and oils modification, derived from the sn-3 selectivity of CPL as well as from its preference for short-chain fatty acids; (ii) esterification and inter-esterification reactions in organic media, accepting a wide range of acids and alcohols as substrates; (iii) more recently, the asymmetric resolution of different non-steroidal anti-inflammatory drugs (NSAIDs), 2-(chlorophenoxy)propionic acids, and non-natural amino acids. Taking into account the novelty and the current interest of the topic, this review aims to highlight the origin, features, and applications of the C. papaya lipase, with the objective to prompt research groups to further investigate the spectra of applications that this emerging and versatile CPL could have in the future.  相似文献   

20.
Bioactive peptides and peptidomimetics play a pivotal role in the regulation of many biological processes such as cellular apoptosis, host defense, and biomineralization. In this work, we develop a novel structural matrix, Index of Natural and Non-natural Amino Acids (NNAAIndex), to systematically characterize a total of 155 physiochemical properties of 22 natural and 593 non-natural amino acids, followed by clustering the structural matrix into 6 representative property patterns including geometric characteristics, H-bond, connectivity, accessible surface area, integy moments index, and volume and shape. As a proof-of-principle, the NNAAIndex, combined with partial least squares regression or linear discriminant analysis, is used to develop different QSAR models for the design of new peptidomimetics using three different peptide datasets, i.e., 48 bitter-tasting dipeptides, 58 angiotensin-converting enzyme inhibitors, and 20 inorganic-binding peptides. A comparative analysis with other QSAR techniques demonstrates that the NNAAIndex method offers a stable and predictive modeling technique for in silico large-scale design of natural and non-natural peptides with desirable bioactivities for a wide range of applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号