首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA-targeting copper(II) reagents have emerged as suitable drug candidates owing to the clinical success of the copper-activated, natural chemotherapeutic drug bleomycin. This agent and the synthetic chemical nuclease copper(II) bis-1,10-phenanthroline represent important templates for inorganic drug design owing to their ability to initiate free radical DNA scission. Herein, we report the synthesis and biological properties of 1:1:1 square-planar copper(II) complexes incorporating the dicarboxylate o-phthalate and 1,10-phenanthroline (1) or 2,2'-dipyridyl (2) ligands. Their broad-spectrum chemotherapeutic potential has been assessed at 24- and 96-h intervals, along with that of the clinical agent cisplatin, using breast (MCF-7), prostate (DU145), colon (HT29), and intrinsically cisplatin-resistant ovarian (SK-OV-3) human cancer cells. 1 represents a potent cytotoxic agent with IC(50) values ranging from 5.6 to 3.4μM across all cell lines, including SK-OV-3. The production of endogenous reactive oxygen species within SK-OV-3 cancer cells was monitored using the fluorophore 2',7'-dichlorodihydrofluorescin diacetate, and results indicate a concentration-dependent propensity toward ROS generation by 1 and 2 that mirrors their antitumoral behavior. DNA interaction studies, using fluorescence and viscosity measurements, were conducted in tandem with the DNA-targeting drugs actinomycin D and pentamidine, using calf thymus DNA, poly[d(A-T)(2)], and poly[d(G-C)(2)], with intercalation of 1 and 2 at the minor groove appearing to be the likely interaction mode. DNA cleavage reactions using superhelical plasmid DNA, in the presence of exogenous reductant, l-ascorbic acid, revealed excellent agreement between double-stranded DNA scission capability and antitumoral IC(50) concentration. The presence of double-strand DNA breaks (DSBs) was confirmed within SK-OV-3 cancer cells using immunodetection of γ-H2AX foci by confocal microscopy and flow cytometry, with complex 1 quantitatively producing superior numbers of DSBs compared with complex 2. Superoxide dismutase and catalase mimetic activity assays were conducted, and these activities are related to the ability of both complexes to cleave DNA through free radical generation.  相似文献   

2.
Synthesis and characterization of new thiosemicarbazones derived from natural aldehydes (1–9) have been investigated in order to develop a research program aimed at the development of compounds with antiviral, antibacterial, and antitumor properties. These substances contain both a chain with N and S nucleophilic centers with tuberculostatic activity, and an alkyl or terpenic moiety. In addition, a few nickel(II) and copper(II) complexes (10–18), derived also from the previously studied ligands, were synthesized and characterized by means of NMR and IR techniques. The trans-2-octenal N1-phenylthiosemicarbazone and its nickel complex were also characterized by X-ray diffractometry. Biological studies, performed with some of these compounds, have involved both inhibition of cell proliferation and apoptosis tests in vitro on human leukemia cell line U937 to deepen our knowledge on the way these substances interfere with biological processes in leukemic cells.  相似文献   

3.
S-carboxymethyl-L-cysteine (SCC) is a mucolytic agent extensively used in the treatment of respiratory tract disorders. Some of the undesirable side effects observed during SCC therapy being reminiscent of symptoms characteristic of copper and zinc imbalances, the objective of this paper was to test the possible interference of SCC with the metabolism of these two metals. Copper(II)- and zinc(II)-SCC complex equilibria have thus been investigated under physiological conditions by means of classical potentiometry combined with computer-assisted calculation techniques. Formation constants derived from these studies have then been used to simulate 1) the potential influence of SCC on the distribution of the above metals in blood plasma and 2) the extent to which gastrointestinal interactions between the drug and each metal ion in turn are likely to affect the bioavailability of each other. The results of these simulations show that 1) plasma therapeutic levels of SCC are not likely to induce dramatic changes in the distributions of copper(II) and zinc(II) low molecular weight fractions, 2) the gastrointestinal distribution of the drug is not affected by standard dietary doses of these metals, and 3) in contrast, therapeutic concentrations of SCC are capable of mobilizing significant fractions of both metals into tissue-diffusible electrically neutral complexes. In conclusion significant depletions of neither copper nor zinc are to be expected from oral administration of SCC. While the drug may to some extent facilitate the excretion of Cu2+ and Zn2+ ions from blood plasma, its gastrointestinal influence is, on the contrary, favorable to a better absorption of these two metals.  相似文献   

4.
Trace elements such as copper and cobalt have been associated with virus-host interactions. However, studies to show the effect of conjugation of copper(II) or cobalt(III) metal centers to thiosemicarbazone ligand(s) derived from either food additives or mosquito repellent such as 2-acetylethiazole or citral, respectively, on Zika virus (ZIKV) or dengue virus (serotype 2; DENV2) infections have not been explored. In this study, we show that four compounds comprising of thiosemicarbazone ligand derived from 2-acetylethiazole viz., (E)-N-ethyl-2-[1-(thiazol-2-yl)ethylidene]hydrazinecarbothioamide (acetylethTSC) (compound 1), a copper(II) complex with acetylethTSC as a ligand (compound 2), a thiosemicarbazone ligand-derived from citral (compound 3) and a cobalt(III) complex with a citral-thiosemicarbazone ligand (compound 4) increased DENV2 and ZIKV replication in both mosquito C6/36 cells and human keratinocytes (HaCaT cells). Treatment of both cell lines with compounds 2 or 4 showed increased dengue viral titers at all three tested doses. Enhanced dengue viral plaque formation was also noted at the tested dose of 100 μM, suggesting higher production of infectious viral particles. Treatment with the compounds 2 or 4 enhanced ZIKV and DENV2 RNA levels in HeLa cell line and primary cultures of mouse bone marrow derived dendritic cells. Also, pre- or post treatments with conjugated compounds 2 or 4 showed higher loads of ZIKV or DENV2 envelope (E) protein in HaCaT cells. No changes in loads of E-protein were found in ZIKV-infected C6/36 cells, when compounds were treated after infection. In addition, we tested bis(1,10-phenanthroline)copper(II) chloride ([Cu(phen)2]Cl2, (compound 5) and tris(1,10-phenanthroline)cobalt(III) chloride ([Co(phen)3]Cl3, (compound 6) that also showed enhanced DENV2 loads. Also, we found that copper(II) chloride dehydrate (CuCl2·2H2O) or cobalt(II) chloride hexahydrate (CoCl2·6H2O) alone had no effects as “free” cations. Taken together, these findings suggest that use of Cu(II) or Co(III) conjugation to organic compounds, in insect repellents and/or food additives could enhance DENV2/ZIKV loads in human cells and perhaps induce pathogenesis in infected individuals or individuals pre-exposed to such conjugated complexes.

Importance

Mosquito-borne diseases are of great concern to the mankind. Use of chemicals/repellents against mosquito bites and transmission of microbes has been the topic of interest for many years. Here, we show that thiosemicarbazone ligand(s) derived from 2-acetylethiazole or citral or 1,10-phenanthroline upon conjugation with copper(II) or cobalt(III) metal centers enhances dengue virus (serotype 2; DENV2) and/or Zika virus (ZIKV) infections in mosquito, mouse and human cells. Enhanced ZIKV/DENV2 capsid mRNA or envelope protein loads were evident in mosquito cells and human keratinocytes, when treated with compounds before/after infections. Also, treatment with copper(II) or cobalt(III) conjugated compounds increased viral titers and number of plaque formations. These studies suggest that conjugation of compounds in repellents/essential oils/natural products/food additives with copper(II) or cobalt(III) metal centers may not be safe, especially in tropical and subtropical places, where several dengue infection cases and deaths are reported annually or in places with increased ZIKV caused microcephaly.  相似文献   

5.
Previous investigations of the potential of metal-organic compounds as inhibitors of human immunodeficiency virus type I protease (HIV-1 PR) showed that the copper(II) complex diaqua [bis(2-pyridylcarbonyl)amido] copper(II) nitrate dihydrate and the complex bis[N2-(2,3,6-trimethoxybenzyl)-4-2-pyridinecarboxamide] copper(II) behaved as inhibitors of HIV-1 PR. In a search for similar readily accessible ligands, we synthesised and studied the structural properties of N2-(2-pyridylmethyl)-2-pyridinecarboxamide (L) copper(II) complexes. Three different crystal structures were obtained. Two were found to contain ligand L simultaneously in a tridentate and bidentate conformation [Cu(L(tri)L(bi))]. The other contained two symmetry-related ligands, coordinated through the pyridine nitrogen and the amide oxygen atoms [Cu(L(bi))(2)]. A search of the Cambridge Structural Database indicated that L(tri) resulting from nitrogen bound amide hydrogen metal substitution is favoured over chelation through the amide oxygen atom. In our case, we calculated that the conformation of L(tri) is 11 kcal/mol more favourable than that of L(bi). ESI-MS experiments showed that the Cu(L(bi))(2) structure could not be observed in solution, while Cu(L(tri)L(bi))-related complexes were indeed present. The lack of protease inhibition of the pyridine carboxamide copper(II) complexes was explained by the fact that the Cu(L(bi)L(tri)) complex could not fit into the HIV-1 active site.  相似文献   

6.
Novel photosensitizers beta-(hydroquinon-2-yl)-5,10,15,20-tetra(4-hydroxylphenyl)porphyrinato zinc(II) (Zn(II)P) and beta-(hydroquinon-2-yl)-5,10,15,20-tetra(4-hydroxylphenyl)porphyrinato copper(II) (Cu(II)P) were synthesized and characterized. Their ability of producing singlet oxygen under irradiation was detected by the measurement of decomposition of 1,3-diphenylisobenzofuran (DPBF). The preliminary biological activity studies show that the Zn(II)P has photo-toxicity on human chronic myelogenous leukemia cell (K562) and could cleave supercoiled DNA (pBR 322 DNA), while the Cu(II)P has inferior biological activity. Results showed Zn(II)P having high anti-tumor activity, which presents a promising photosensitizer for photodynamic therapy.  相似文献   

7.
Copper(II) and platinum(II) complexes of 2-benzoylpyrrole (2-BZPH) were synthesized and characterized with IR, 1H and 13C NMR spectroscopies and coordination geometry with ligands arranged in transoid fashion. The crystal structure of [Cu(II)(2-BZP)2] was determined by X-ray diffraction. Death of complex treated Jurkat cells was measured by flow cytometry. The bis-chelate complexes [Cu(II)(2-BZP)2] and [Pt(II)(2-BZP)2] adopt square-planar coordination geometry with ligands, arranged in transoid fashion. Concentrations of 1-10 microM Platinum(II) complexes reduced cell survival from 100% to 20%, in contrast to the copper(II) complex which caused no cell death at a concentration of 10 microM. While the Pt(II) complexes may have damaged DNA to induce cell death, treatment with the Cu(II) complex did not induce Jurkat cell death.  相似文献   

8.
This report describes the synthesis and structural analysis of stable copper(II) cysteine complexes. Pale pink copper(II) cysteine complexes were synthesized in mole ratios of 1:2, 1:4, and 1:6 of copper(II):cysteine in ethanol. Infrared spectroscopy and X-ray absorption spectroscopy confirmed that copper(II) binding occurred via the thiol ligand of cysteine. XANES analysis showed that the oxidation state of copper remained as copper(II) and the local atomic geometry was similar in all of the cysteine complexes. The EXAFS data indicate that the copper(II) cysteine complexes are forming ring type structures with sulfur ligands from the cysteines acting as bridging ligands. X-ray diffraction revealed that the copper(II) cysteine complexes formed monoclinic cells with maximum crystallinity found in the 1:4 copper(II):cysteine complex.  相似文献   

9.
A series of linear tetrapeptides containing two histidyl residues in position 2 and 4, namely DHGH, DHGdH, KHGH, KHGdH, Ac-DHGH-NH2, Ac-DHGdH-NH2, Ac-KHGH-NH2, and Ac-KHGdH-NH2, were synthesized and characterised. Their copper(II) binding properties were investigated in depth through a variety of physicochemical methods. Potentiometric titrations were first carried out to establish the stoichiometry and the stability of the resulting copper(II)-peptide complexes. The copper(II) chromophores that are formed in the various cases in dependence of pH were subsequently characterised by extensive spectroscopic analysis (UV-Vis, EPR, CD) in strict correlation with potentiometric data. The effects of the nature of the first amino acid (Lys versus Asp) and of N-terminal amino group protection on copper(II) binding were specifically addressed. On turn, the careful comparison of the copper(II) coordination abilities of the linear peptides with those of their cyclic analogs provided insight into the effects of cyclization on the overall metal binding properties.  相似文献   

10.
Despite the fact that the Peste des petits ruminants virus (PPRV) leads to high morbidity and mortality (up to 100%), antiviral drugs against PPRV are not available. The aim of this study was to estimate the dose of epigallocatechin gallate (EGCG) co-administered with zinc (II) ions as an antiviral agent against PPRV. Treatment of PPRV-infectedVero cells with EGCG and zinc sulfate (zinc II) was administered, and antiviral activities against PPRV in infected Vero cells was evaluated by determination of virus yields, expressed as logTCID50/mL. Cytotoxicity was determined using the tetrazolium-based MTS test. Zinc sulfate at 1.1 mg/mL and EGCG at 25 μM showed low potentiated and potentiated antiviral activities against PPRV, respectively. These agents caused significant inhibition of PPRV in Vero cells (p < 0.05) with a reduction in logTCID50/mL by up to 3-fold. The combination of EGCG (25 μM) and zinc sulfate (1.1 mg/mL) was observed to have strong antiviral activity (p < 0.01) against PPRV with a reduction in logTCID50/mL of the virus up to 4-times without causing any host cell cytotoxicity. This study is the first one to prove that the zinc II has the capability of stimulating EGCG to inhibit in vitro PPRV entry. Moreover, this combination appears capable of reducing infection resistance by hindering viral adaptation.  相似文献   

11.
A spectrophotometric study of the complexation of nifuroxazide with cobalt(II), nickel(II) and copper(II) was carried out in different alcohols. The formation of a complex in each case is reported and their stability constants have been calculated. For a given solvent, the stability of the complexes increases from cobalt to copper. In the case of copper(II), the stability varies as an inverse function of the dielectric constant of the solvent. A possible structure of the complex is proposed.  相似文献   

12.
13.
Herein we present the synthesis, structural and spectroscopic characterization of coordination compounds of cobalt(II), copper(II) and zinc(II) with 2-methylbenzimidazole (2mbz), 2-phenylbenzimidazole (2phbz), 2-chlorobenzimidazole (2cbz), 2-benzimidazolecarbamate (2cmbz) and 2-guanidinobenzimidazole (2gbz). Their cytotoxic activity was evaluated using human cancer cell lines, PC3 (prostate), MCF-7 (breast), HCT-15 (colon), HeLa (cervic-uterine), SKLU-1 (lung) and U373 (glioblastoma), showing that the zinc(II) and copper(II) compounds [Zn(2mbz)2Cl2]·0.5H2O, [Zn(2cmbz)2Cl2]·EtOH, [Cu(2cmbz)Br2]·0.7H2O and [Cu(2gbz)Br2] had significant cytotoxic activity. The isostructural cobalt(II) complexes showed not significant activity. The cytotoxic activity is related to the presence of halides in the coordination sphere of the metal ion. Recuperation experiments with HeLa cells, showed that the cells recuperated after removing the copper(II) compounds and, on the contrary, the cells treated with the zinc(II) compounds did not. These results indicate that the mode of action of the coordination compounds is different.  相似文献   

14.
Losartan, the potassium salt of 2-n-butyl-4-chloro-5-hydroxymethyl-1-[(2'-(1H-tetrazol-5-yl)biphenyl-4-yl)methyl]imidazol, is an efficient antihypertensive drug. The vibrational FTIR and Raman spectra of Losartan (its anionic and protonated forms) are discussed. In addition, the copper(II) complex of Losartan was obtained and characterized as a microcrystalline powder. The metal center is bound to the ligand through the nitrogen atoms of the tetrazolate moiety as determined by vibrational spectroscopy. The compound is a dimer with the metal centers in a tetragonal distorted environment but the presence of a monomeric impurity has been determined by EPR spectroscopy. The antioxidant properties of the complex (superoxide dismutase mimetic activity) and its effect on the proliferation and morphology of two osteoblast-like cells in culture are reported. The new compound exerted more toxic effects on tumoral cells than the copper(II) ion and Losartan.  相似文献   

15.
Isonicotinoylhydrazones 1, obtained by the primary antituberculous agent Isoniazid, have been used as monoanionic ligands (L) to prepare copper(II) 2 and nickel(II) 3 octahedral complexes of stoichiometry [MeL2(H2O)2]. Their antimycobacterial in vitro activity was evaluated against Mycobacterium tuberculosis H37Rv in comparison with the ligands. Complexes 2a, 2b, 2f, 3b, 3d and 3g displayed MIC values < or = 0.2 microg/mL.  相似文献   

16.
Summary Among the various bivalent metal ions tested, only copper(II) was found to bind to thiostrepton (M rr 1650) in a stoichiometric ratio of 4:1. The binding of four copper ions to a thiostrepton molecule resulted in (a) irreversible loss in biological activity and (b) a change in the ultraviolet absorption spectrum of the antibiotic. Potentiometric titration of thiostrepton in the presence of copper(II) revealed dissociation of the antibiotic with a loss of 11 protons/molecule. Based on the preferential ability of copper(II) to bind to thiostrepton in the presence of some copper-complexing compounds containing similar ligand groups to the antibiotic, the possible co-ordinating atoms of the thiostrepton molecule involved in binding to the metal ion are discussed.  相似文献   

17.
BACKGROUND: Copper(II) is a heavy metal whose levels have increased in some marine ecosystems to polluting levels. Dinoflagellates, an important phytoplankton group, are at the base of aquatic food chains and bioaccumulation of copper by these microorganisms can result in complex ecosystem alterations, so we investigated how copper disturbs those cells. METHODS: Cytotoxic effects of sublethal and lethal copper concentrations ranging from 4.2 nM (control condition) to 3.13 microM estimated labile copper were studied in batch cultures of Amphidinium carterae. Cell morphology, motility, autofluorescence, and fluorescein diacetate (FDA)-dependent fluorescence generation were evaluated by flow cytometry (FCM) and microscopy. RESULTS: Exposure of A. carterae to toxic levels of copper impaired cell mobility, delayed cell proliferation, led to increased green autofluorescence, and at 3.13 microM labile copper also induced encystment and death. Chlorophyll fluorescence, however, was not affected. Kinetic FCM assay of FDA-dependent fluorescence generation showed a dose-dependent enhancement of fluorescein fluorescence immediately after copper addition and in cultures with sustained exposure to this toxicant. CONCLUSIONS: Our data suggest that copper toxicity occurs quickly at the membrane level in relation to oxidative stress generation. Based on fluorescence kinetic studies, the Na(+)/H(+) antiporter seemed to be affected by copper, thereby affecting intracellular pH.  相似文献   

18.
19.
Tenuazonic acid (TA) is a phytotoxin produced by a fungal pathogen of rice, Pyricularia oryzae. We have synthesized and characterized the metal complexes of TA with copper (II), iron (III), nickel (II), and magnesium (II). The stoichiometry of the complexes determined by microanalysis and mass spectroscopy (D/CI) are Cu(II)TA2, Fe(III)TA3, Ni(II)TA2, and Mg(TA)2. Voltammograms of Fe(III)TA3, and Cu(II)TA2 in methanolic solutions confirmed this stoichiometry. Ni(II)TA2 paramagnetism and visible absorption data suggest an octahedral geometry. Fe(III)TA3 showed a characteristic visible absorption at 450 nm. Addition of Fe(III)Cl3 and Mg(II)Cl2 did not reverse the toxicity of NaTA to rice and bacterial cells, showing that this toxicity is not due to the privation of the cells of these metals essential for cell growth.  相似文献   

20.
The infection of tissue-cultured Aedes albopictus (mosquito) cells by an alphavirus ultimately results in a persistently infected cell population which can be maintained in the laboratory for years. One characteristic of this culture is that it will not support the replication of superinfecting homologous virus. We have previously shown that mosquito cells persistently infected with Sindbis virus produce an antiviral agent which when applied to uninfected mosquito cells suppresses Sindbis virus replication. The exclusion of virus replication in the antiviral-agent-treated cells is similar to the phenomenon of homologous interference described in alphavirus-infected vertebrate cells. In this study we examined the expression of homologous interference in three lines of mosquito cells and compared the expression of homologous interference to the effects of the antiviral activity. The cell lines were found to differ in their ability to express homologous interference, and evidence suggests that the mosquito cells may suppress replication by homologous interference or by the action of the antiviral agent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号